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Abstract In the past years, mass univariate statistical analyses
of neuroimaging data have been complemented by the use of
multivariate pattern analyses, especially based on machine
learning models. While these allow an increased sensitivity

for the detection of spatially distributed effects compared to
univariate techniques, they lack an established and accessible
software framework. The goal of this work was to build a
toolbox comprising all the necessary functionalities for multi-
variate analyses of neuroimaging data, based on machine learn-
ing models. The “Pattern Recognition for Neuroimaging
Toolbox” (PRoNTo) is open-source, cross-platform,
MATLAB-based and SPM compatible, therefore being suitable
for both cognitive and clinical neuroscience research. In addi-
tion, it is designed to facilitate novel contributions from devel-
opers, aiming to improve the interaction between the
neuroimaging and machine learning communities. Here, we
introduce PRoNTo by presenting examples of possible research
questions that can be addressed with the machine learning
framework implemented in PRoNTo, and cannot be easily
investigated with mass univariate statistical analysis.

Keywords Neuroimaging software . Pattern recognition .
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Introduction

Two of the most fundamental questions in the field of neuro-
sciences are how information is represented in the different
brain structures, and how this information evolves with time.
Various imaging modalities, such as functional Magnetic
Resonance Imaging (fMRI) and Positron Emission
Tomography (PET), have been developed to record brain ac-
tivity and therefore allow the investigation of these questions.
Until recently, methods used to analyze such data focused
mainly on characterizing the relationship between a mental
state and each image voxel time-series, i.e. following mass
univariate statistical approaches such as the General Linear
Model (GLM) in Statistical Parametric Mapping (SPM,
(Friston et al. 2007)). In addition to functional modalities, other
neuroimaging techniques exist, such as structural Magnetic
Resonance Imaging (sMRI), which allows one to investigate

J. Schrouff and M.J. Rosa contributed equally to this work

J. Schrouff :C. Phillips
Cyclotron Research Centre, University of Liège, Liège, Belgium

M. J. Rosa (*) : J. M. Rondina : J. Mourão-Miranda
Department of Computer Science, Centre for Computational
Statistics and Machine Learning, University College London,
Gower Street,
WC1E 6BT London, UK
e-mail: m.rosa@ucl.ac.uk

A. F. Marquand : J. Mourão-Miranda
Department of Neuroimaging, Centre for Neuroimaging Sciences,
Institute of Psychiatry, King’s College London, London, UK

C. Chu
Section on Functional Imaging Methods, Laboratory of Brain
and Cognition, NIMH, NIH, Bethesda, USA

J. Ashburner
Wellcome Trust Centre for NeuroImaging,
University College London, London, UK

C. Phillips
Department of Electrical Engineering and Computer Science,
University of Liège, Liège, Belgium

J. Richiardi
Functional Imaging in Neuropsychiatric Disorders Lab,
Department of Neurology and Neurological Sciences, Stanford
University, Stanford, USA

J. Richiardi
Laboratory for Neurology & Imaging of Cognition, Departments
of Neurosciences and Clinical Neurology, University of Geneva,
Geneva, Switzerland

J. M. Rondina
Neuroimaging Laboratory, Department and Institute of Psychiatry,
Faculty of Medicine, University of São Paulo, São Paulo, Brazil

Neuroinform (2013) 11:319–337
DOI 10.1007/s12021-013-9178-1



brain anatomy. For these data, one of the most commonly used
analysis approach is Voxel-Based Morphometry, (VBM,
(Ashburner & Friston, 2000)), which investigates focal differ-
ences in grey matter density between groups of subjects, again
using a mass univariate approach. Although univariate analyses
have proven powerful for making regionally specific inferences
on brain function and structure, there are limitations to the type
of research questions that they can address.

More recently, these mass univariate analyses have been
complemented by the use of multivariate pattern analyses
(MVPA), in particular using machine learning based predic-
tive models (Pereira et al. 2009). These analyses focus on
predicting a variable of interest (e.g. mental state 1 vs. mental
state 2, or patients vs. controls) from the pattern of brain
activation/anatomy over a set of voxels. Due to their multi-
variate properties, these methods can achieve relatively great-
er sensitivity and are therefore able to detect subtle, spatially
distributed activations and patterns of brain anatomy.

Multivariate analyses range from ‘mind reading’ studies
(e.g. Haynes & Rees 2006) to clinical applications (e.g.
Borroni et al. 2006), and while most studies have focused on
fMRI and sMRI data, applications extend to other modalities
(Phillips et al. 2011). As examples, multivariate methods ap-
plied to fMRI have made it possible to decode the category of
an object (Spiridon and Kanwisher 2002; Cox and Savoy 2003;
Shinkareva et al. 2008) and orientation of a striped pattern
(Haynes and Rees 2005; Kamitani and Tong 2005) visually
presented to the subject, solely from the image patterns. The
prediction of mental states related to memory retrieval (Polyn et
al. 2005; Chadwick et al. 2010), or the patterns of hidden
intentions (Haynes et al. 2007) can also be achieved. More
recently, these methods have been applied to datasets involving
subtler and higher-level cognitive tasks, including the predic-
tion of subjective pain intensity (Marquand et al. 2010), as well
as the content of semi-constrained brain activity (Schrouff et al.
2012a, b). Furthermore, multivariate pattern recognition meth-
ods can be extremely useful in distinguishing between groups
of subjects (e.g. healthy versus patient), and can potentially be
used as a diagnostic tool in a clinical setting (Kloppel et al.
2011). For example, the classification of subjects into healthy
and patients with Alzheimer’s Disease (AD), using structural
MRI, has achieved accuracies between 86 % (Vemuri et al.
2008) and 96% (Klöppel et al. 2008), depending on the sample
size, information used and reliability of the diagnostic labels.
Similarly, the authors of Phillips et al. (2011) were able to
assimilate Locked-In Syndrome (LIS) patients as conscious,
based on FDG-PET images, and therefore discriminate them
from Vegetative State patients, and in Richiardi et al. 2012,
minimally disabled multiple sclerosis patients were discrimi-
nated from controls. Not only diagnosis but also prognosis can
be performed, as in Mourão-Miranda et al. (2012b), in which
the authors predict the risk of mood disorders in healthy ado-
lescents. The major assets of machine learning based predictive

models for clinical applications are the objectivity and automa-
ticity of these techniques, especially when the diagnosis of the
considered illness remains uncertain using clinical neuroimag-
ing examination and/or neuropsychological tests.

While multivariate pattern analyses can help to investi-
gate brain function and potentially be used as a diagnostic
approach for neurologic or psychiatric disorders, many
existing implementations consist of small code snippets, or
sets of packages, and lack a dedicated single, integrated, and
flexible software framework. In addition, the use of existing
packages often requires high-level programming skills.

To the extent of our knowledge, the five freely available
packages for machine learning modeling of neuroimaging
data are the 3dsvm plugin for AFNI1 (LaConte et al. 2005),
the MATLAB MVPA toolbox,2 PROBID,3 PyMVPA
(Hanke et al. 2009a, b) and Sci-kit Learn4 (Pedregosa et
al. 2011). The first two are small command line toolboxes
and were specifically designed for the classification of fMRI
images, therefore being limited to this type of data.

PyMVPA and Sci-kit Learn are sophisticated and flexible
software packages primarily written in Python (a free and
cross-platform programming language5). Being part of the
larger Python environment, allows these toolboxes to easily
access a range of other neuroimaging and machine learning
packages, which renders them very general and able to
support different types of neuroimaging data from
Magneto/Electroencephalography (M/EEG) to s/fMRI
(Hanke et al. 2009a). However, they are also command
line-based and therefore do not provide user-friendly graph-
ical interfaces (including a pre-defined interface for display-
ing results). In addition, they are not directly integrated
(through a user-interface) with (MATLAB based) SPM soft-
ware, which is widely used by the neuroscience community.

