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A B S T R A C T   

Introduction: During the last decade, a multitude of novel quantitative and semiquantitative MRI techniques have 
provided new information about the pathophysiology of neurological diseases. Yet, selection of the most relevant 
contrasts for a given pathology remains challenging. In this work, we developed and validated a method, Gated- 
Attention MEchanism Ranking of multi-contrast MRI in brain pathology (GAMER MRI), to rank the relative 
importance of MR measures in the classification of well understood ischemic stroke lesions. Subsequently, we 
applied this method to the classification of multiple sclerosis (MS) lesions, where the relative importance of MR 
measures is less understood. 
Methods: GAMER MRI was developed based on the gated attention mechanism, which computes attention 
weights (AWs) as proxies of importance of hidden features in the classification. In the first two experiments, we 
used Trace-weighted (Trace), apparent diffusion coefficient (ADC), Fluid-Attenuated Inversion Recovery 
(FLAIR), and T1-weighted (T1w) images acquired in 904 acute/subacute ischemic stroke patients and in 6,230 
healthy controls and patients with other brain pathologies to assess if GAMER MRI could produce clinically 
meaningful importance orders in two different classification scenarios. In the first experiment, GAMER MRI with 
a pretrained convolutional neural network (CNN) was used in conjunction with Trace, ADC, and FLAIR to 
distinguish patients with ischemic stroke from those with other pathologies and healthy controls. In the second 
experiment, GAMER MRI with a patch-based CNN used Trace, ADC and T1w to differentiate acute ischemic 
stroke lesions from healthy tissue. The last experiment explored the performance of patch-based CNN with 
GAMER MRI in ranking the importance of quantitative MRI measures to distinguish two groups of lesions with 
different pathological characteristics and unknown quantitative MR features. Specifically, GAMER MRI was 
applied to assess the relative importance of the myelin water fraction (MWF), quantitative susceptibility mapping 
(QSM), T1 relaxometry map (qT1), and neurite density index (NDI) in distinguishing 750 juxtacortical lesions 
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from 242 periventricular lesions in 47 MS patients. Pair-wise permutation t-tests were used to evaluate the 
differences between the AWs obtained for each quantitative measure. 
Results: In the first experiment, we achieved a mean test AUC of 0.881 and the obtained AWs of FLAIR and the 
sum of AWs of Trace and ADC were 0.11 and 0.89, respectively, as expected based on previous knowledge. In the 
second experiment, we achieved a mean test F1 score of 0.895 and a mean AW of Trace = 0.49, of ADC = 0.28, 
and of T1w = 0.23, thereby confirming the findings of the first experiment. In the third experiment, MS lesion 
classification achieved test balanced accuracy = 0.777, sensitivity = 0.739, and specificity = 0.814. The mean 
AWs of T1map, MWF, NDI, and QSM were 0.29, 0.26, 0.24, and 0.22 (p < 0.001), respectively. 
Conclusions: This work demonstrates that the proposed GAMER MRI might be a useful method to assess the 
relative importance of MRI measures in neurological diseases with focal pathology. Moreover, the obtained AWs 
may in fact help to choose the best combination of MR contrasts for a specific classification problem.   

1. Introduction 

Magnetic resonance imaging (MRI) has proven invaluable for the 
investigation of the pathophysiology of neurological diseases and 
guiding neurological diagnoses, prognoses, and evaluation of thera-
peutics. In fact, during the last decade, numerous fast MRI sequences 
and quantitative/semiquantitative MRI measures have been developed 
that provide complementary information to disentangle the pathological 
mechanisms and characteristics of brain diseases. In addition, specific 
biomarkers for diagnosis and response to therapy have been identified 
(Bozzali et al., 2016; González and Schwamm, 2016; Gupta et al., 2017). 
However, clinical research and practice are still limited by the time 
required to acquire multiple MR contrasts. It is imperative that these 
studies be conducted in a time frame compatible with patient tolerance, 
compliance and in the case of clinical practice, the requirements 
dictated by the healthcare system. Therefore, the need to address the 
selection of the most informative MR contrasts is pivotal to avoid un-
comfortably lengthy acquisitions, to lower the subsequent possibility of 
having motion artifacts, and to reduce the related cost. 

