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ABSTRACT
BACKGROUND: Research on the electroencephalographic (EEG) signatures of attention-deficit/hyperactivity
disorder (ADHD) has historically concentrated on its frequency spectrum or event-related evoked potentials. In this
work, we investigate EEG microstates (MSs), an alternative framework defined by the clustering of recurring
topographical patterns, as a novel approach for examining large-scale cortical dynamics in ADHD.
METHODS: Using k-means clustering, we studied the spatiotemporal dynamics of ADHD during the rest condition
by comparing the MS segmentations between adult patients with ADHD and neurotypical control subjects across
two independent datasets: the first dataset consisted of 66 patients with ADHD and 66 control subjects, and the
second dataset comprised 22 patients with ADHD and 22 control subjects and was used for out-of-sample
validation.
RESULTS: Spatially, patients with ADHD and control subjects displayed equivalent MS topographies (canonical
maps), indicating the preservation of prototypical EEG generators in patients with ADHD. However, this concordance
was accompanied by significant differences in temporal dynamics. At the group level, and across both datasets,
ADHD diagnosis was associated with longer mean durations of a frontocentral topography (MS D), indicating that its
electrocortical generator(s) could be acting as pronounced attractors of global cortical dynamics. In addition, its
spatiotemporal metrics were correlated with sleep disturbance, the latter being known to have a strong relationship
with ADHD. Finally, in the first (larger) dataset, we also found evidence of decreased time coverage and mean duration
of a left-right diagonal topography (MS A), which inversely correlated with ADHD scores.
CONCLUSIONS: Overall, our study underlines the value of EEG MSs as promising functional biomarkers for ADHD,
offering an additional lens through which to examine its neurophysiological mechanisms.

https://doi.org/10.1016/j.bpsc.2021.11.006
Attention-deficit/hyperactivity disorder (ADHD) is character-
ized by developmentally inappropriate levels of inattention,
hyperactivity, or impulsivity and is one of the most common
psychiatric disorders, with a prevalence of 1 in every 20 adults
(1,2). As a result, there is a pressing need to understand its
neural underpinnings in the hope of devising better treatments.

Recent literature reviews point to abnormal resting elec-
troencephalogram (EEG) activities in patients with ADHD (3–6).
This is exemplified by a significant cluster of patients with
ADHD with a high theta-to-beta power ratio (TBR) (5,7), a
signature supportive of theories that ADHD may be caused by
a delay of brain maturation (8), given that TBR is known to
progressively attenuate during normal cortical development
(9,10).

However, more recent studies (11,12) have failed to repli-
cate this finding of elevated TBR as a diagnostic feature in
ADHD, which was also confirmed in a meta-analysis (5).

These divergent results suggest that the high TBR group,
which is strongly associated with treatment response to
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methylphenidate (13) and neurofeedback (14,15), is only a
subgroup within a wider spectrum of abnormal electrocortical
activities. These different subtypes can also be found with the
EEG signatures derived from adults with ADHD, which besides
excess power of lower-frequency rhythms (16–18), also display
opposing pattern(s) comprising reduced alpha power (19,20)
and/or excess higher-frequency beta power (21,22). Based on
these findings, the emerging consensus is that ADHD is highly
heterogeneous not only in terms of behavior (23) but also
electrophysiologically (24).

Although previous research on ADHD has concentrated on
examining its EEG frequency spectrum (24) and/or event-
related potentials (25), in this work we propose resting-state
EEG microstates (MSs) (26) as an alternative analytic frame-
work. MS analyses in ADHD have so far been limited to event-
related potential MSs (27,28); therefore, the spontaneous
resting-state EEG still needs to be explored. By modeling
spontaneous EEG as a sequence of recurring topographical
patterns, MS analysis considers both spatial and temporal
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dynamics simultaneously. This could facilitate clearer
spatiotemporal dissociations to be made in ADHD, as any
uncovered deviations in MS dynamics would imply abnormal
temporal activations of spatially distinct cortical generators.
Although it is difficult to identify the precise anatomical
generators of the MSs through mere clustering of scalp EEG
data, their abnormal temporal signatures nevertheless point
to significant departures from typical cortical dynamics. This
may be a valuable framework when considering the brain as
a large-scale dynamic system (26). Previous work has iden-
tified significant links between MS dynamics and behavioral
dimensions in clinical populations. For instance, the duration
of a frontocentral topography often referred to in the litera-
ture as MS class D (MS D) has been found to correlate
negatively with hallucinations in patients with schizophrenia
(29). Interestingly, as MSs are estimated on a time point–by–
time point basis (i.e., instantaneously) using a broadband
(e.g., 1–30 Hz) signal, MS measures may be able to capture
cortical dynamics that are either independent or common
across EEG frequencies.

