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Time-Dependent Deep Image Prior for Dynamic
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Abstract—We propose a novel unsupervised deep-learning-
based algorithm for dynamic magnetic resonance imaging (MRI)
reconstruction. Dynamic MRI requires rapid data acquisition
for the study of moving organs such as the heart. Existing
reconstruction methods suffer from restrictions either in the
model design or in the absence of ground-truth data, resulting
in low image quality. We introduce a generalized version of
the deep-image-prior approach, which optimizes the network
weights to fit a sequence of sparsely acquired dynamic MRI
measurements. Our method needs neither prior training nor
additional data. In particular, for cardiac images, it does not
require the marking of heartbeats or the reordering of spokes.
The key ingredients of our method are threefold: 1) a fixed
low-dimensional manifold that encodes the temporal variations
of images; 2) a network that maps the manifold into a more
expressive latent space; and 3) a convolutional neural network
that generates a dynamic series of MRI images from the latent
variables and that favors their consistency with the measurements
in k-space. Our method outperforms the state-of-the-art methods
quantitatively and qualitatively in both retrospective and real
fetal cardiac datasets. To the best of our knowledge, this is
the first unsupervised deep-learning-based method that can
reconstruct the continuous variation of dynamic MRI sequences
with high spatial resolution.

Index Terms—accelerated MRI, unsupervised learning,
Golden-angle trajectory.

I. INTRODUCTION

The aim of dynamic magnetic resonance imaging (MRI)
is to capture the dynamics associated with moving organs,
which requires a fast imaging process. A typical approach is
to accelerate data acquisition by a partial sampling of the k-
space. The resulting partial loss of data must then be com-
pensated to maintain the image quality. Several methods have
addressed this by exploiting spatial or temporal redundancy,
including parallel MRI [1]–[4], k-t acceleration methods [5]–
[7], compressed sensing (CS) MRI [8]–[16], low-rank methods
[17]–[23], and many others. In the specific case of cardiac ap-
plications, the current state-of-the-art methods further improve
the reconstruction by exploiting the fact that the heart motion
is approximately cyclic. They typically use electrocardiograms
or self-gating techniques [24], [25]. However, all of these
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methods are limited by constraints over the signal-to-noise
ratios (SNR), restrictions in the coil design, hand-picked pri-
ors, multiple processing steps, or inefficient algorithms in their
deployment of the standard convex-optimization techniques.

More recently, inspired by the development of deep-
learning techniques in various imaging modalities [26]–[29],
supervised-learning approaches have been applied to the fast
and accurate reconstruction of partially sampled MRI [30]–
[38]. These methods, however, heavily depend on a training
dataset, especially on ground-truth data (i.e., fully sampled
measurements), which are typically unavailable for dynamic
MRI. Unlike the direct deep-learning approaches, the model-
based deep-learning framework of [39] formulates the image
recovery as an optimization scheme. By unrolling an iterative
algorithm, it minimizes a cost function that combines data
consistency and a deep-learned prior. Because the learned
prior incorporates patient-specific noise patterns into the al-
gorithm, this approach successfully recovers images with fast
reconstruction and acceptable quality. However, it still requires
ground-truth data to train the denoising network.

A. Contribution

In this paper, we propose an unsupervised learning frame-
work in which a generative network is optimized to reconstruct
a sequence of golden-angle radial lines in k-space, also called
spokes. Inspired by deep image priors (DIP) [40], we use
a convolutional neural networks (CNN) architecture as an
implicit structural prior that constrains the search space of
the optimization problem. In addition, to learn the temporal
dependencies of the dynamic measurements, we impose a one-
dimensional manifold parameterized by time. Aided by this
explicit cue, the network then learns to encode the temporal
variations of the sequential images into the spatial closeness
of the samples on the imposed manifold. This simple temporal
coupling already enables our model to outperform the other CS
algorithms [15], [16], [24], [25] without bells and whistles—
note that our approach is purely unsupervised and optimized in
an end-to-end manner. We further improve the reconstruction
by introducing a mapping network (MapNet) that brings more
flexibility to our latent space [41], [42]. MapNet consists of
a few fully connected layers with nonlinear activations; it
learns to map the fixed manifold into a more expressive latent
space. This allows the subsequent generative network to adapt
its input to a given dataset, thereby improving image quality
(Figure 1).