PROBID provides easy to use graphical interfaces but is
optimized for groups’ classification (i.e. classifying patients
vs. healthy controls) and does not easily enable single sub-
ject analysis or a flexible cross-validation framework. It also
does not provide multi-class classification.

Table 1 provides a summary of the available packages in-
cluding some of the characteristics of each package (standard
distribution, i.e. without additional toolboxes), as well as advan-
tages and limitations. The goal of the Pattern Recognition for
Neuroimaging Toolbox (PRoNTo) project was therefore to de-
velop a user-friendly and open-source toolbox that could make
machine learning modeling available to every neuroscientist.

PRoNTo is a MATLAB toolbox based on pattern recogni-
tion techniques for the analysis of neuroimaging data.

1 http://afni.nimh.nih.gov/
2 http://www.csbmb.princeton.edu/mvpa/
3 http://www.kcl.ac.uk/iop/depts/neuroimaging/research/imaginganal
ysis/Software/PROBID.aspx
4 http://scikit-learn.org/
5 http://python.org/
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Statistical pattern recognition is a field within the area of
machine learning, which is concerned with automatic discov-
ery of regularities in data through the use of computer algo-
rithms, and with the use of these regularities to take actions
such as classifying the data into different categories (Bishop,
2006). In PRoNTo, brain scans are treated as spatial patterns
and statistical learning models are used to identify statistical
properties of the data that can be used to discriminate between
experimental conditions or groups of subjects (classification
models) or to predict a continuous measure (regression mod-
els). In terms of neuroimaging modalities, PRoNTo accepts
NIfTI files6 and can therefore be used to analyze sMRI and
fMRI, PET, SPM contrast images or beta maps (obtained from
a previous GLM analysis) and potentially any other modality
in NIfTI file format.7 Kernel based8 classification and/or
regression can be performed within or between subject(s),

from the same or different group(s), in one or multiple ses-
sions/runs. Binary and multiclass designs are both supported.
Its framework allows fully flexible machine learning based
analyses and, while its use requires no programming skills,
advanced users can easily access technical details and
expand the toolbox with their own developed methods.
Each step of the analysis can also be reviewed via user-
friendly displays. Figure 1 provides an overview of the
whole framework.

This paper is structured as follows. In the ‘Methods’
section we present a brief summary of pattern recognition
for neuroimaging data. In ‘Results’, we present the frame-
work of ProNTo via the analysis of three datasets: a single
subject fMRI dataset with multiple runs, an event-related
single subject fMRI dataset and a multiple subject sMRI
dataset. This section particularly shows how PRoNTo can
answer different questions which might be of interest for
neuroscientists and describes PRoNTo’s functionalities and
related issues. Finally, the last sections discuss the limita-
tions of our toolbox and future developments, while sum-
marizing the main advantages and caveats of pattern
recognition for neuroimaging.

6 http://nifti.nimh.nih.gov/nifti-1/
7 The current version of PRoNTo has however only been tested using
the following modalities: fMRI, sMRI, PET, SPM contrast and
Fractional Anisotropy (FA) images.
8 Non-kernel based methods will be included in ensuing versions of the
toolbox.

Table 1 Comparison of the main features of the available software
packages. Beta represents the coefficients resulting from a General
Linear Model (GLM) univariate analysis (as performed in SPM),
ASL stands for Arterial Spin Labelling, SVM for Support Vector
Machines, GP for Gaussian Processes, (k)NN for (k-) Nearest Neigh-
bors, SMLR for Sparse Multinomial Logistic Regression, LARS for
Least Angle Regression, (K)RR for (Kernel) Ridge Regression, RVR
for Relevance Vector Regression, PLR for Penalized Logistic Regres-
sion, NB for Naïve Bayes, DT for Decision Trees, RFE for Recursive
Feature Elimination, L/QDA for Linear/Quadratic Discriminant

Analysis, LASSO for least absolute shrinkage and selection operator
and GUI for Graphical User Interface. AFNI (which stands for Anal-
ysis of Functional NeuroImages) is a set of freely available software
packages. The definition of the different feature selection approaches is
the following: “wrapper” methods rely on the predictive modeling
framework (e.g. using the classification accuracy) to evaluate and
select subsets of features; “filters” use other measures (e.g. mutual
information) to score and select features; “embedded” methods per-
form feature selection as part of the model construction process (e.g.
LASSO). Stars * mark work under progress/development

Feature 3dsvm Matlab MVPA PROBID* PyMVPA* Scikit-learn PRoNTo*

Inputs AFNI images:
fMRI data

AFNI images:
fMRI data

NIfTI images: s/
fMRI, beta and
ASL+ text

NumPy arrays, text,
NIfTI images (e.g. s/
fMRI and beta), EEP
binary file

NumPy arrays
+ metadata

NIfTI images: s/fMRI
and beta

Primary language C Matlab Matlab Python Python Matlab

Multiclass Yes Yes No Yes Yes Yes

Classifiers SVM Back propagation
(Neural Network
Toolbox)

Binary SVM and
GP

Includes: kNN, SVM,
SMLR

Includes: SVM, NN,
GP, DT, L/QDA

Binary SVM, binary
and multiclass GP

Regression
(machines)

No No No Yes (Includes: GP, LARS,
PLR, RR, SMLR)

Yes (Includes: GP,
LASSO, Elastic
Net, RR, SVM

Yes (group level)
(GP, RVR, KRR)

Interfaces Basic GUI +
Command
line

Command line GUI(s) + Command
Line

Command Line Command Line GUI(s) + Matlab
batch + Command
Line

GUI for displaying
results

No No Yes No No Yes

Compatible with AFNI Import from/export
to AFNI and Brain
Voyager*

- Includes: Import from
FSL, Scikit-Learn

Includes: PyMVPA Import from SPM +
SPM Matlab batch

Feature selection Masking Masking Masking Masking, Filters,
Wrappers

Filters, Wrappers,
Embedded

Masking

Flexibility of the
analysis

Low (fMRI
design)

Low (fMRI design) Low (mainly
across groups)

High High High
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Methods: Pattern Recognition Analyses

In this section, we present a brief overview of pattern
recognition analysis and introduce some basic concepts that
will be used in the next sections, however a more complete
introduction to machine learning classifiers in the context of
neuroimaging can be found elsewhere (e.g. Pereira et al.
2009 and Lemm et al. 2010).

In brief, given a dataset D={xi, yi}, i=1…N, consisting
of pairs of samples (or feature vectors) xi ∈ Rd and labels yi,
the objective in supervised pattern recognition analysis is to
learn a function from the data that can accurately predict the
labels, i.e. f(xi)=yi, of unseen or new patterns. The learned
function is called classifier model if the labels are discrete
values and regression model if the labels are continuous
values. The dataset is usually partitioned into disjoint sets
(‘training’ and ‘test’) and analysis proceeds in two phases.
During the training phase, an algorithm learns some map-
ping between patterns and the labels on the training set and
during the test phase, the learned function is applied to

predict the labels from the unseen samples in the test set.
For example, in the linear case, the learned function relies
on a linear combination of the feature vectors xi, i.e. f(xi)=
w0+w

Txi. The weights w ∈ Rd are the model parameters
learned in the training phase and represent the relative
contribution of each feature to the predictive task.

