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Synopsis
In this work, we study the e�ect of the reconstruction pipeline s on the reproducibility and sensitivity of the DW-MRI brain connectivity graphs. The brain
database we analyze contains several scan repetitions that allow us to characterize the impact of di�erent reconstruction pipeline parameters on the
connectomes' topology. We use a novel methodology to detect robust graph communities and show the level of reproducibility of the brain
structure/biomarkers. Moreover, we proposed a tool to identify the less-robust graph nodes that su�er the e�ects of the reconstruction pipelines'
variability.

Introduction
In complex networks, the graph communities are a partition of nodes divided by their connectivity attributes. The community structure is formed by
those sets of nodes with dense intra-set connectivity and scattered inter-set connections. Our case of study is the brain's structural connectomes
derived from DW-MRI tractography [4]. In the connectome, the communities represent local neighborhoods in the topological connectivity of the brain
network. To study the Community structure, we build the Community Matrix, whose format, described in Figure 1, is similar to the adjacency matrix. 
Detecting the brain regions that interact with each other has applications for brain development, functional organization analysis, and disease detection
[5]. Although the communities have been widely studied [5], little has been done to study its estimation reproducibility and per subject's variability.
Here, we propose a novel methodology to analyze node-wise variability induced by changes in connectome-pipelines. We study the graph's noise
introduced by: the acquisition, the image processing pipeline, the voxel-wise di�usivity modeling, the tractography parameters, the volume registration,
and graph construction parameters.

Methods
Database: We use the DW-MRI datasets from [1], the image pre-processing, and the connectome pipeline are described in [3]. The structural graph
weights are derived from the COMMIT framework [6], which provides a quantitative assessment of the proportion of white matter tissue connecting
cortical regions. 
To properly analyze the connectivity estimation variability, we used the following database of 180 connectomes: ten subjects (S_i), three acquisitions (A_j)
per subject, three sets of Fiber Orientation Distributions (FOD) images (F_k), and two tractograms per FOD image (T_m). When measuring distances
between two connectomes, the comparison will fall into one of the following variabilities classes: Tracto-var, connectomes that di�er by tractography;
FOD-var, that vary by reconstruction of FOD image; Acqui-var, by di�erent Subject Acquisition session; Subject-var, connectomes from multiple subjects. 
Measures. To measure nodes' persistence to a community, we used the Averaged-Community-Matrix (ACoMi)[3]feature used Monte-Carlo simulations to
estimate the node's probability of belonging to di�erent communities. It uses the topological connectivity information of the whole network to retrieve
the robust characteristics of the community organization. NodeVar, which calculates the di�erences in the weighted-degree-distribution between two
matrices' features. The higher the NodeVar of a node, the more di�erent the nodes' connectivity pro�le in the selected matrix feature (Adjacency Matrix
or ACoMi). We use the NoderVar index to highlight the connectivity changes due to modi�cations in the connectomes' pipeline.

Results-and-Discussion
The connectome's community-estimation is sensitive to construction parameters. Figure 1 shows the changes in Subject_1's community structure when
one step in the pipeline is repeated. To gather a more robust pro�le in the community structure, we use the ACoMi, explained in Figure 2. Then, in Figure
3, we studied the ACoMi's e�ciency in the following cases: to 1) separate subjects, 2) minimize distances between connectomes computed from the
pipeline's repetitions. Figure 3 c) shows that the ACoMi outperforms the adjacency matrix in the cases of 1) and 2) when measuring distances between
connectomes. 
As explained in Figure 3, the analysis consists of tuning a parameter $n$ from a multinomial distribution. The $n$ is responsible for the variance used to
create the Monte-Carlo simulations used in the experiments. Then the ACoMis are built using just one optimal $n$. Future work will include the usage of
multiple $n$ to increase the quality and quantity of extracted features when calculating the ACoMi. 
Then, Figure 4 shows how to build the NodeVar using two ACoMis. The NodeVar is useful to determine the more susceptible-to-error brain nodes. Not
all nodes are a�ected simultaneously; some brain areas are more susceptible to accumulate errors when changing steps within the pipeline. Hence, we
could make further studies paying extra attention to those regions with higher di�erences. Note that Figure 4 is made just for one comparison of two
connectomes. 
In Figure 5, we use NodeVar of the whole possible pairwise comparisons of the 180 connectomes, which gives us extra statistical power to identify the
nodes with the most changes. Furthermore, we can classify the NodeVar values into the variability classes of Tracto-var, FOD-var, Acqui-var, and Subject-
var. The result shows that, using the ACoMi, all nodes are relatively stable when doing tractography repetitions or recomputing the FOD maps. However,
there are some considerable changes in the connectivity structure of the connectomes that di�er by Acquisition. Finally, the nodes with higher NodeVar
values in the Subject-var class are a notable change in the structural connectivity between di�erent subjects. In future work, patient datasets will be used
to study the brain's structural changes because of the pathology.