Deep learning, especially convolutional neural networks (CNN), has 
proven promising in the segmentation of brain regions or lesions in MR 
images (Andermatt et al., 2018; Carass et al., 2017; Commowick et al., 
2016; La Rosa et al., 2019; Wachinger et al., 2018), classification of 
brain diseases (Payan and Montana, 2015; Yoo et al., 2018), MR 
reconstruction (Akçakaya et al., 2019; Schlemper et al., 2018), and 
prediction of disease prognosis (Saha et al., 2020; Tousignant et al., 
2019). The layer-wise neural network (NN) design can identify high- 
level hidden representations through iterative training, which are 
pivotal for a given classification task. Some of the deep learning designs 
specifically enhance the interpretability of the decision made by the NN, 
such as class activation maps (Selvaraju et al., 2016; Zhou et al., 2016) 
and Shapley Additive exPlanations (Lundberg and Lee, 2017). Never-
theless, these methods either give importance to the voxels in images or 
to post-hoc feature importance. On the contrary, the attention mecha-
nism within a NN provides attention weights (AWs) representing the 
importance of specific features. The concept, which originated in the 
field of natural language processing, can instruct the NN to attend to 
useful correlated elements in the text (Bahdanau et al., 2015). One of its 
variants, the gated attention mechanism, was extended to images and 
found to successfully assign AWs to non-overlapping patches from his-
topathological images in the classification of malignant cancer cells (Ilse 
et al., 2018; Tomczak et al., 2018). 

In this work, we optimized the gated attention mechanism (Ilse et al., 
2018) to develop a prototype of a Gated-Attention MEchanism Ranking 
of multi-contrast MRI in brain pathology (GAMER MRI). GAMER MRI 
specifically ranks the relative importance of global multi-contrast fea-
tures, instead of the importance of local single-contrast patches, in the 
classification of focal lesions. This method was first validated for a 
clinical application where some MR-measure importance is known (e.g. 
ischemic stroke) and was then applied to the classification of specific 
subtypes of MS lesions, which are known to differ for the extent of 
myelin/axon damage and reparative capacity: this provided knew 
knowledge about which MRI measure – among those sensitive to axon 

and myelin integrity – is most suitable to distinguish lesions with 
different axon/myelin damage and repair in MS. 

2. Materials and methods 

2.1. MRI data 

2.1.1. Stroke data 
A total of 7,134 1.5 T and 3 T brain MRI studies obtained from a 

combination of inpatient and outpatient scanners at the Mount Sinai 
Hospital, New York, USA were randomly selected as the dataset. These 
imaging data were accumulated from the Mount Sinai BioMedical En-
gineering and Imaging Institute’s HIPAA compliant Imaging Research 
Warehouse, including data from 10 scanners produced by two manu-
facturers (GE and Siemens Healthineers). The dataset consisted of 
various clinical acquisitions and included healthy controls, patients with 
subacute and acute infarct stroke, and patients with subacute and acute 
hemorrhage and mass effect. Among these patients, 904 are subacute 
and acute infarct stroke patients (defined as group 1) and 6,230 are 
healthy controls and other patients (defined as group 2). The 2D axial 
protocol included conventional, isotropically weighted Diffusion 
Weighted Imaging (DWI), Fluid-Attenuated Inversion Recovery (FLAIR), 
and T1-weighted images (T1w) from the inversion recovery pulse 
sequence. The most important mean acquisition parameters are listed in 
Table 1. Trace-weighted contrast (Trace) and apparent-diffusion coef-
ficient (ADC) were reconstructed on the scanner from DWI. 

Acute infarct stroke has distinctive representations on the acquired 
contrasts (Fig. 1). In the acute phase, hyperintensity is seen on Trace 
while ADC appears hypointense (Allen et al., 2012). In the subacute 
infarct stroke phase, both contrasts develop towards pseudo-normality. 
The segmentation of acute stroke lesions was performed on Trace and 
ADC by an expert radiologist consulting for Siemens Healthineers. 

2.1.2. Multiple sclerosis data 
Forty-seven MS patients (33 relapsing-remitting and 14 progressive, 

31 females and 16 males, age range = 43.6 ± 14.4 years) were enrolled 
in the study approved by the local ethics committee of Basel University 
Hospital. Written consent was obtained prior to the MRI acquisition. 
Patients underwent a multi-parametric protocol on a 3 T Siemens 
Healthineers MAGNETOM Prisma MRI system. The 3D protocol 
included SPACE-based FLAIR, Magnetization-Prepared 2 RApid 
Gradient Echoes (MP2RAGE) (Kober et al., 2012; Marques et al., 2010), 
Fast Acquisition with Spiral Trajectory and T2prep sequence (FAST-T2) 

Table 1 
Acquisition parameters of each contrast in the stroke dataset. TE: echo time; TR: 
repetition time; TI: inversion time; FOV: field of view; SR: spatial resolution.   