The core objective of a machine learning model is to
generalize from its experience or training (Bishop, 2006).
Therefore, the performance of the model is, in general,
related to its ability to predict the labels for unseen patterns,
which is also defined as the generalization ability of the
model. To this end, the predicted labels are compared to the
true labels, using the test dataset, from which a measure of
accuracy (classifiers) or goodness of fit (regression) is de-
rived. If the performance measure significantly exceeds the
level that would be expected by randomly guessing the
labels, the researcher can conclude the algorithm has learned
some property of the data, and can therefore reject the null
hypothesis that there is no information in the data about the
label being predicted.

Fig. 1 PRoNTo framework. PRoNTo has five main analysis modules
(blue boxes in the centre): dataset specification, feature set selection,
model specification, model estimation and weights computation. In
addition, it provides two main reviewing and displaying facilities
(model, kernel and cross-validation displays, as well as, results dis-
play). PRoNTo receives as input any NIfTI images (comprising the
data and a first-level mask, while an optional second-level mask can

also be entered). In addition, when the dataset being analyzed com-
prises an experimental design, PRoNTo provides more than one way of
specifying the design parameters, including loading an SPM.mat file.
The outputs of PRoNTo include: a data structure called PRT.mat, a data
matrix (with all features), one or more kernels, and (optionally) images
with the classifier weights
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In the context of neuroimaging, the patterns consist of
brain scans (voxels values) or measures derived from them
(e.g. summarization of regions of interest, cortical thick-
ness). The labels correspond to different mental states (e.g.
looking at houses vs. looking at faces) or types of subjects
(e.g. patients vs. healthy controls) in classification models or
any continuous measure related to the brain scans in case of
regression models (e.g. age, performance to task, or degree
of illness as measured by a clinical scale). Due to the high
dimensionality (d) of the pattern vectors in neuroimaging
(~2–500,000 voxels in each image) when compared to the
number of examples or scans (N) typically available (usual-
ly not exceeding a few hundreds or thousands) most classi-
fication/regression problems are ill-conditioned (i.e. d>>N).
For this reason, machine learning approaches for neuro-
imaging have been increasingly relying on kernel methods
(LaConte et al. 2005). Kernel methods consist of a collec-
tion of algorithms based on pair-wise similarity measures
between all examples or patterns, summarized in a kernel
matrix (N×N dimensions, instead of N×d). Kernel methods
are extremely useful, and allow one to perform the learning
using the kernel matrix instead of the data matrix which is
computationally more efficient if d>N. In addition to the
computational advantages, using the kernel formulation to-
gether with proper regularization enables the solution of ill-
conditioned problems and therefore avoids overfitting
(Shawe-Taylor and Cristianini 2004). Another important
property of this approach is the fact that non-linear kernel
functions can implicitly map the input data space into a
higher dimensional feature space, such that the mapping
does not have to be explicitly calculated, and one needs
only to work with valid kernel matrices. This property is
particularly beneficial for problems where N>d, as a dataset
requiring non-linear separation in the original space may
become linearly separated in the higher dimensional feature
space. The application of kernel methods for neuroimaging
problems has been growing, see for example (Mourao-
Miranda et al. 2011) and (Chu et al. 2011). Further infor-
mation about kernel algorithms, as well as kernel construction
and properties, can be found in (Schölkopf and Smola 2002),
(Shawe-Taylor and Cristianini 2004) and (Rasmussen and
Williams 2006).

When comparing (multivariate) pattern recognition meth-
ods to univariate models, such as those based on the GLM,
the major asset of the former lies in the fact that it takes the
joint information of all features, as opposed to considering
the features as independent from one another. One can also
argue that this way of analyzing brain imaging data is closer
to how the brain actually functions and to its structural
organization. Furthermore, these methods can compute pre-
dictions on new samples, which make them suitable as
diagnosis or prognosis tools. However, the relevance of each
feature/voxel to the multivariate model cannot be interpreted

in the same way we interpret univariate statistical tests.
When using univariate techniques, one can perform statisti-
cal tests on the coefficients attributed to each voxel and
therefore threshold the voxel-wise maps to find brain
regions, which are significantly (in a statistical sense) linked
to the task. When using multivariate techniques, in particu-
lar multivariate linear models, it is the combination of all
weights that defines the model. The weights at each voxel
are thus dependent on one another and no direct localization
inferences or voxel-wise statistical test assuming indepen-
dence can be performed on them.

Results and PRoNTo Framework

In this section, we introduce PRoNTo by presenting five
examples of possible research questions that can be fully
addressed within the software framework (Fig. 1). The first
one consists of a general neuroscience question: “does the
pattern of activation in brain regions A, B and C encode
information about a variable of interest?” This variable of
interest may be the type of stimulus, disorder or mental
process, and can be studied with a variety of experimental
designs and datasets. Here we use a single subject fMRI
dataset from a block design visual experiment. The second
question addresses a fundamental issue when analyzing
fMRI data: “how do we account for the hemodynamic
response function (HRF) and how much does correcting
for the HRF affect the classification results?” To answer this
question we again use a single subject fMRI dataset, this
time acquired using an event-related design containing
events that are confounded by the hemodynamics. We also
explore the alternative approach of performing classification
using the coefficients from a previous GLM analysis (in-
stead of the preprocessed BOLD signal) as a way of avoid-
ing the pitfalls of correcting for the HRF. The third question
consists of a clinical application and might also be applied to
different patient populations and image modalities: “Which
features lead to the best discrimination between the considered
groups?” This question was answered using the preprocessed
sMRI images from a multi-subject dataset and classifying
young versus old healthy subjects. The fourth question relates
to finding the best strategy to deal with continuous measure-
ments instead of categorical information (class 1, class 2, etc.)
and was investigated through two possible sub-questions:
“Can we predict age from brain scans?” and “Are the classi-
fier’s predictions for old subjects correlated with their age?”
Finally, the fifth question regards the issue of confounds in the
data by taking the example of multi-center acquisitions: “How
different are the images acquired in different centers and can
we predict where they were acquired?”

PRoNTo can be used in three ways: through a graphical
user-interface requiring no programming skills, using the
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MATLAB-batch system9 currently embedded in the SPM
framework, or by scripting function calls. It is also impor-
tant to note that PRoNTo assumes the data have been pre-
viously pre-processed using SPM or any similar software
generating NIfTI format output.

The following paragraphs describe the detailed analysis
of these datasets. We hope the investigation of the questions
mentioned above provides a basic knowledge about the
PRoNTo framework and inspires neuroscientists to further
explore their data using machine learning based predictive
models.

Question 1. Does the pattern of activation in brain regions
A, B and C encode information about a vari-
able of interest?

This is one of the most fundamental questions in neuro-
science research and the answer to this question, in multiple
contexts, has provided crucial knowledge of how informa-
tion is processed in the brain (see for example Haxby et al.
2001 and Kamitani and Tong 2005). Here we describe a
simple brain decoding analysis using a dataset that has been
previously used in pattern recognition for neuroimaging
studies (Haxby et al. 2001; Hanson et al. 2004; O’Toole et
al. 2005) and for describing the functionalities of other
software toolboxes (Hanke et al. 2009a, b).

The data consists in a block design fMRI experiment
acquired using a visual paradigm, where the participants
passively viewed greyscale images of eight categories: pic-
tures of faces, cats, five categories of manmade objects
(houses, chairs, scissors, shoes, and bottles), and control,
non-sense images. We chose to analyze the data from a single
subject (participant 1), consisting of 12 runs, each comprising
eight blocks of 24 s showing one of the eight different object
types and separated by periods of rest. Each image was shown
for 500 msec followed by a 1500 msec inter-stimulus interval.
Full-brain fMRI data were recorded with a volume repetition
time of 2.5 s. Each category block therefore corresponds
roughly to nine scans, separated by six scans of rest. For
further information on the acquisition parameters, please con-
sult the original reference (Haxby et al. 2001).10

The data were pre-processed using SPM8. We motion
corrected, segmented and normalized the scans according to
the MNI template. No smoothing was applied to the data. To
test the information encoded in different brain regions we
created several anatomical masks to constrain the analyses
to: the whole-brain, visual cortex, fusiform gyrus, cerebel-
lum, brainstem and one control region, a manually drawn
16 mm radius sphere outside the brain.11 The anatomical

masks were extracted using the LONI Probabilistic Brain
Atlas (LPBA40)12 maximum probability template and a
high-resolution structural image provided with the same
dataset (Haxby et al. 2001).