To validate these hypotheses, we applied the below MS
analysis to resting-state EEG recordings of 88 adult patients
with ADHD, divided across two independent datasets. The
first dataset, designated as the test sample, comprised 66
patients with ADHD and 66 neurotypical control subjects from
the Netherlands. The second dataset, designated as the
retest sample, comprised 22 patients with ADHD and 22
neurotypical control subjects from Switzerland.
METHODS AND MATERIALS

Datasets

Dataset 1: Participants. EEG recording of 66 patients with
ADHD (31 female; mean age = 34.1, SD = 11.4 years) and 66
control subjects (41 female; mean age = 36.5, SD = 12.4 years)
were obtained from participants enrolled by Research Institute
Brainclinics and the neuroCare Group Nijmegen in the
Netherlands between 2001 and May 2018 (30). Briefly, patients
were screened for inclusion and included in case of an ADHD
or attention-deficit disorder diagnosis (as confirmed by the
Mini-International Neuropsychiatric Interview or by a qualified
clinician), or when ADHD Rating Scale scores on either scale
(attention deficit or hyperactivity/impulsivity) (31) was $5; for
this study, only adults were included. Patients were also
screened for sleep disorders through the Pittsburgh Sleep
Quality Index (PSQI) (32). The sample comprised three ADHD
subtypes, including 40 patients of mixed subtype (inattentive
and hyperactive), 23 patients of inattentive subtype, and 3
patients of hyperactive subtype. All subjects signed an
informed consent before treatment was initiated.

Dataset 1: Recordings. Two-minute eyes-open EEG re-
cordings were performed using a standardized reliable and
consistent procedure (33,34) developed by Brain Resource
Ltd. (35,36). Signals were recorded continuously using
Quickcap, a 26-electrode cap, with a sampling rate of 500 Hz,
placed according to the 10–20 international system. The
ground electrode was placed on the scalp at AFz, and data
were referenced to averaged mastoids. All electrode
Biological Psychiatry: Cognitive Neuroscience and Ne
impedances were kept below 5 kU. In addition to that, a low
pass filter above 100 Hz was applied prior to digitization, and
horizontal and vertical eye movements were controlled for.
Electrooculography correction based on Gratton et al. (37) was
applied to the data.

Dataset 2: Participants. Resting-state EEG recordings
of 22 adults patients with ADHD (12 female; mean age =
32.3, SD = 9.2 years) and 22 healthy control subjects (14
female; mean age = 31.1, SD = 7.3 years) were obtained
from (19). Patients with ADHD were recruited through the
Adult ADHD Unit at Geneva University Hospitals. After
giving written informed consent, patients and control
subjects answered four clinical questionnaires including
the Adult ADHD Self-Report Scale (ASRS) version 1.1,
which evaluates current ADHD symptoms in adolescents
and adults in 18 questions (38).

The clinician’s diagnosis was based on three structured
questionnaires: the ADHD Child Evaluation for Adults (ACE1)
(https://www.psychology-services.uk.com/adhd.htm), the
French version of the Structured Clinical Interview for DSM-IV
Axis II Personality Disorders [SCID-II (39)], and the French
version of the Diagnostic Interview for Genetic Studies (mood
disorder parts only) (40) [see (19) for extended description]. The
sample was comprised three ADHD subtypes: the mixed one
comprising 16 patients of mixed subtype, the inattentive sub-
type comprising 5 patients, and the hyperactive subtype
comprising the last patient.

This study was approved by the Research Ethic Committee
of the Republic and Canton of Geneva (Project No. 2017-
01029).

Dataset 2: Recordings. Here, the 3-minute duration of
the eyes-open rest was recorded continuously using a 64
Ag/AgCl electrode cap (ANT Waveguard), placed according
to the 10–20 international system, at a sampling rate of 500
Hz. The ground electrode was placed on the scalp at a site
equidistant between Fpz and Fz, and the reference electrode
at CPz. Electrical signals were amplified using the eego
mylab system (ANT Neuro), and all electrode impedances
were kept below 5 kU.