In short, our generative model takes the latent variables
from MapNet and reconstructs dynamic images by exploiting
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its powerful structural prior. With the extensive analyses in
Section IV and experimental results in Section V, we show
that both the manifold design and MapNet are essential to
achieve good reconstructions. To the best of our knowledge,
this is the first unsupervised deep-learning-based method that
can reconstruct the full temporal frames of dynamic MRI
sequences with high spatial resolution.

B. Related Work

Unsupervised Learning. Starting from the seminal work
of DIP [40], there have been several studies that applied
unsupervised learning to medical imaging, such as MRI [43]
and positron emission tomography [44], albeit both cases
address the reconstruction of static images.

The closest work to ours is the one that used DIP for
video compression [45], which also considers a sequence of
latent inputs. However, unlike our goal (the reconstruction
of an image sequence), theirs is to find compact codes for
the representation of video frames. To find such codes, they
optimize both the network weights and latent variables. With-
out any constraint on the latent space, however, the latent
codes may diverge to an arbitrary space. To prevent this,
they imposed either low-rank or similarity constraints on the
latent sequence. However, this optimization not only requires
additional effort to tune hyper-parameters but also entails a
singular-value decomposition at each iteration, which severely
increases the computational burden. By contrast, we solve this
by simply inputting an explicit manifold and letting a mapping
network adapt the manifold to the given data. This makes the
training much easier and yields the one-dimensional manifold
in latent space that is adapted to the given data. In addition,
their forward model is an identity operator, while ours is an
MR measurement operator with severe under-sampling.

II. METHODS

We first briefly recapitulate the content of deep image prior
(Section II-A) as well as the physics of dynamic MRI (Section
II-B). Then, we describe our method based on DIP with a
mapping network and on the learning of the underlying latent
manifolds (Section II-C).

A. Deep Image Prior

The deep image prior [40] is a recent approach that has
been proposed for solving static linear inverse problems,
such as image denoising, inpainting, and superresolution. DIP
has been found to capture advanced image statistics in a
purely unsupervised way by using a strong structural prior of
convolutional neural networks, with neither any prior training
nor additional image data. Taking a random but fixed latent
variable z ∈ RL as an input, DIP optimizes the parameters θ
of an untrained neural network fθ to produce an output fθ(z)
that is consistent with the measurement y ∈ RM . The problem
being solved is formalized as

θ∗ = arg min
θ
‖y −H(fθ(z))‖22 , (1)

where H ∈ RM×N is a forward model. For example, in the
image superresolution problem, y is a noisy low-resolution
image and H is a downsampling operator. The output of the
optimized network x∗ = fθ∗(z) then yields a reconstructed
image of surprisingly good quality. This has been ascribed
to the implicit representation bias of the CNN architecture,
which favors a natural-looking output image over a noisy
unstructured one. In this paper, we extend the concept of
DIP to solve a more challenging dynamic MRI reconstruction
problem.

B. Dynamic MRI

We use a radial 2D MRI acquisition scheme where the
instrumentation is such that it physically records a temporal
sequence of radial lines of the Fourier transform of a fixed
slice (image) of a 3D volumetric object. The underlying 2D
image is represented by a vector x ∈ CN , where N is the
number of pixels. At a given time point t, the vector of k-space
measurements y(t) ∈ CM0 consists of the uniform samples of
the 2D Fourier transform of the image taken along a radial
line at some orientation ϑ = ϑ(t). Because of the central-slice
theorem, these measurements can also be interpreted as the 1D
Fourier transform of the Radon transform of the image at angle
ϑ. By repeating this process with a sufficiently dense sequence
of angles ϑk ∈ [0, π), and assuming the images to be static,
one obtains a complete data set from which a high-quality
(static) image can be reconstructed using standard tomographic
techniques. Now, the difficulty with dynamic imaging is that
the underlying image is not static but varies through time,
which calls for a more sophisticated reconstruction procedure.

1) Forward Model: The measurement process that relates
the image at time t and the k-space measurements with angle
ϑ = ϑ(t) is linear and formally described by the relation

y(t) = H
(
ϑ
)
x(t), (2)

where H(ϑ) is the M0 × N system matrix that represents
the combined effect of taking the 2D Fourier transform of x
and resampling along a radial line with direction ϑ. The type
of measurement provided by (2) is referred to as an angular
spoke. In practice, we acquire a series of K spokes taken at
regularly spaced time point tk = t0+k∆t, k = 0, . . . , (K−1)
with step size ∆t. The spoke orientations follow the golden-
angle strategy

ϑk = ϑ0 + ω0 k∆t, (3)

where ϑk gives the orientation of a spoke at time tk =
t0 + k∆t, with ω0 its angular velocity. The golden-angle
specificity is the irrationality condition (ω0 ∆t/π) /∈ Q, which
is approximated by setting (ω0 ∆t) ≈ 111.25◦ [15]. Then, our
task is to reconstruct the image sequence {x(tk)}K−1k=0 from
the measurement sequence {y(tk)}K−1k=0 .