The rest of the analysis was fully performed using
PRoNTo. The data were linearly detrended and mean cen-
tered across samples. For simplicity, we chose to classify
only faces versus houses. We used a leave one-block (run)
out cross validation approach (Fig. 2), resulting in a total of
12 folds and repeated the procedure using features from
different brain regions as defined by the previously created
masks. Irrespective of the cross-validation scheme it is im-
portant to ensure that the test and training data are indepen-
dent for each fold.

PRoNTo allows the user to specify a first-level mask
(common to all subsequent analyses, except for the control
region analysis), which is used only for the purpose of
making feature extraction and detrending (or scaling in the
case of PET) more efficient, and a second-level mask to test
specific anatomical hypotheses such as our Question 1.

In the current version of PRoNTo, two kernel classifica-
tion algorithms are embedded in the framework: Support
Vector Machines (SVM, Burges 1998, LIBSVM implemen-
tation13)14 and (binary and multiclass) Gaussian Process
classification (GPC, Rasmussen and Williams, 2006,
GPML toolbox15). All algorithms are wrapped into what is
called a ‘machine’, which allows easy integration of new
machine learning algorithms, enhancing the exchange of
newly developed methods within the community. For this
reason, we envisage that the list of algorithms available in
PRoNTo will grow in the near future. For the list of regres-
sion algorithms, please see below (Question 4a).

In what follows we provide results for SVM and GPC
when classifying faces and houses using the different ana-
tomical masks. Table 2 provides the balanced accuracies,

Acc ¼ 1

2

TP

TP þ FN

�
þ TN

TN þ FP

�
; ð1Þ

where F/TP and F/TN are the false/true positives and neg-
atives, respectively (please note that True Positives corre-
spond to the percentage of examples of class 1 correctly
classified and True Negatives correspond to the percentage
of examples of class 2 correctly classified), as well as the
corresponding p-values (obtained using a permutation test
with 100 repetitions) for each classifier and mask.
Permutation tests are preferable when the assumption of

9 Developed at http://fbi.uniklinik-freiburg.de/.
10 This dataset is freely available to download from the PyMVPA data
archive: http://www.pymvpa.org/datadb.html.
11 The control region was created using MRICRON (http://www.nitrc.org/
projects/mricron).

12 http://www.loni.ucla.edu/Atlases/LPBA40.
13 http://www.csie.ntu.edu.tw/~cjlin/libsvm/
14 The SVM C parameter that accounts for the trade-off between the
width of the SVMmargin and the number of support vectors is set to its
default value of 1. The next releases of PRoNTo will allow the user to
optimize this parameter using nested cross-validation.
15 http://www.gaussianprocess.org/gpml/code/matlab/doc/
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independence between test examples does not hold (Golland
and Fischl, 2003). In this case, even though the training and
test data are independent, the test samples in each block are
highly correlated. Another option available in PRoNTo to deal
with this issue is to compress the samples within each block
(temporal compression) and test only on one image per block.

The results found are similar to the ones reported originally
in Haxby et al. (2001), where the classification was performed
by comparing the within-category and between-category pat-
tern correlations on even and odd numbered runs, using
object-selective voxels in ventral temporal cortex. As can be
seen, both SVM and GPC classifiers achieve very high accu-
racies when using the visual cortex mask. As expected, this
part of the cortex processes visual stimuli and therefore con-
tains useful information to distinguish between different types
of visual input (in this case, faces and houses). The increase in
accuracy achieved when using this mask compared to the
whole brain suggests, as expected, that we are discarding a
lot of irrelevant information related to other processes other
than distinguishing between visual objects. In addition, limit-
ing the features to the fusiform gyrus, which activates maxi-
mally with faces (as found in previous univariate analysis,
such as Henson et al. (2002)) did not decrease the accuracy.
This result indicates that the face-specific information pro-
cessed in this part of the cortex is sufficient for significant
discrimination between faces and houses.

Using the cerebellum and brainstem masks substantially
decreased the accuracy results, as expected, confirming that

Fig. 2 Feature set (left), cross-validation scheme (middle) and kernel
(right) used in Question 1. The feature set consisted of a single data
modality from a single subject in a single group but with 9 conditions
(8 objects + rest) randomly repeated 12 times. Scan and block index, as
well as stimulus type are colorcoded in the left plot. Here the blocks
correspond to the chunks into which the data were split in order to
build the data matrix file (please consult PRoNTo’s manual for more
information) and avoid memory problems. To classify the visual

stimuli presented to the subject (faces or houses) we used a leave one
run out cross-validation scheme. As can be see, this results in 12 folds
(corresponding to the twelve experimental runs). Since only the ‘faces’
and ‘houses’ are used in the classification most of the images are not
used (in white) in the training (grey) and testing (black). The kernel
was constructed using all scans (1452 in total), and therefore is a
1452×1452 matrix

Table 2 Balanced accuracies and corresponding p-values (obtained
using a permutation test with 100 repetitions) for two classifiers (SVM
and GPC) and different masks. These results were obtained using the
Haxby et al. (2001) dataset when trying to classify houses versus faces
using one subject and a leave one block out cross validation scheme.
The asterisk indicates a p-value<0.05

Classifier SVM (%) GPC (%)

Masks Acc (p-value) Acc (p-value)

Whole-brain 94.00 (0.01)* 88.40 (0.01)*

Visual cortex 99.50 (0.01)* 97.70 (0.01)*

Fusiform g. 99.50 (0.01)* 99.10 (0.01)*

Cerebellum 69.90 (0.02)* 66.20 (0.07)

Brainstem 63.90 (0.04)* 65.70 (0.09)

Control 60.20 (0.06) 60.20 (0.14)
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the patterns of activation in these areas contain less informa-
tion encoding differences between visual stimuli. In addition,
as a sanity check, we verified that when using the control
region as features, none of the classifiers provided significant
results (classification remained at chance level), since there is
no information in the signal to discriminate between the tasks.

PRoNTo also allows the user to create images (NIfTI
files) comprising the weight vectors output by linear classi-
fiers. Figure 3 shows whole-brain, visual cortex and

fusiform gyrus weight vectors created using SVM and
GPC (averaged across all cross-validation folds). Please
note that the weight maps are displayed without a threshold
or statistical test. This results from the fact that due to the
multivariate nature of the patterns, spatial inference on the
weights cannot be performed using univariate statistics. The
authors intend to develop an original and more easily inter-
pretable way of inferring relevant brain areas from the model
weights. However, one can still navigate these images to

Fig. 3 Model weights obtained with GP using the whole-brain mask
(a) and model weights obtained with SVM using the whole brain (b),
visual areas (c) and fusiform gyrus (d) masks. These weights are for the

block design fMRI single-subject dataset. The discrimination task
involved classifying the category (faces versus houses) of the object
seen by the subject
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identify the most discriminative voxels for each mask. For
example, the most discriminative voxels from the whole brain
analysis lie in visual cortex areas, including the fusiform gyrus
(Fig. 3). The patterns are also consistent across classifiers.