Preprocessing

Both datasets underwent the same preprocessing pipeline:
data were processed in MATLAB version 2018b with EEGLAB
(The MathWorks, Inc.) (41), using the default settings of the
Harvard Automated Processing Pipeline for Electroencepha-
lography (42). Concisely, this involved first filtering between 1
and 100 Hz, removing line noise with a notch filter (between 48
and 52 Hz), rejection of bad channels (SD cutoff of z = 3), and
removal of noncerebral artifacts such as eye blinks and muscle
activity using independent component analysis [via the MARA
plug-in (43)]. Finally, the rejection of bad 1-s EEG segments
was carried out using amplitude-based and joint-probability
artifact detection (SD cutoff of z = 3).

Fitting

The deartifacted data (from datasets 1 and 2) were bandpass
filtered between 1 and 30 Hz and re-referenced to common
uroimaging August 2022; 7:814–823 www.sobp.org/BPCNNI 815
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average reference. MS topographies were estimated sepa-
rately for each dataset (datasets 1 and 2) and for ADHD and
control groups. We used the Koenig Microstate toolbox for
EEGLAB (available at https://www.thomaskoenig.ch/index.
php/software/microstates-in-eeglab). For each subject’s
resting-state recording, 2000 global field power peaks were
selected randomly and submitted to modified (i.e., polarity-
independent) k-means clustering with 100 repetitions. For
each cluster number from k = 4 to k = 7, MS maps (i.e.,
cluster centroids) were estimated, first at the subject level
and then optimally reordered between subjects by mini-
mizing the average spatial correlation across maps. Finally,
the respective MS maps were averaged across all subjects
(within each dataset/group) to give the aggregate map for
each cluster. We found that k = 5 provided the highest map
reliability across subjects and datasets, which was esti-
mated as the mean spatial correlation of each subject’s map
with the group’s aggregate.

Backfitting

The k = 5 global dominant topographies of both datasets were
then fitted back to the original EEGs using Cartool (44). During
this procedure, time points were assigned to cluster labels (i.e.,
MS topography) by spatial correlation analysis: each time point
was assigned to the topography with which it shared the
highest absolute spatial correlation. If the spatial correlation
was below the r = 0.5 correlation threshold, the time point was
labeled as nonassigned. A smoothing window of seven sam-
ples (56.0 ms) was used to ensure temporal continuity of the
signal by adjusting the correlation of the central time point with
a smoothing factor of 10. Identical label sequences that did not
reach a duration of 3 samples (24.0 ms) were split into two
parts, each sharing the highest spatial correlation with its
neighboring segment and relabeled accordingly. At the end of
this procedure, nonassigned time points were removed, and
participants with z$ 3 for unlabeled time points were excluded
from further analysis. A label sequence was derived for each
individual recording and used to compute three metrics. First,
global explained variance (GEV), which is the sum of variances
weighted by the global field power of all time points assigned
to a label. This metric is expressed in percentage (%). Second,
time coverage, which is the proportion of time during which a
label is present in the recording. This metric is expressed in
percentage (%). Third, mean duration, which is the mean
temporal duration during which a label is present without
interruption. This metric is expressed in milliseconds.

After backfitting, outlier detection, based on a high number
of unlabeled time points (z score . 3, dataset 1 = 13% |
dataset 2 = 18%), identified two control subjects from dataset
1 and 1 control subject from dataset 2. These subjects were
excluded from further analysis.

Power Spectrum Analysis

Absolute power spectral density was computed using the
Welch method for frequencies ranging from 2 to 30 Hz. The
window had an effective size of 2.048 s and no overlap. To
obtain a relative metric that could be used for between-subject
comparisons, all values were divided by the sum of the full
816 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging A
spectrum (2–30 Hz). The obtained values were then added up
within each studied frequency band for further analysis: delta
(2–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), low-beta (12–20 Hz),
and high-beta (20–30 Hz).

Clinical Measures of Inattention and Hyperactivity

For each dataset, we selected the standardized clinical
questionnaires that best reflected current (i.e., adult) symp-
toms of ADHD.

For dataset 1, this was the ADHD Rating Scale (36), which
contained 23 questions regarding the presence of symptoms
on a 4-point scale (0 = rarely or never, 1 = sometimes, 2 =
often, 3 = very often). The ADHD Rating Scale contains two
subscales for symptoms of inattention and hyperactivity.