Conclusions
As a result of our analysis, we observe which structure of the graph communities is robust to the pipeline changes. Moreover, it provides information
about those brain regions more susceptible to accumulated error, and it identi�es the robust regions in the reconstruction. Despite the cumulative
errors in the graph reconstruction (recomputing tractography, re-estimating FOD maps, changing acquisition sessions, volume registrations), this study
provides information that could improve the detection of error in the brain-graph pipeline.
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Figures

Figure 1. The Community Matrix (CoMi) is de�ned as the entry [n1,n2] =1 if the nodes n1 and n2 belong to the same community, otherwise zero. In the
matrices visualization, white is zero, and the colors are one. Di�erent colors represent di�erent network communities. Note that the connectomes
generated S1-A1-F1-T2 and S1-A1-F1-T2 only di�er by tractography (T1 and T2), but they are not identical. They are as di�erent as the CoMi of a di�erent
Subject S2-A1-F1-T1.

Figure 2: Our robust descriptor to identify the community structure: the Averaged Community Matrix (ACoMi)[3]. a) We take an adjacency matrix of a
connectome. b) We build graph simulations by sampling a multinomial distribution with parameter $n$, whose probabilities vector is the �attened
adjacency matrix [3]. c) Compute the CoMi for every simulation. d) The entry-wise average of the CoMis generates the ACoMi, and it describes the
percentage of times that two nodes were in the same community.

https://index.mirasmart.com/ISMRM2021/PDFfiles/images/3036/ISMRM2021-003036_Fig1.png
https://index.mirasmart.com/ISMRM2021/PDFfiles/images/3036/ISMRM2021-003036_Fig2.png


8/25/2021 https://index.mirasmart.com/ISMRM2021/PDFfiles/1720.html

https://index.mirasmart.com/ISMRM2021/PDFfiles/1720.html 3/3

Figure 3 a) Matrix distances for the 180 connectomes constructed by using the L_{1,1} norm between adjacency matrices [2]. b) New distance matrices
for ACoMi are generated for di�erent $n$, c) for every distance matrix, the comparisons are reported separately: Traco-var, FOD-var, Acqui-var, and
Subject-var. An optimization procedure is executed to estimate the $n$ that maximizes the geometric mean of the FDC (Fisher Discriminant Coe�cient)
and the mean error in the distributions.

Figure 4 a) We compute the absolute value of two ACoMis from the same person and di�erent scan sessions: S1-A1-F1-T1 and S1-A2-F1-T1. b) We sum
the columns of the 180x180 distance matrix to obtain the NodeVar vector, whose 180 entries are the degree of di�erence between two connectomes. c)
The nodes' spatial positions and the node's size is proportional to the degree of di�erence from the vector of di�erence. Now we can identify the
sensible nodes through pipeline changes.

Figure 5. The NodeVar between connectomes shows the nodes' variability from changes in the pipeline. Y-axis: the boxplot values for the NodeVar of a
class in particular(color-coded). X-axis: nodes sorted by the boxplot-mean-value of the Acqui-var class. a) Was buildt using the Adjacency Matrix as input
for the NodeVar. b) Using the ACoMi for NodeVar. In a), all nodes from all classes have some degree of variability. In b) the �attened areas mean those
nodes remained stable in all classes of comparisons.
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