In addition to the weights, one can also use PRoNTo to
display other information about the models. Figure 4 shows
the prediction values, histogram of function values, confu-
sion matrix and Receiver Operating Characteristic (ROC)
curve output by SVM using the visual cortex mask. The
results correspond to the average of all folds.

To conclude, we have shown that with a single-subject
fMRI dataset and different anatomical masks it is possible to
show that some brain regions encode information related to
a particular stimulus. In the example dataset we used, we
verified that the pattern of activation in the visual cortex and
face-processing fusiform gyrus contained enough informa-
tion to distinguish between at least two types of visual
stimuli (faces and houses). On the contrary, using the control
region did not provide significant discrimination results, as

expected, since the signals from outside the brain should not
encode information about visual stimuli.

Question 2. How do we account for the HRF and how
much does correcting for the HRF affect the
classification results?

When working with BOLD (blood-oxygen-level-depen-
dent contrast) fMRI time-series, especially in highly overlap-
ping event-related designs, there is an important issue that
needs to be carefully addressed before further analyses. As is
well known, the HRF is a delayed and dispersed version of the
underlying neuronal response to an experimental event
(Fig. 5a). Depending on the TR (repetition time), the effect
of the HRF can be felt over multiple scans, which leads to
temporal contamination across samples. This can confound
subsequent machine learning based analyses and needs to be
accounted for. In PRoNTo, the user can control for two
parameters, which determine the shape of the HRF: the HRF

Fig. 4 Plot types provided in PRoNTo for classification approaches.
Together with the model weights, PRoNTo allows the user to plot: the
prediction values (per fold), histograms of the function values for each
class, Receiver-Operating Characteristic Curves (ROC) and 3D

confusion matrices. All of these plots are available for each model
and cross-validation fold (including average of all folds), and were here
plotted for SVM using the visual cortex mask
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delay (time it takes for the hemodynamic response to peak
after the stimulus), which will shift the onsets in time, and the
HRF overlap (i.e. the dispersion of the HRF). Given this
overlap, scans in which the BOLD signal corresponds to more
than one condition, are discarded and not included in further
analyses (Fig. 5b).

Here we use a single subject event-related fMRI dataset
to show how much the delay and overlap parameters ac-
counting for the HRF affect the classification results. The
dataset is freely available from the SPM website16 and
comprises a repetition priming experiment, where two sets
of 26 familiar (famous) and unfamiliar (non-famous) faces
were presented against a checkerboard baseline. A random
sequence of two presentations of each face was created from
each set. The faces were presented for 500 ms with a
stochastic distribution of stimulus onset asynchrony (SOA)
determined by a minimal SOA of 4.5 s and 52 randomly
interspersed null events. The subject was asked to make
fame judgments by making key presses. Whole brain
fMRI data were recorded with a volume repetition time of
2 s. For further information on the acquisition parameters,
please consult the original work (Henson et al. 2002). The
data were pre-processed using SPM8. This included motion
correction, segmentation and normalization to the MNI tem-
plate. No smoothing was applied.

After preprocessing we ran all analyses using PRoNTo.
We used a whole-brain mask and SVM to classify between
famous and non-famous faces using the second presentation
of each stimulus in a leave one-block-out cross validation
scheme. In this case each block corresponds to an event
(face presentation). Figure 6 shows the accuracy of the
classifier as a function of the hemodynamic delay and over-
lap parameters. The analysis was repeated for each set of
these parameters, which varied from 0 to 15 s in 0.5 s
intervals. As can be seen in Fig. 6, the accuracy changes

substantially (from a minimum of 40 % to a maximum of
83 %) with different parameter sets, and therefore correcting
for the HRF should always be carefully considered. Ideally,
these parameters should be estimated from the data, and the
authors are currently working on an HRF optimization ap-
proach for machine learning based analyses.

As an alternative to correcting for the HRF using a set of
arbitrary parameters, one can first run a univariate GLM
analysis and use the images of the estimated coefficients (beta
images) as the inputs to the classifier. This way the HRF is
accounted for in the GLM by convolving the stimulus time-
series, or regressors, with a canonical hemodynamic function.
Here we used the same repetition priming dataset to classify
famous versus non-famous faces but first we fitted a GLM in
all voxels within the brain, using SPM8. The design matrix
comprised as many columns as events (all famous and non-
famous faces presented, in order to obtain a beta image per
event) plus the movement parameters and the mean regressor.
The betas corresponding to the second repetition of famous
and non-famous faces were used for classification using SVM
and a leave one-subject (sample) per group out cross-
validation scheme. PRoNTo is a highly flexible framework
that accommodates multiple types of experimental designs.
For instance, here we used the between group classification
(and a leave one subject per group out cross-validation) to
discriminate between the betas from famous and non-famous
faces (each group comprised one type of beta images, e.g.
famous faces, and one subject here corresponds to one beta
image). Different groups can also correspond to different
populations of subjects (such as patients and healthy controls).

The accuracy obtained using the beta images instead of
the preprocessed BOLD signal was found to be 73 %, p=
0.01 (whole brain). This means that the patterns of GLM
coefficients carry enough information to discriminate be-
tween the stimuli. The weight maps show that the most
discriminative voxels were located in the hippocampus areas
(Fig. 7), which is consistent with the fact that the

Fig. 5 HRF correction. On the left is the standard HRF response. On
the right is the effect of the delay and overlap on the number of
independent scans (C1, C2 and C3 correspond to three different ex-
perimental conditions and the blue boxes correspond to various scans
acquired during each condition). In fMRI datasets, the nature of the

HRF (i.e. being a delayed and dispersed version of the neuronal
response to an experimental event) might lead to less independent
scans/events than the ones originally acquired. In PRoNTo, this issue
is accounted for by discarding overlapping scans in terms of BOLD
signal

16 http://www.fil.ion.ucl.ac.uk/spm/
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hippocampus has been shown to activate when forming face
memories (Kapur et al. 1995). The fact that the voxels in
visual cortex do not seem to contribute as much as the
hippocampus to the discrimination task suggests that by
using the betas, instead of the preprocessed BOLD signal,
we have accounted for some of the main effects of the visual
stimulus and are now looking for subtler processes, such as
memory, to discriminate between the two conditions.

Question 3. Which features lead to the best discrimination
between the considered groups?

Due to the various modalities now available to acquire
data of brain activity or structure, one might ask which one
of these would yield the best accuracy to distinguish be-
tween conditions or groups of subjects. One example may
concern whether PET or anatomical MRI scans provide a
better imaging biomarker for Alzheimer ’s disease.
Furthermore, the software packages for data preprocessing
can produce different aspects of a same imaging modality
(e.g. segmenting a sMRI image into grey and white matter
density maps), which leads to the same question.

To demonstrate how to answer this sort of question with
PRoNTo, we used the IXI dataset,17 which consists of sMRI
images (T1 and T2 sequences) of healthy subjects ranging
from 20 to 90 years old and acquired in three centers.
Images were segmented into different tissue types via the
“new segmentation” algorithm (Ashburner and Friston,
2005) implemented for SPM8. Rigidly aligned grey and
white matter maps, down-sampled to 1.5 mm isotropic
resolution, were then used to diffeomorphically register all

subjects to their common average, using a matching term
that assumed a multinomial distribution (Ashburner and
Friston, 2009). Registration involved estimating initial ve-
locities, from which the deformations were computed by a
geodesic shooting procedure (Ashburner and Friston, 2011).
Please note that this registration might induce a slight bias in
the accuracies for the current work, as it used a population
average template (which incorporated the test as well as the
training data). To ensure no bias, one should make sure that
the training and test sets are separated at all steps of analysis,
from the preprocessing to the modeling, especially if feature
selection strategies are involved in the analysis.