2) Spoke-Sharing: The ambitious goal of accelerated dy-
namic MRI is to reconstruct {x(tk)}K−1k=0 —or, even better,
x(t) for t ∈ [t0, TK−1]—from the finite set of measurements
{y(tk)}. However, a single orientation per frame does not
provide enough information to recover the corresponding
instantaneous two-dimensional image x(tk). To overcome this
issue, we assume that the changes are slow over some small
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Fig. 1. Overview of our framework. (A) Schematic illustration of the dynamic MRI data-acquisition procedure. We use a nonuniform fast Fourier transform
with a golden-angle scheme and spoke sharing. (B) Proposed framework based on latent mapping and deep image priors. The block labeled gφ is a mapping
network (MapNet) of fully connected layers and the block labeled hψ denotes the generative CNNs.

number of neighboring spokes (ns), so that x(t) ≈ x(tk)
for all t ∈ Tk = [tk − ns ∆t/2, tk + ns ∆t/2). The sharing
parameter ns ∈ 2N + 1 is the number of radial lines used
for the reconstruction of one frame; it controls the temporal
resolution.

To further describe this pooling process, we introduce the
augmented measurement vector yk =

(
y(tm)

)k+(ns−1)/2
m=k−(ns−1)/2

of size M = ns × M0. Correspondingly, we de-
fine the column-wise concatenated system matrix Hk =

(H(ϑk))
k+(ns−1)/2
m=k−(ns−1)/2, whose time dependence is indicated

by the index k. This results in the forward imaging model

yk = Hk x(tk), (4)

where the matrix Hk ∈ CM×N encodes the (pseudo-
simultaneous) acquisition of ns spokes at time tk. The un-
derlying strategy is called spoke-sharing. Because of the irra-
tionality condition of the golden-angle approach, no direction
will ever be measured twice. While the imaging model (4)
is more favorable than (2) because of the augmented number
of measurements, the problem is still ill-posed because M =
nsM0 remains smaller than N (the number of unknowns).
The common practice, therefore, is to introduce an appropriate
regularizer. In this paper, we propose to constrain the solution
by applying a deep image prior that is shared among all
frames.

C. Proposed Framework

To address the dynamic MRI reconstruction problem, we
first modify the original DIP so that it takes a sequence
of input and output pairs (Figure 1). More specifically, we
optimize an untrained neural network fθ to map a sequence of
inputs {zk}K−1k=0 to the spoke-shared measurements {yk}K−1k=0 ,
thereby reconstructing the sequence of images {x(tk)}K−1k=0 by
searching for

θ∗ = arg min
θ

1

K

K−1∑
k=0

‖yk −Hkfθ(zk)‖2, (5)

leading to x∗(tk) = fθ∗(zk). Note that the optimization is
done in the measurement domain. This enforces the image

sequence to be consistent with the measurements, while the
modified DIP scheme regularizes the reconstructed images.

Manifold Design. To fully exploit the characteristics of dy-
namic MRI, the underlying model must be able to effectively
encode the temporal variations of the measurements while pre-
serving the structure of the individual frames. To this end, we
propose to design a manifold Z , thereby effectively injecting
a specific prior into the network. For example, an ordered
sequence {zk} from a straight-line manifold will guide the
network to associate spatial closeness of input variables with
temporal closeness of images. This encourages the network
to reconstruct an image sequence with temporally similar
attributes. For a quasi-periodic signal such as the cardiac
motion, we can encode the expected behavior by letting the
manifold take the structure of a three-dimensional helix.