For dataset 2, this was the Adult ADHD Self-Report Scale
version 1.1, which comprises 18 questions on a 5-point scale
(0 = never, 1 = rarely, 2 = sometimes, 3 = often, 4 = very
often) to evaluate current ADHD symptoms in adolescents
and adults (43). The ADHD Self-Report Scale contains two
subscales that assess the dimensions of hyperactivity and
inattention.

Statistics

Group comparisons were made based on the three spatio-
temporal parameters obtained from the unpaired permutation
test for equality of means. Owing to the absence of a pre-
established hypothesis, the two-sided test was used for the
first dataset. Results derived from this first analysis were used
to establish the working hypotheses for the second dataset,
leading to the use of one-sided tests. p Values were estimated
by simulated random sampling with 10,000 replications.
Cohen’s d was used to report the effect size as the stan-
dardized difference of means. When applicable, statistical re-
sults were corrected for multiple comparisons using the
Bonferroni method.

Correlations between MS parameters and clinical scores
were computed using the two-sided permutation test (10,000
permutations) on the Pearson correlation coefficient.

RESULTS

Dataset 1

MS Topographies. In the first dataset, we examined the 2-
minute resting-state EEG data of 66 patients with ADHD and
66 control subjects. Neither mean age (p = .25) nor sex
(Fisher’s exact test, p = .08) differed significantly between
groups.

We applied MS segmentation to both groups independently
to identify potential topographies that might be specific to one
population. We identified five equivalent topographies across
both the ADHD and control groups (Figure 1), corresponding to
traditional MS topographies previously reported in the litera-
ture: a left-right diagonal orientation (MS A), right-left diagonal
orientation (MS B), frontoposterior orientation (MS C), fronto-
central maximum (MS D), and parietocentral maximum (MS F).
Spatial correlation analysis revealed negligible differences
between group MS topographies, with a minimum absolute
correlation of 87% for matched topographies.
ugust 2022; 7:814–823 www.sobp.org/BPCNNI
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Figure 1. Dataset 1. Electroencephalographic
microstate topographies in adults with attention-
deficit/hyperactivity disorder (ADHD) (n = 66) vs.
control subjects (CTRL) (n = 66). (A) The five elec-
troencephalographic resting-state topographies for
the three conditions: ADHD, CTRL, and ALL
(ADHD1CTRL). (B) Spatial correlation coefficients of
the five resting-state topographies between ADHD
and CTRL.
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Consequently, we concatenated the EEGs of both ADHD
and control groups into a single-pooled k-means analysis,
to obtain a set of common topographies for both groups.
These latter maps were used for backfitting all individual
participant data.
Biological Psychiatry: Cognitive Neuroscience and Ne
MS Segmentation
As can be seen in Figure 2, we first observed a reduced
temporal prevalence of MS A in the ADHD group compared to
the control group: in other words, the relative amount of time
subjects spent in this configuration was significantly reduced
Figure 2. Dataset 1. Measures of electroenceph-
alographic microstate (MS) dynamics in adults with
attention-deficit/hyperactivity disorder (ADHD) (n =
66) vs. control subjects (CTRL) (n = 64). (A) The five
electroencephalographic MSs for the three condi-
tions: ADHD, CTRL, and ALL (ADHD1CTRL). (B)
Global explained variance (GEV) of each MS. (C)
Time coverage of each MS. (D) Mean duration of
each MS. **p # .001, *p # .05, Bonferroni corrected
for 15 comparisons. Boxplots consist of median (Q2),
first quartile (Q1), third quartile (Q3), maximum (Q3 1
1.5 3 [Q3 2 Q1]), and minimum (Q1 2 1.5 3 [Q3 2

Q1]). ns, not significant.
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(p # .05, d = 20.43) in the ADHD group compared to the
control group. In addition, although nonsignificant (n.s.), state
durations of MS A were, on average, lower for the ADHD
group (n.s., d = 20.59), and the amount of global variance
explained by MS A was also reduced on average (n.s.,
d = 20.32).

Interestingly, opposite effects were found for MS D, which
exhibited a relative increase in prevalence in the ADHD group:
the frontocentral topography of MS D explained on average
more global variance (GEV, p # .01, d = 0.71), dominated an
increased temporal proportion (time coverage, p # .05, d =
0.59) and had longer state durations (mean duration, p # .05,
d = 0.53) in the ADHD population. No significant results were
found for other topographies.