Two sets of features were generated from the registration.
The first of these was computed from the divergence of the

17 IXI - Information eXtraction from Images, funded by EPSRC
GR/S21533/02, http://www.brain-development.org/

Fig. 7 Whole-brain model weights obtained with SVM using the beta
images (GLM coefficients) instead of the preprocessed BOLD signal
for the famous versus non-famous faces dataset

Fig. 6 Classifier accuracy as a
function of the HRF
parameters. We varied the HRF
parameters (overlap and delay)
between 0 and 15 s and plotted
the accuracy of SVM in
discriminating between famous
and non-famous faces on a
prime repetition event-related
single subject fMRI dataset
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initial velocity, and encodes the rate of volumetric expan-
sion used by the registration. This measure is similar to the
logarithms of the Jacobian determinants of the deforma-
tions. The second measure was the “scalar momentum”
(Singh et al, 2010), which was spatially smoothed by con-
volving with a Gaussian of 10 mm full width at half max-
imum. These particular features were chosen because we
had previously examined the effectiveness of a number of
features (including Jacobian determinants, rigidly aligned
GM, spatially normalised GM and Jacobian scaled spatially
normalised GM) derived from the same IXI dataset (unpub-
lished work). The divergences were found to perform better
than other features when not using spatial smoothing. When
smoothing is used, the scalar momentum smoothed by about
10 mm FWHM was found to outperform the other types of
features. In this work, we compared the effectiveness of these
feature sets for discriminating between ‘young’ (20 to 30 years
old, 99 subjects) and ‘old’ (60 to 90 years old, 170 subjects)
healthy volunteers (Fig. 8). Please note that the comparison is
based on the “nature” of the features (i.e. divergence versus
scalar momentum), rather than on subsets of relevant features
(voxels) within the feature set, which is a question addressed
by feature selection algorithms (not available in the current
version of PRoNTo, see “future work” below).

The two feature sets were modeled independently using
both an SVM and a GP classifier. The features were mean
centered and cross-validation was performed on the basis of
a Leave-One subject-Out scheme. The results are displayed
in Table 3. These show a slightly better balanced accuracy
for the scalar momentum based model. The Bayes’ factor of
91.33 computed from the negative marginal likelihoods of
the two GP models (Fig. 9) suggests that there is ‘strong
evidence’ (according to Jeffreys’ ‘Theory of Probability’
(Jeffreys 1961)) that the scalar momentum based model is
more plausible than the divergence based model.

While knowing which feature set leads to the best model-
ing might be interesting, it would also be useful to consider
both feature sets jointly, combining the information they con-
tain. In the near future, the authors intend to provide a set of
operations to perform multi-modal classification/regression.

Question 4. How to deal with continuous measurements?

This question can be addressed in two main ways: the first
one is to correlate the predictions from the classifier with
continuous data, while the second involves predicting the
value of the continuous variable from the data using a regres-
sionmodel. The two options might be desirable, depending on
the data and clinical measurements. One may indeed want to
test two effects, such as the age or performance in a behavioral
memory fMRI task for example. In this case one could use
different modeling strategies. One possibility is to train a
classifier to discriminate young versus old based on their
patterns of brain activation during the task and then correlate

Fig. 8 Subset of the IXI dataset chosen for further analysis. It com-
prises data from young (20–30) and old (60–90) healthy subjects,
which were acquired in three different centers (c1, c2 and c3)

Table 3 Balanced accuracies and p-values (SVM only, for computa-
tional reasons) for discriminating between ‘young’ (20 to 30 years old,
99 subjects) and ‘old’ (60 to 90 years old, 170 subjects) healthy
volunteers using different types of features (scalar momentum and
divergences) and different classifiers (SVM and GPC). The asterisk
indicates a p-value<0.05

Classifier SVM (%) GPC (%)

Features Acc (p-value) Acc

Scalar momentum 99.00 % (0.002) * 99.00 %

Divergences 98.10 % (0.010) * 97.00 %

Fig. 9 Negative log marginal likelihood for the GP models based on
scalar momentum and divergences. X-axis: folds. Y-axis: negative log
marginal likelihood (NLML) of the GP model based on divergences (in
red) and scalar momentum (in blue). For all folds, the NLML values
are larger for divergences than for scalar momentum suggesting that
the scalar momentum based GP model is more plausible than the
divergences based GP model
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the classifier’s predictions with the subject’s performance.
Another possibility would be to learn directly the relationship
between performance and brain activation by training a re-
gression model to predict the subject’s performance based on
their patterns of brain activation during the task. Finally, one
could also use the age as a covariate to account for age effect
in the regression model (i.e. regress out the age effect), there-
fore discarding the ‘interaction’ effect.

The IXI dataset was used to test the two main ways of
considering continuous inputs. Please note that considering a
regression with a covariate is not possible in the first version
of the software, but will be feasible within PRoNTo’s frame-
work: confound effects will be removed from the kernel using
a residual forming matrix as in Chu et al. (2011).

& Question 4a: Can we predict age from brain scans?

To address this question, we predicted the age of the ‘old’
group (age range: 60.01 to 86.32, mean ± std: 68.02±5.88)
using a regression model with the scalar momentum feature
set. Similar work was previously done by Franke et al
(2010). To finesse the answer to Question 3, this regression
was also performed on the divergence features. No further
operations were applied to the data and a “Leave One
Subject Out” cross-validation scheme was used to compute
a mean squared error (MSE), as well as the correlation
between the predictions and the targets (i.e. the ‘true’ age).

In PRoNTo, regression can be performed using Kernel-
Ridge Regression (KRR, Hastie et al. 2003), Relevance
Vector Regression (RVR, Tipping, 2001) or Gaussian
Processes Regression (GPR, Rasmussen and Williams,
2006, GPML toolbox). In its current form, the software
allows regression only at the group level, i.e. when provid-
ing one image and one continuous measurement per subject.
This limitation should be overcome in the next version in
which multiple continuous measures per subject will be
handled. The correlation and MSE for each feature set and
regression algorithm are displayed in Table 4.

Please note that for KRR, the hyperparameter λ control-
ling for the regularization varied as 10i with i=1…5, leading
to the correlation (ρ) and MSE values in Table 5. The results

presented in Table 4 are the (rounded) highest values
obtained (in bold). This shows that optimizing such hyper-
parameter can lead to significant changes in correlation and
MSE. Therefore nested cross-validation should be imple-
mented in a next version to perform this hyperparameter
optimization. This estimation is done automatically for
GPR. Essentially, predicting the means using GPR is equiv-
alent to KRR, although GPR usually includes the hyper-
parameter estimation, and predicts the variances.

The results show that GPR and RVR performed best for
both datasets but the highest correlation and minimal mean
squared error were obtained for the scalar momentum feature
set. To further compare the two modalities, the absolute dif-
ference between the targets and the predictions were comput-
ed in terms of years (using the results from GPR). For each
fold, it was then checked whether this difference was larger for
the divergences or for the scalar momentum. The results
showed that the difference is larger for the divergences 91
times out of 170 folds (53.53 %), which is a non-significant
result (Friedman test on the absolute differences: p=0.36).
Across folds, the RMS is 4.71 for the scalar momentum
features while it is 5.10 for the divergence features.

This shows that although the difference between the
accuracies (Question 3) and correlations obtained from
models based on the two considered features is small (8 %
difference), the scalar momentum might contain more infor-
mation to predict or classify age.