Mapping Network (MapNet). Although a careful choice
of temporally meaningful manifolds typically results in an
excellent performance, the fact that the design is hand-crafted
may also sometimes limit the performance of the network
[41]. To add flexibility to our model and to exploit the rich
representation power of the network, we introduce a mapping
network (MapNet). In our design, MapNet gφ involves a
few fully connected layers with nonlinearities. It learns to
map a fixed manifold into the more expressive latent space
W = gφ(Z). More specifically, our model fθ now has
a hierarchical architecture that consists of the MapNet gφ
followed by CNN hψ so that fθ = hψ ◦ gφ and θ = {φ, ψ}
(Figure 1 (B)). This leads us to replace (5) by

LK(θ) =
1

K

K−1∑
k=0

‖yk −Hk(h ◦ g)θ(zk)‖2. (6)

The role of gφ is to appropriately warp the input manifold to
facilitate hψ in its reconstruction of the true dynamics. Overall,
the insertion of gφ provides better flexibility to our model and
lets us efficiently exploit the representation power of neural
networks, resulting in a good reconstruction.

Final Algorithm. Our optimization scheme is given in Algo-
rithm 1. We minimize the loss function (6) using standard
gradient-descent methods [46] for niter iterations. At each
iteration, instead of (6), a batch loss LB(θ) is updated where a
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Algorithm 1 Time-dependent DIP for dynamic MRI. We use
Adam optimizer [46] with niter = 10, 000 and B = 1.

Input: Set of measurements {yk}K−1k=0 , number of iterations
niter, batch size B, and number of cycles p.

1) Select a manifold Z .
2) Sample {zk}K−1k=0 from Z .
3) Optimize θ.

for niter iterations do
• Randomly sample a batch {k0, . . . , kB−1} of size
B from {0, . . . ,K − 1}.

• Compute the batch loss of (6).
• Update θ with gradient ∇θLB(θ).

end for
4) Reconstruct images {(h ◦ g)θ∗ (zk)}K−1

k=0
.

batch {k0, . . . , kB−1} of size B is randomly sampled from the
index set {0, . . . ,K − 1}. The corresponding input variables
{zkb}

B−1
b=0 are fed to the network and its parameters are

updated using the gradient with respect to θ.

III. EXPERIMENTS

In this section, we describe the datasets, baseline methods,
cardiac-cycle estimation, evaluation setups, and implementa-
tion details.
A. Datasets

All experimental datasets are breath-hold MR images. We
assume a twofold upsampling of measurements for every
dataset. Therefore, the size of the reconstructed fields of view
is half that of the first dimension of the measurements.

1) Retrospective Dataset: A cardiac cine dataset was ac-
quired using a 3T whole-body MRI scanner (Siemens; Tim
Trio) equipped with a 32-element cardiac coil array. The
acquisition sequence was bSSFP and prospective cardiac
gating was used. The imaging parameters were as follows:
FOV=(300× 300) mm2, acquisition matrix size=(128× 128),
TE/TR=1.37/2.7 ms, receiver bandwidth=1184 Hz/pixel, and
flip angle=40◦. The number of frames was 23 and the temporal
resolution was 43.2 ms. The resulting fully sampled Cartesian
trajectories are used as ground-truth. To retrospectively simu-
late the radial sampling, we implemented the forward model
using the golden-angle strategy with NuFFT1. Sinograms are
obtained as shown in Figure 1. The number of spokes per
frame is ns = 13. For a single-cycle simulation, the dimension
of sinograms is (K ×ns×Mω ×C) = (23× 13× 256× 32).
For a multicycle simulation, we acquire p = 13 cycles, which
results in K = 13 · 23 = 299 frames.

2) Fetal Cardiac Dataset: Fetal cardiac MRI data were
acquired on a 1.5 T clinical MR scanner (MAGNETOM Aera,
Siemens AG, Healthcare Sector, Erlangen, Germany) with
an 18-channel body array coil and a 32-channel spine coil
for signal reception. We used an untriggered continuous 2D
bSSFP sequence that was modified to acquire radial readouts
with a golden-angle trajectory [25]. The acquisition parameters
were: FOV = (260 × 260) mm2, acquisition matrix size = (256

1https://github.com/marchdf/python-nufft

× 256) pixels, slice thickness = 4.0 mm, TE/TR = 1.99/4.1 ms,
RF excitation angle = 70◦, radial readouts = 1400, acquisition
time = 6.7 s, and bandwidth = 1028 Hz/pixel.

B. Baseline Methods

We apply three baseline methods.

1) Back Projection (BP) is a zero-filled discrete Fourier
transform, which is the most basic baseline one can think
of.

2) GRASP [15] is a golden-angle radial sparse parallel
MRI algorithm, which extends the idea of k-t SPARSE-
SENSE [12] to volumetric golden-angle radial acquisi-
tions. Here, the spoke-sharing strategy is not applied.