Regression Analysis Between MS Parameters and
Clinical Measures. By focusing on the significant results
of the groupwise analyses, we hypothesized that MS A and D
dynamics might be related to differences in ADHD severity.
We evaluated the relationship between the parameters of
these two MSs and individual scores on the ADHD Rating
Scale in patients with ADHD. As shown in Figure 3, correlation
analyses revealed a negative correlation between MS A
parameters and clinical ADHD scores: significant negative
correlations were found between MS A time coverage and the
ADHD_total score (p # .05 F(x) = 20.2x 1 15, R2 = 7.7%), as
well as ADHD_Hyperactivity (p # .05 F(x) = 20.1x 1 7, R2 =
7.4%). Similar results were found between MS A GEV and the
ADHD_total score (p # .05 F(x) = 20.3x 1 14, R2 = 7.7%) and
ADHD_Hyperactivity (p # .05 F(x) = 20.2x 1 7, R2 = 7.1%).
The mean duration of MS A was also correlated to the
ADHD_total score (p # .05 F(x) = 20.1x 1 22, R2 = 9.3%) and
ADHD_Inattention (p # .05 F(x) = 20.06x 1 11, R2 = 5.8%). In
this dataset, no significant correlations were found between
clinical measures and MS D parameters.

MS D dynamics were also associated with PSQI (Figure 4) in
the ADHD group, where higher PSQI scores indicate greater
sleep disturbance. Here, positive correlations were found be-
tween the PSQI total score and MS D GEV (p # .05 F(x) =
0.3x 1 5.8, R2 = 7.8%) and time coverage (p # .05 F(x) =
0.2x 1 4.8, R2 = 8.4%).

Dataset 2

MS Topographies. In this second replication dataset, we
applied the same MS analysis pipeline to the 3-minute resting-
818 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging A
state EEG data of 22 adult patients with ADHD and 22 adult
control subjects. Neither mean age (p = .66) nor sex (Fisher’s
exact test, p = .8) differed significantly between groups.

We observed remarkably similar MS topographies to
dataset 1 (Figure 5), with a minimal interdataset spatial cor-
relation of 0.89 (Figure S1). Both the ADHD and control
groups exhibited the five classical MS topographies A, B, C,
D, and F. Spatial correlation analysis revealed minor differ-
ence between ADHD and control group topographies
(Figure 4A), with a minimum absolute correlation of 91% on
the diagonal. Topographies were unchanged after concate-
nation of the ADHD and CTRL data. Similarly, we used the
group-concatenated MS topographies for backfitting to
dataset 1 and estimation of MS dynamics at the level of in-
dividual subjects.

MS Segmentation. Based on the independent, groupwise
differences found in the first dataset, we hypothesized that MS
D parameters would be elevated in the ADHD population while
those of MS A would be reduced. To test this, we performed
directional (i.e., one-sided) permutation tests for equality of
means on MS A and D parameters only (Figure 6). Hence, in
this section, statistical results were corrected for six
comparisons.

We replicated the deviations for MS D, in terms of both
effect size and statistical significance: time points assigned to
MS D were significantly longer (p = .05, d = 0.77) in the ADHD
population, while noticeable (but nonsignificant) increases of
GEV (n.s., d = 0.49) and time coverage (n.s., d = 0.57) were also
present. No significant differences were found for MS A, and
hence ADHD deviations in this MS were not replicated (n.s.,
GEV: d =20.14 | time coverage: d =20.07 | mean duration: d =
0.42) in terms of statistical significance.

Clinical Correlations. Based on the group analyses on
both datasets, we tested the assumption that only MS A and D
would have a significant relationship with clinical scores.

Analysis of patients with ADHD alone did not reveal any
significant correlations between their ADHD clinical scores and
MS parameters.