Please note that when using the scalar momentum of all
subjects available in the IXI dataset (i.e. age range=19–86),
the correlation and mean absolute error (MAE) obtained
after RV regression are similar to the results of Franke et
al. (2010) when considering no dimensionality reduction
and reach values of ρ=0.9 and MAE=5.74. However, the
authors of Franke et al. (2010) show that feature selection
(Principal Component Analysis (PCA) in the present case)
improved the correlation and decreased the MAE. While
such feature selection steps are not yet available in
PRoNTo, the software was designed to allow the easy

Table 4 Correlation between the age of the ‘old’ group and the model
predictions, as well as MSE, for each feature set and regression ma-
chine (KRR, RVR and GPR)

Regressor KRR (%) RVR (%) GPR (%)

Features Corr Corr Corr

MSE MSE MSE

Scalar momentum 0.50 0.60 0.60

28.98 23.90 22.20

Divergences 0.37 0.50 0.50

31.06 24.90 26.00

Table 5 Effect of the parameter λ of Kernel Ridge Regression on the
correlation and MSE values for the two different feature sets (scalar
momentum and divergences). The results presented in Table 4 are the
(rounded) highest values shown in this Table (in bold)

λ (10^) Scalar momentum Divergences

Corr MSE Corr MSE

0 0.34 36.53 0.18 53.97

1 0.35 35.07 0.18 53.24

2 0.41 30.10 0.20 48.05

3 0.50 28.98 0.27 36.24

4 0.50 32.49 0.37 31.06

5 −0.16 34.42 0.32 32.15
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addition of new modules and we therefore invite researchers
from the machine learning community to share their work
via an implementation in a future version of PRoNTo.

& Question 4b: Are the classifier’ predictions for old sub-
jects correlated with their age?

In this case, we considered the correlation between the
predictive probabilities obtained from the previous binary
GP classifier based on the scalar momentum, which discrim-
inates between ‘young’ and ‘old’ and the age of the subjects
in the ‘old’ group, which shows the largest age range (60–
90). The GP predictive probability measures the classifier
confidence about the class membership of the test example.
When using the predictive probabilities, we expected an
anti-correlation since the lower the probability the older
the subject (model was young=+1 versus aged=-1). The
obtained Spearman correlation coefficient (the distribution
of the predictive probabilities being not normal according to
a Jarque-Bera hypothesis test of composite normality) value
was: ρ=0.01 with an associated p of 0.86 (Fig. 10). These
results are therefore not significant. This can be explained by
the fact that the ages are linear values, whereas the probabil-
ities associated to the classifier’s predictions are non-linear
values, generated by a “softmax” function. In other words, the
‘perfect’ correlation isn’t a straight decreasing line. Therefore,
the authors suggest rather using covariates when trying to
account for more than one measurement or to ‘unsquash’ the
model probabilities beforehand.

Question 5. Can we distinguish the imaging centers from
which the preprocessed images were acquired?

Most institutions, whether at a local, national or interna-
tional level, encourage collaborations between researchers,
which often results in data acquired using the same design
but in different centers and on different machines. In this
context, an interesting question is to investigate whether the
classification we might perform on the multi-center data is
robust to data acquisition. Results reported in the literature
suggest a decrease in performance when combining data
across sites (Klöppel et al., 2008).

In the present work, this question was investigated using
the IXI dataset, which consists in data acquired in three
centers across London, United Kingdom. The ‘young’ ver-
sus ‘old’ classification was replaced by a ‘center1’ (96
subjects), ‘center2’ (142 subjects), ‘center3’ (31 subjects)
classification. The scalar momentum features were mean
centered and divided by their norm. A multiclass Gaussian
Process classification was then performed in a “Leave One
Subject Out” cross-validation. The obtained accuracies are
high: balanced accuracy is 98.7 % and class accuracies are
96.9, 100.0 and 99.3 % for centers 1, 2 and 3, respectively.
Figure 11 shows the confusion matrix for this classification.

These results show that the considered data contain suffi-
cient information to classify almost perfectly the different
centers. This shows a potential caveat of machine learning
based modeling: all differences between categories are mod-
eled, whether these correspond to differences in brain activi-
ty/structure or to confounding effects. It is therefore important
to match subjects across groups for any potential confound
effect such as age, gender or acquisition centers to prevent the
classifier from learning confound effects that are correlated

Fig. 10 Scatter plot of the probabilities of the scalar momentum based
GP binary classifier with the age of the corresponding subject. This
plot shows that no linear relationship could be derived from those
values

Fig. 11 Confusion matrix obtained from the multiclass GP model to
distinguish between centers. The diagonals show the largest numbers
(by far), which reveals an almost perfect classification of the centers
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with the labels instead of the effect of interest. Collaborations
involving multi-center data should thus be encouraged as they
increase the size of the datasets, and hence their variability,
leading to more realistic and useful diagnosis/prognosis mod-
els, as long as the subjects are matched across centers or
scanner effects are modeled, as in Klöppel et al., 2008.

Discussion

Mass univariate statistical analyses of neuroimaging data,
based on the GLM, have been recently complemented by
the use of multivariate pattern analyses, based on machine
learning models. These models allow an increased sensitiv-
ity and flexibility compared to univariate techniques but
until recently they lacked an established and accessible
software framework.

In this paper, we propose PRoNTo, a MATLAB toolbox
for accessible and flexible machine learning based classifi-
cation/regression of neuroimaging data. While MATLAB is
not freely available software, its high-level language, as well
as its widespread use in the neuroscientific community,
makes it a favorable environment to analyze neuroimaging
data. Furthermore, many MATLAB-based toolboxes already
exist to import, preprocess and analyze brain data. PRoNTo
is therefore fully compatible with the most widely used of
them, SPM (Friston et al. 2007), and allows an easy inte-
gration of machine learning based MVPA into the currently
used pipelines, especially via the MATLAB batch system.
Thanks to its graphical interfaces, PRoNTo requires no
programming ability whilst allowing fully flexible machine
learning based classification/regression. In addition, devel-
opers can easily add new algorithms, with very little prior
knowledge of the toolbox’s functionalities.

One of the main advantages of the pattern recognition
approach is its predictive power, which not only helps to
investigate brain function but can also be used as a potential
diagnostic tool for neurologic and psychiatric disorders
(Kloppel et al. 2011). In this paper, we presented our soft-
ware framework by exploring the type of questions that can
be addressed using this methodology and that cannot be
properly answered using the GLM approach. These ques-
tions include: does the pattern of activation in brain regions
A, B and C encode information about a variable of interest?
How do we account for the hemodynamic response function
in pattern recognition analyses and how much does correct-
ing for the HRF affect classification results? Which type of
features best discriminates between groups? Can we predict
continuous measures from brain scans, and how do we deal
with continuous clinical values? How different are the images
acquired in different centers and can we predict where they
were acquired? These examples comprise only a limited sub-
set of the variety of neuroscientific questions that can be

addressed with pattern recognition for neuroimaging.
However, while the assets of the field are becoming well
known and recognized, its limitations and technical subtleties
are sometimes not properly appreciated and even overlooked.

One common mistake, when using linear models, relates
to the temptation of interpreting the model weights images
as statistical parametric maps (SPMs). Contrary to SPMs, it
is the combination of all weights that defines the model and
therefore the weights at each voxel are dependent on one
another. No voxel-wise statistical tests assuming indepen-
dence can be performed on them. This leads to interpret-
ability issues, since most neuroscientists look to find not
only how information is encoded in the brain but also where
in the brain this information resides. While this is still a
topic of much debate, one of the proposed ways of address-
ing this issue is the use of sparse models (e.g. Zou 2005).
These models, through their regularization properties, im-
pose sparsity in the voxel dimension and force many voxel
weights to zero. In theory, these models could potentially
identify underlying brain networks responsible for the dis-
crimination task and therefore improve model interpretabil-
ity. However, in practice, there is no way of preventing a
sparsity enforcing model from removing more than irrelevant
voxels leading once again to difficulties in interpreting its
results. Rasmussen et al. (2012) introduce an interesting dis-
cussion regarding the interpretability and generalization of the
model weights. According to these authors, the most common
way of optimizing the models, by maximizing their predictive
accuracy, does not lead to the most accurate representation of
underlying brain networks. The authors therefore propose to
use both an accuracy based and reproducibility measure to
assess the model and provide more reliable spatial patterns.
Another way to optimize the models, in a probabilistic context,
such as is the case of Gaussian Processes, is by maximizing the
model evidence. However, the best way to assess model qual-
ity and generalization, e.g. using the predictive accuracy or
model evidence, still remains an issue to be further
investigated.