3) Reordering Method (RD) [24], [25] is a three-step
algorithm. RD first reconstructs real-time images of
limited image quality and uses these images to reorder
or self-gate the measurements, which in turn are used
for the final reconstruction with k-t SPARSE-SENSE
[12]. In the retrospective experiment, where we know
the phase indices, we use the exact order of frames for
self-gating.

C. Estimation of cardiac Cycles

For the processing of the fetal cardiac dataset, RD and our
algorithm both require a rough estimate of the number of
cardiac cycles seen over the whole duration of a sequence
of data acquisition. It can be typically obtained from k-space.
Simple techniques to estimate the cardiac cycles from radial
data have been previously reported by [24], [47], [48]. Radial
acquisition schemes sample the center of k-space at every
readout, which supports the extraction of physiological motion
signals. The central k-space coefficient of a radial readout
(i.e., the echo peak) corresponds to the complex sum of the
transverse magnetization across the entire image volume. In
the presence of moving structures such as a beating heart,
changes in the overall transverse magnetization due to motion
will induce a modulation of the consecutive echo peaks.
(Trajectory imperfections and eddy currents can also modulate
echo peaks, but their frequency responses differ from the
physiological motion frequencies and, thus, can be filtered
out.) The resulting signal can then be used to estimate the
number of cardiac cycles and to inform the manifold network.
For our fetal cardiac dataset, we find that the time-course has
approximately 13 periods so that we finally set p = 13.

D. Evaluation Metric

We use the regressed SNR as a quantitative metric. With
the oracle x and the reconstructed image x∗, RSNR is given
by

RSNR = max
a,b∈R

20 log
‖x‖2

‖x− ax∗ + b‖2
, (7)

where a higher RSNR corresponds to a better reconstruction.
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Operation Layer Number of
Filters

Size of Each
Filter (XYC)

Strides
(XY)

Zero Padding
(XY)

Size of Output
Image (XYC)

Input of hψ (L = 64) 8× 8× 1
Conv+BN+ReLU 128 3× 3× 1 1× 1 1× 1 8× 8× 128
Conv+BN+ReLU 128 3× 3× 128 1× 1 1× 1 8× 8× 128

NN interp. 2× 2 16× 16× 128
2×(Conv+BN+ReLU) 128 3× 3× 128 1× 1 1× 1 16× 16× 128

NN interp. 2× 2 32× 32× 128
2×(Conv+BN+ReLU) 128 3× 3× 128 1× 1 1× 1 32× 32× 128

NN interp. 2× 2 64× 64× 128
2×(Conv+BN+ReLU) 128 3× 3× 128 1× 1 1× 1 64× 64× 128

NN interp. 2× 2 128× 128× 128
2×(Conv+BN+ReLU) 128 3× 3× 128 1× 1 1× 1 128× 128× 128

Conv. 2 3× 3× 128 1× 1 1× 1 128× 128× 2

TABLE I
ARCHITECTURE OF OUR GENERATIVE CONVOLUTIONAL NETWORK (hψ ). CONV.: CONVOLUTION; BN: BATCH NORMALIZATION; NN INTERP.:

NEAREST-NEIGHBOR INTERPOLATION.

Method RSNR (dB)
Back Projection (BP; zero-filled DFT) 8.39
GRASP [15] 24.08
Straight line (L = 64) 26.51

TABLE II
PERFORMANCE ON THE RETROSPECTIVE DATASET FOR A SINGLE HEART

CYCLE.

E. Implementation Details

We use an Intel i7-7820X (3.60GHz) CPU and an NVIDIA
Titan X (Pascal) GPU. Pytorch 1.0.0 on Python 3.6 is used to
implement our generative model2. The network is optimized
until niter = 10, 000 with B = 1 using Adam optimizer [46]
of default setting and the learning rate of 10−3.

F. Architectures

The mapping network gφ is two consecutive fully connected
layers of 512 hidden dimension with ReLU in between. It
outputs L = 64-dimensional latent vector, which is reshaped
to (8× 8) for the following generative network hψ (Table I).
The generative network consists of convolutional layers, batch
normalization layers, ReLU, and nearest-neighbor interpola-
tions. We apply zero-padding before convolution to let the
size of the output mirror that of the input. At the last layer,
ReLU is not used. The output has two channels because MRI
images take complex values.

IV. DESIGN OF THE LATENT SPACE

In this section, we analyze the individual components of our
model and compare the performance with baselines. We first
demonstrate the simplest setup that reconstructs a single heart
cycle. We then move on to a more complicated dataset that
has multiple heart cycles.