Spectral Power Analysis

None of the EEG bands demonstrated significant differences
between the ADHD and control groups after Bonferroni
correction, either for the first or the second dataset (Figure 7).
Figure 3. Dataset 1. Correlation between electro-
encephalographic microstate (MS) parameters and
attention-deficit/hyperactivity disorder (ADHD) clin-
ical scores (patients with ADHD only, n = 66). Scat-
terplots between (A) ADHD clinical score
(ADHD_total) and MS A global explained variance
(GEV) (%), (B) ADHD clinical score (ADHD_total) and
MS A time coverage (%), and (C) ADHD clinical score
(ADHD_total) and MS A mean duration (ms). Patients
with ADHD only (n = 66); all univariate regressions
are significant.
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Figure 4. Dataset 1. Correlation between elec-
troencephalographic microstate (MS) parameters
and attention-deficit/hyperactivity disorder (ADHD)
sleep quality (patients with ADHD only, n = 66).
Scatterplots between (A) ADHD Pittsburgh Sleep
Quality Index (PSQI) total score (PQSI_total_pre) and
MS D global explained variance (GEV) (%) and (B)
ADHD PSQI total score (PQSI_total_pre) and MS D
time coverage (%). Patients with ADHD only (n = 66);
all univariate regressions are significant.
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DISCUSSION

This study aimed to investigate EEG MSs as potentially novel
functional biomarkers of ADHD. By applying this method to
adult patients with ADHD, we uncovered new electrophysio-
logical characteristics of this disorder. To this end, we applied
spatial k-means clustering to two independent datasets, each
comprising adults with ADHD and a neurotypical control
group. We first observed a close correspondence between the
ADHD topographies and classical MS topographies (A, B, C, D,
and F) typical of the normal population, suggesting no major
deviations in the spatial organization of electrocortical gener-
ators. This equivalence enabled us to estimate each MS, while
testing for any statistical differences between the ADHD and
control samples. We identified a longer mean temporal dura-
tion of the frontocentral topography (MS D), which was sta-
tistically significant and had a medium-to-large effect size in
both the first and second datasets (d = 0.59 and d = 0.77,
respectively). Second, in the first (larger) dataset, we found
additional evidence for decreased time coverage (d = 20.59)
and mean duration (d = 20.43) of MS A, which inversely
correlated with ADHD inattention scores.

Microstate D

Interestingly, MS D has been reported to be more expressed
during attentional tasks, such as mental arithmetic (45,46);
hence, it is intriguing (and perhaps counterintuitive) that it is
also observed to be more prevalent in ADHD. However, a
stronger temporal prevalence of specifically MS D has also
been found to accompany periods of unresponsiveness to
stimuli during transitions to drowsiness (47). In
Biological Psychiatry: Cognitive Neuroscience and Ne
contradistinction, a recent study reported that MS D duration
was positively correlated with vigilance level (48). MS D prev-
alence has also been observed to be altered during hypnosis
(49), hallucinations (29), and sleep (45,50) and in patients with
schizophrenia (51). In view of the larger prevalence and dura-
tion of MS D in both of our datasets, this balance seems to be
tipped toward the upper end of the distribution in adult ADHD.
As a result, we hypothesize that the electrocortical generator(s)
of MS D may be acting as persistent attractors of cortical
dynamics, thereby reducing their global variability and/or
complexity. This interpretation is also compatible with a recent
review suggesting that MS D may be responsible for aspects
of reflexive attention such as reorientation and switching of
attentional focus (26,52,53).

Anatomically, the frontocentral topography of MS D has
previously been associated with activation of the right inferior
parietal lobe, right middle and superior frontal gyri, and right
insula (45,54,55). These brain regions are known to be a part of
the dorsal attention network (56,57). Hence our findings
tentatively point to abnormal dynamics within this network and
are supported by functional magnetic resonance imaging
studies (58).

Relationship With Sleep Disturbance

Interestingly, we observed a significant correlation between
MS D prevalence and poorer sleep quality in patients with
ADHD. Several relationships have previously been established
between sleep disorders and attentional deficits [see (59) for a
review)]. This result is even more intriguing considering a
recent study by Ke et al. (60), who reported increases in MS D
Figure 5. Dataset 2. Electroencephalographic to-
pographies in adults with attention-deficit/
hyperactivity disorder (ADHD) (n = 22) vs. control
subjects (CTRL) (n = 22). (A) The five electroen-
cephalographic resting-state topographies for the
three conditions: ADHD, CTRL, and ALL
(ADHD1CTRL). (B) Spatial correlation coefficients of
the five resting-state topographies between ADHD
and CTRL.
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Figure 6. Dataset 2. Electroencephalographic
microstates (MSs) in adults with attention-deficit/
hyperactivity disorder (ADHD) (n = 22) vs. control
subjects (CTRL) (n = 21). (A) The five electroen-
cephalographic MSs for the three conditions: ADHD,
CTRL, and ALL (ADHD1CTRL). (B) Global explained
variance (GEV) of each MS. (C) Time coverage of
each MS. (D) Mean duration of each MS (*p # .05,
Bonferroni corrected for six a priori comparisons).
Boxplots consist of median (Q2), first quartile (Q1),
third quartile (Q3), maximum (Q3 1 1.5 3 [Q3 2 Q1]),
and minimum (Q1 2 1.5 3 [Q3 2 Q1]). ns, not
significant.