The attempt to find where in the brain information is
located, and in particular, which features (voxels) to use in
a classification problem, can lead to another common mis-
take called ‘peeking’. This issue occurs when the choice of
features depends on the labels of the entire dataset. This
permits information from the test set to influence the learning
of the classifier in the training set and, as a result, it can lead to
optimistic accuracy estimates. The solution to this issue is to
restrict the features to one or more regions of interest (based
on apriori anatomical hypotheses) or proceed by doing recur-
sive feature elimination (RFE - Guyon & Elisseeff, 2007; De
Martino et al., 2008) in a nested cross-validation context.
Once the data has been split into training and testing datasets
one can further split the training data and use the labels within
this fold to select the most discriminative voxels. In each
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feature elimination step, a small proportion of voxels is dis-
carded until a core set of voxels remains with the highest
discriminative power. Although more computationally inten-
sive, this technique leads to a sparse solution.

Another sensitive issue, which has not been comprehen-
sively explored, is the effect of the preprocessing steps (such
as realignment, normalization, smoothing…) in the classi-
fication/regression output. Although some results exist
(LaConte et al. 2003), it is still important for further analy-
ses to find out which and how preprocessing parameters
affect pattern recognition. Each preprocessing strategy es-
sentially tries to encode some measure of similarity among
the scans. Principled ways to derive similarities among
scans, which are based upon the generative models to which
the data are fit during preprocessing (e.g. Fisher kernels
(Jaakkola & Haussler 1998)), are therefore needed. In addi-
tion, most experimental designs so far have been ‘recycled’
from previous GLM analyses. Even though they might be
ideal for finding activations in the brain they may be sub-
optimal for discrimination tasks, and the field would benefit
from further investigations into this area.

Another issue is the lack of a clear strategy on how to
remove confounds from pattern recognition analyses. This
issue can be particularly worrying in clinical settings, where
one of the most common confounds is the patients’ medi-
cation. In other words, in many pattern recognition studies
(e.g. Mourao-Miranda et al. 2012), the groups of subjects
(healthy controls and patients) differ not only on the pres-
ence of the disease but also on the fact that patients are
taking medication at the time of the experiment. New meth-
odological advances need therefore to be introduced into the
field in order to properly account for this confound. For
instance, using Multi-Kernel Learning, one could ask the
question: “does the image data plus medication status pre-
dict more accurately than medication status alone?”

Finally, even though some aspects of pattern recognition
for neuroimaging are still under much debate, for instance
regarding the interpretability of its output spatial patterns, it
is a very promising methodology for studying the brain and
has proven to answer questions that go beyond the scope of
existing statistical approaches. With the development of
PRoNTo, we hope not only to provide a working tool for
neuroscientists but also a platform to motivate the develop-
ment of the techniques and contribute to the resolution of
some of its current limitations. The authors therefore hope to
facilitate the interaction between the neuroscientific and
machine learning communities. On one hand, the machine
learning community should be able to contribute to the
toolbox with novel published machine learning models.
On the other hand, the toolbox should provide a variety of
tools for the neuroscience and clinical neuroscience com-
munities, enabling them to ask new questions that cannot be
easily investigated using existing statistical analysis tools.

Future Work

As aforementioned, PRoNTo has a modular design which
allows the easy addition of new classifiers/regression algo-
rithms (e.g. sparse models) wrapped as machines. When
calling a machine, the main code refers to a key name
(e.g. ‘svm_bin’ for a binary SVM classifier) and provides
a structure comprising the training and test data in matrix
form, the training labels or values (for classification or
regression, respectively), a flag expressing whether the
method uses kernels or features and arguments which are
specific to the machine (e.g. soft-margin parameter for
SVM). To implement a new machine, one would thus need
to create an interface between the input structure and the
new method, not caring about cross-validation or perfor-
mance estimation. To fully interface the new machine, a
key name should be generated and linked to the main
batching/GUI system. More details are provided in the man-
ual. Regarding feature selection algorithms, once nested
cross-validation is available, their addition will also be
possible and straightforward.

Although PRoNTo already proposes spatial and temporal
compression, which are particularly useful in a within-
subject context (Mourao-Miranda et al. 2006), feature selec-
tion could bring valuable advantages such as reducing mem-
ory storage requirements (Formisiano et al. 2008) and
possibly improving model accuracy (Guyon and Elisseeff
2007). However, some authors have questioned the benefits
of feature selection in neuroimaging applications (Cuingnet
et al. 2011; Chu et al., 2012). In addition, approaches that
evaluate the information contained within local multivariate
patterns, such as the searchlight approach (Kriegeskorte et
al., 2006), might also provide new insights about brain
functions. Future versions of PRoNTo are likely to comprise
methods such as Recursive Feature Elimination (RFE, De
Martino et al., 2008) and the searchlight approach. The next
release of PRoNTo will also include the possibility of opti-
mizing model parameters through nested cross-validation.

When more than one modality is available, it would be
interesting to consider their joint information instead of
treating them independently. Therefore, we plan to include
different methods of concatenating the features from differ-
ent imaging techniques, to achieve multimodal classifica-
tion/regression of the data.

In a clinical context, acquiring data from new patients
after the analysis of previous datasets is not rare. In the same
way, the label might not be available for some patients/heal-
thy subjects. Therefore, being able to predict the label/con-
tinuous value of a new feature vector from a previously built
model would be highly desirable and should be included in
the near future. Please note that this feature could be applied
to validate the model (using what is referred to as a valida-
tion set), after the training and testing phases.
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Finally, in PRoNTo, the weight maps built from linear clas-
sifiers are displayed without a threshold or statistical test. This
results from the fact that due to the multivariate nature of the
patterns, spatial inference on the weights cannot be performed
using univariate thresholds or statistics. However, the authors
intend to develop an original and more easily interpretable way
of inferring relevant brain areas from the model weights.

Conclusions

PRoNTo aims at providing a comprehensive and user-
friendly software framework for multivariate analysis based
on machine learning models for neuroimaging data. While
built to be compatible with SPM, non-SPM users will have
no difficulty in using the graphical interfaces. Thanks to its
modular design, PRoNTo can easily be extended via the
addition of new feature selection and extraction approaches,
validation procedures or classification/regression models,
therefore aiming to improve the interaction between the
neuroimaging and machine learning communities.

Information Sharing Statement

PRoNTo, and all its documentation, are available to down-
load from: http://www.mlnl.cs.ucl.ac.uk/pronto/. The tool-
box code is distributed for free, but as copyright software
under the terms of the GNU General Public License as
published by the Free Software Foundation. PRoNTo is writ-
ten for MATLAB 7.5 (R2007b) and onwards, and needs an
installed version of SPM (versions 8 or above, including the
latest updates) to work. Some routines may need to be com-
piled for your specific OS. For further information on how to
use the software, please consult PRoNTo’s manual, available
here: http://www.mlnl.cs.ucl.ac.uk/pronto/manual.htm. The
datasets used in this paper are freely available to the general
public and we have provided the websites where they can be
downloaded from throughout the manuscript.
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