2We shall provide a link to the repository upon paper acceptance.

A. Straight-Line Manifold for a Single Heart Cycle

A straight-line manifold can help the network to encode the
temporal variations of images. To implement it, we first sample
z0, zK−1 ∼ U(RL). Then, the intermediate zk are obtained
by linear interpolation. This yields a straight-line manifold that
simply joins the end points as

zk = (1− αk) z0 + αk zK−1, (8)

where αk = k/(K − 1).
Although simple, this configuration already outperforms

the other baseline methods and successfully reconstructs the
dynamics for a single cycle dataset (Table II).

B. Manifolds for Multiple Heart Cycles

In practice, the measurements generally span several heart
cycles. To better exploit the fact that the cardiac movement
has a quasi-periodic behavior, it is of interest to explore more
sophisticated manifolds.
• Segmented Line. We first sample p+ 1 = 14 landmarks
{z(τ)}τ∈[0...13] ∼ U(RL), where p is the number of
cardiac periods. We generate a set of equispaced inter-
mediate zk of each segment by a linear combination of
zτ and z(τ+1), ∀τ ∈ [0 . . . 12].

• Circles. Let zk = [z
(k)
1 , z

(k)
2 , zslack] ∈ RL and zslack ∼

U(RL−2). The first two coordinates (z
(k)
1 , z

(k)
2 ) are points

from a unit circle with p cycles. The slack coordinates
do not depend on k. Thus, we have that

zk =

[
cos(

2π p k

(K − 1)
), sin(

2π p k

(K − 1)
), zslack

]
. (9)

• Helix. Similar to “Circles”, the first two coordinates of
zk are points from a unit circle with p cycles. The slack
coordinates zslack ∼ U(RL−2) are now scaled by k

(K−1) ,
learning to

zk =

[
cos(

2π p k

(K − 1)
), sin(

2π p k

(K − 1)
),
k zslack
(K − 1)

]
. (10)
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Fig. 2. Visual comparison of reconstructed (y-t) images using the baseline methods and ours with each configuration in Table III. The reconstructed images from
fully sampled Cartesian trajectories are used as a ground-truth. A white line at the heart region indicates the cross section that is visualized. Here, for simulating
RD [24], [25], we reorder the spokes of each frame from 13 periods resulting in 169 spokes per frame. (13 periods× 13 spokes/frame = 169 spokes/frame).
For better comparison, the residual images to the ground-truth are provided in the lower panels.

Method RSNR (dB)
Back Projection (BP) 8.4598
GRASP [15] 24.2123
Reordered method (RD) [24], [25] 25.0364
Straight line (L = 64) 20.55 ± 0.09
Segmented line (L = 64) 25.94 ± 0.16
Circles (L = 64) 27.13 ± 0.15
Circles (L = 2) + MapNet (L = 64) 27.52 ± 0.11
Helix (L = 64) 27.78 ± 0.07
Helix (L = 3) + MapNet (L = 64) 28.05 ± 0.04

TABLE III
PERFORMANCE ON THE RETROSPECTIVE DATASET FOR MULTIPLE HEART

CYCLES. AVERAGED RSNR OVER THREE RUNS AND THEIR STANDARD
DEVIATIONS FOR SEVERAL CNN LATENT SPACE DESIGNS.

Effect of the Manifolds. In Figure 2, we show the recon-
structed (y-t) images of the cross section that is denoted by a
white line in GT (y-x) image3. When we use a straight-line
manifold, the network fails to capture the heart movement
and outputs the same static image over all frames. This is
natural since most of the pixels are static and the dynamic
parts are localized in a small area. Thus, the network easily
finds a local minimum that corresponds to an image that
remains constant over all frames. However, as soon as we
switch to “periodic-like” manifold designs, the network starts
to reconstruct the movement (Table III). For example, when
we use a line with 13 segments as an input, the performance
is better than the RD that uses the same information. Using
circles with 13 repetitions as input manifold, we improve
even further. However, the helix input manifold gives the best
performance among the others without MapNet because the
heartbeat is a quasi-periodic signal.

3For display purposes, we show only one cycle of our cross section.

Effect of the Mapping Network. In addition to the choice
of its manifold, our method has another design choice: its
mapping network. By introducing MapNet, the network can
adapt its input manifold to a given dataset, which allows us
to further improve the reconstruction (Table III). This can be
clearly seen in the t-SNE visualization of the mapped latent
space (Figure 6), which we discuss in Section VI.