Figure 7. Electroencephalographic relative power
spectrum differences between attention-deficit/
hyperactivity disorder (ADHD) and control (CTRL)
groups. For dataset 1 (left panel: ADHD n = 66, CTRL
n = 66) and dataset 2 (right panel: ADHD n = 22,
CTRL n = 22): relative band-power values over all
electrodes. Solid lines represent mean value across
subjects; shaded areas represent 95% confidence
intervals. Traditional frequency bands: delta (orange,
2–4 Hz), theta (green, 4–8 Hz), alpha (blue, 8–12 Hz),
low-beta (red, 12–20 Hz), and high-beta (purple,
15–30 Hz) are highlighted on the x-axis.
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coverage (and a reduction in MS A) in sleep-deprived in-
dividuals. These results, which overlap those observed in the
present study, support preexisting hypotheses of a trinity of
sleep, hyperactivity disorder, and abnormal EEG signatures
(61,62).

Microstate A

In the larger dataset, we additionally observed significantly
decreased time coverage of MS A, which was inversely
correlated with clinical inattention scores in the ADHD sam-
ple. A recent study has shown that states of increased vigi-
lance/alertness were associated with relatively less
prevalence of MS A (and longer durations of MS D) (48). Thus,
the combined signature of lower MS A coverage and
increased MS D duration in our study implies that ADHD
could be characterized as a condition of hypervigilance,
consistent with its behavioral symptoms of physical and
emotional hyperactivity (63,64).

Spectral Power Differences

Classical EEG spectral power analyses have frequently
revealed slow-wave (e.g., theta) abnormalities with a fronto-
central topography in clinical cohorts with ADHD (65,66). A
plethora of studies have investigated spectral power differ-
ences in childhood and adult ADHD (5,67), but ultimately
systematic reviews report an absence of consistent resting
EEG abnormalities that could be characteristic of ADHD (6).
This is in line with the data presented here, for which no sig-
nificant differences in relative spectral power were found be-
tween the ADHD and control groups. Specifically, in the first
dataset, we observed relatively decreased low-beta power in
patients with ADHD compared with control subjects, while the
second dataset appeared to have the opposite pattern. One
may notice the significance of this result, different from that of
the original article (19), using dataset 2. In our view, the dif-
ference may be explained by, first, a loss of statistical power
owing to a smaller sample size necessary for balancing the
dataset during MS analysis, and, second, a change in filter
settings, as in our study, broadband was defined as 1–30 Hz
while the original work used 0.5–40 Hz.

Consequently, it is possible that MS measures, in particular
MS D, may prove to be more generalizable auxiliary biomarkers
for the diagnosis and/or prognosis of ADHD.

Conclusions

In conclusion, and to our knowledge, we present the first study
on resting-state MS dynamics in adults with ADHD. We have
confirmed across two datasets that MS D and/or A may be
promising functional biomarkers of ADHD (or at least one
subtype of it). To date, although no biological markers have
been successfully used to clearly diagnose or guide ADHD
treatment, the potential application of MS analysis in this
population could prove to be an additional asset, to better
understand its neurophysiological mechanisms.

Limitations

Given the case-cohort design as well as correlational analyses
of this cross-sectional study, there was no way of being certain
whether the observed MS differences were actually a cause or
Biological Psychiatry: Cognitive Neuroscience and Ne
a consequence of ADHD. It is important to note that the pro-
cess of diagnosing ADHD may have differed between and
within our two datasets, given the involvement of different
clinicians and psychiatric scales, and that those diagnostic
methods may differ for the current standard (68,69), especially
for the second dataset which did not consider symptom his-
tory (69). Hence, it is possible that the MS biomarkers un-
covered are not specific to ADHD as diagnosis per se but to
some of its behavioral subcomponents; for example, sleep
disturbance (59).
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