In summary, our analysis shows that a careful design of the
manifold and the use of a mapping network are both necessary
to achieve the best performance. Based on these, from now on,
we use ‘Helix+MapNet’ as our default setup.

V. RESULTS

We first show results on the retrospective dataset, where
the desired behaviors of the reconstruction methods are well-
defined. We then illustrate on the fetal cardiac dataset that the
observations extend well to a real scenario.

A. Retrospective Dataset: Multiple Heart Cycles

The benefits of our method are evident in both the (y-t) view
(Figure 2) and (y-x) view (Figure 3) of each frame. In Figure
2, both GRASP and RD reconstruct the movement of the
heart. RD shows better performance than GRASP, which was
expected because it takes advantage of the period information
that is estimated while reordering the frames. However, as
can be seen in the residuals, GRASP and RD show significant
errors in the reconstruction of the dynamics. In the (y-x) view
of Figure 3, GRASP leads to blurring artifacts, while the
residual image reveals errors around the wall of the heart in
both GRASP and RD reconstructions. By contrast, our method
gives better results with fewer artifacts.
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Fig. 3. Visual comparison of reconstructed (y-x) images using BP, GRASP [15], RD [24], [25], and our method (Helix + MapNet). The reconstructed
images from fully sampled Cartesian trajectories are used as a ground-truth. Here, the RSNR value is for the single frame that is visualized. To simulate
RD, we reorder the spokes of each frame from 13 periods resulting in 169 spokes per frame (13 periods × 13 spokes/frame = 169 spokes/frame). For better
comparison, the residual images to the ground-truth are given together.

Fig. 4. Visual comparison of reconstructed fetal hearts; (y-x) images. The gold standard is reconstructed from the simultaneous use of all time frames (first
column). Top row is the results of BP, GRASP [15], RD [24], [25], and our method (Helix + MapNet). Bottom three rows (A-C) show magnified view.
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Fig. 5. Visual comparison of reconstructed fetal hearts; (y-t) images. A white line in the gold standard indicates the cross section that is visualized. Top row
is the results of BP, GRASP [15], RD [24], [25], and our method (Helix + MapNet). Bottom row is the series of (y-t) cross sections of our reconstruction.

B. Fetal Cardiac Dataset
Having demonstrated the superior behavior of our method

on the retrospective dataset, we now assess our model on
real data. In the absence of ground-truth, we shall take the
static image that is generated from all spokes as pseudo-gold
standard—note that it is of high quality only in the regions
that are not moving.

Like in the retrospective experiments, both GRASP and RD
are able to reconstruct multiple cardiac phases. RD gives better
reconstructions, especially in the dynamic region (Figure 4
(A)). However, RD shows a spurious artifact at the edge area
(Figure 4 (B)) and fails to find the detailed structures of the
static background (Figure 4 (C)). By contrast, our method
produces better-resolved features in both dynamic and static
areas (particularly for the hyperintense dot-like structures in
Figure 4 (A)), while it does not suffer from artifacts at the
edges and recovers the low-intensity background areas as well
(Figure 4 (C)).

In Figure 5, it is apparent that BP completely fails in
capturing the fetal cardiac beats. The GRASP reconstruction
is less noisy but still far from satisfactory. RD fares better;
unfortunately, its reordering process can lead it to superpose
in the same frame spokes that belong to different phases of the
cardiac cycle. By contrast, our method reconstructs each frame
with data from just a few neighboring spokes, thus avoiding
the mingling of different cycles. The reconstructed systolic
phase captures the true motion of the heart better. The cross
section from our method is similar to that of RD but the motion
is smoother in our case, which is the expected behavior of a
beating heart.

We provide in Figure 5 (Bottom row) our whole recon-
structed sequence of cardiac cycles. The quasi-periodicity of
the cardiac motion is clearly visible along the temporal axis,
while motion variations can still be discerned from cycle to

cycle. Note that this is a unique benefit of our method that the
other algorithms cannot provide.

VI. DISCUSSION

A. t-SNE Visualization of the Latent and Image Spaces
To assess the extent of structural change as a function

of time, we used t-stochastic neighborhood embeddings (t-
SNE) [49] which capture the underlying manifold by pro-
jecting the high-dimensional entities onto a three-dimensional
space. In Figure 6 (A), we show the t-SNE result of the original
manifold when the variables are generated according to (10)
with L = 64 and p = 13. Unsurprisingly, this recovers a helix
with 13 cycles. In Figure 6 (B), we show the embedding of
the 64-dimensional mapped variables {gφ∗(zk)}K−1k=0 , where
the zk are generated according to (10) with L = 3 and
p = 13. Again, we recover a helical geometry with 13 periods,
although the height of the helix is now shortened—the first and
the last cycles become closer. This shows that MapNet suc-
cessfully recovers some similarity between the different cycles
which, in turn, translates into better reconstructions. It warps
the given manifold in adaptive fashion, while retaining the
prior information that we inject via the manifold geometry. As
shown in Section IV, this design (Helix+MapNet) outperforms
the ‘Helix’ with L = 64 and p = 13 which is fed directly
to the vanilla CNN. In Figure 6 (C), we display the projected
manifold of the (256×256)-dimensional reconstructed images.
It shows a helical structure with 13 local folds, each of which
corresponds to a single cycle of the cardiac motion. This also
shows that the quasi-periodic characteristic of the data is well
represented by the network.

B. Benefits of Our Approach
Continuous Dynamic Reconstruction. One major benefit
of our approach is that it lets us reconstruct temporally
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Fig. 6. Visualization of three-dimensional t-SNE embeddings of (A) the fixed latent space of a helix in 64-dimension (‘Helix’); (B) the mapped latent space
by the mapping network in 64-dimension (‘Helix + MapNet’); and (C) its corresponding image space in (256 × 256) dimension. Here, the temporal index
is color-coded (1, 400 frames). There are approximately 13 cycles of heart motion, which are also clearly seen in the embedded helix of the reconstructed
images.

continuous dynamic images. We showed that the network fθ∗

successfully captures the underlying nonlinear dynamics of the
image manifold, and the input variable zk lets us reconstruct
the image at the corresponding time stamp (Figure 6). Because
our method represents images as a learned parametric function
fθ∗ , we can recover nontrivial intra-frame images by navigat-
ing between two consecutive input variables, which would not
be possible with other standard interpolation methods such as
temporal bilinear interpolation.

Memory Savings. In the methods based on compressed sens-
ing (CS), the gradient updates of the iterative optimization
process necessitate memory that is large enough to hold the
target reconstruction volume. For example, the reconstruction
of 5,000 frames with spatial size (256× 256) would need one
to handle data of size (256× 256× 5, 000), which demands
for over a gigabyte of memory. Our approach, by contrast,
requires much less memory. It optimizes the neural network
using batches, which requires the simultaneous handling of
only those frames that correspond to the batch size. In
short, the fact that our proposed approach handles few 2D
images whereas CS handles a 2D+t extended sequence leads
to substantial savings, particularly for golden-angle dynamic
MRI with many frames. In our approach, we only store a
2D generative model; for example, its memory demands for
the spatial size (256× 256) are about half-a-dozen megabytes.
This cost is negligible compared to that of the CS approach.

Efficient Reconstruction. Our model visits each frame about
seven times during training (10,000 iterations / 1400 frames
≈ 7 ), while GRASP sees all frames during the entire
iterations (24 outer iterations). Regarding the execution time,
the major bottleneck of our method is the slow forward
model. It depends on the NuFFT package which, in its current
implementation, does not benefit from a GPU and is a major
cause for slowdown. Indeed, NuFFT takes 47 % of the entire
running time of our algorithm per each iteration; the average
processing time for 100 repetitions is 6.55 s for back and forth
NuFFTs, and 3.08 s for the remaining parts. With a more
efficient implementation, our algorithm could be substantially
accelerated.

Because our model is fully automated, it leads to a simpler
optimization task with fewer hyperparameters than the con-
ventional methods. For instance, k-t SENSE requires three in-
terdependent hyperparameters whose optimal values are found
only after some substantial grid-search effort, while the two
hyperparameters of our approach are easier to interpret since
they trivially consist of just an initial learning rate, along with
a number of iterations.

VII. CONCLUSION

In this paper, we proposed an unsupervised deep-learning-
based algorithm for dynamic MRI reconstruction that pro-
vides high spatial resolution with access to the sub-frame—
or even continuous—temporal control of dynamic images.
By designing a one-dimensional manifold, combined with the
mapping network, our generative network model fully exploits
the representation power of the network as well as its structural
priors. Our study showed that the proposed method success-
fully reconstructs dynamic MRI in an end-to-end manner and
outperforms the state-of-the-art CS approaches by 3.8 dB.
To the best of our knowledge, this is the first unsupervised-
learning approach in accelerated dynamic MRI.
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