TE TR FOV SR TI b values  
(ms) (ms) (mm3) (mm3) (ms) (s/mm2) 

FLAIR 94 8000 230x230x160 0.72x0.72x5 2460 – 
T1w 6.9 2876 179x220x160 0.69x0.69x5 840 – 
DWI 113.8 7625 240x240x170 1.02x1.02x5 – 0,1000  
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(Nguyen et al., 2016), multi-shell Diffusion Weighted Imaging (mDWI), 
and Multi-Echo Gradient Recalled Echo MRI (ME-GRE) (Wang and Liu, 
2015). The most important acquisition parameters are shown in Table 2. 

From multi-parametric MRIs, quantitative MR maps (qMRs) were 
further reconstructed. Quantitative T1 relaxometry map (qT1) was 
reconstructed from MP2RAGE as in (Kober et al., 2012). Myelin water 
fraction map (MWF) was reconstructed from FAST-T2 as in (Nguyen 
et al., 2016). Neurite density index (NDI) from the neurite orientation 
dispersion and density imaging model (Zhang et al., 2012) was recon-
structed from DWI as in (Daducci et al., 2015). Quantitative Suscepti-
bility Map (QSM) was reconstructed from ME-GRE as in (Wang and Liu, 
2015). Co-registration between images was performed using FMRIB 
Software Library (FSL) (Jenkinson et al., 2012) and FreeSurfer (Fischl 
et al., 2001), and the obtained transformation matrices were later used 
for finding the correspondence of MS lesions between different qMRs. 
qMRs were not resampled to the same resolution so that the effect of 
interpolation in the resampling would not confound the quantitative 
values reflective of physical characteristics. MS lesions in white matter 
(WM) show hyperintensities on FLAIR images and in grey matter (GM) 
are blackholes on MP2RAGE images of the uniform contrast in Fig. 2a. 
WM lesions were automatically segmented (La Rosa et al., 2020) and 
manually corrected by two expert raters. Juxtacortical lesions (JCLs) 
and periventricular lesions (PVLs) were defined as WM lesions located 
within 3 mm of the boundary between (i) WM and GM and (ii) WM and 
ventricles, respectively, in Fig. 2b. The aforementioned boundaries were 
obtained through FreeSurfer processing on MP2RAGE (Fujimoto et al., 
2014). In the end, 750 JCLs and 242 PVLs were found with a class- 
imbalance ratio of 1:3. 

2.1.3. Study summary 
Fig. 3 summarizes the information about the two datasets and the 

training, validation and test datasets in the following experiments. 

2.2. Gamer MRI 

The original gated attention mechanism proposed by Ilse et al. (Ilse 
et al., 2018) exploits the hidden representations of single-contrast 
patches to compute the corresponding AWs, which represents the 

relative importance among the hidden representations in the classifi-
cation. The main theorem behind this rationale is the following (Zaheer 
et al., 2017): 

Theorem 1.. A prediction function f(X) for a set of countable elements X is 
invariant to the permutation of the elements in X, if and only if, for suitable 
transformations g and h, f(X) can be decomposed as: 

f (X) = h(
∑

x∈X
g(x)) (1) 

g() and h() were modeled by a NN. Based on (1), the gated attention 
mechanism is formulated as follows: 

n =
∑L

l=1
alml =

∑

x∈X
g(x) (2)  

al = softmax
(
wT(tanh(Uml) ⊙ sigm(Vml) )

)
(3)  

where ml is the hidden representation of the lth instance, al is the AW of 
the lth instance, U and V ∈ RK×M are weights of the fully connected layers 
(FCs) following the hidden representations, sigm stands for the non- 
linear sigmoid function, ⊙ is the element-wise multiplication operator, 
w ∈ R1×K is the weights of a FC, softmax stands for the softmax function. 

Contrary to the original single-contrast approach to model g(), 
GAMER MRI adopted the multi-contrast multi-path approach on 
different MR contrasts and (2) becomes: 

∑L

l=1
alml =

∑L

l=1
alql(xl) =

∑

x∈X
g(x) (4)  

where q(x) is the encoding function of the NN and Equation (3) remains 
the same. It is a simple variant to extend the meaning of AWs to the 
assessment of the importance of the MR contrasts in studying diseases 
and the parallel encoding paths enable the MR contrasts to be ranked by 
AWs. The core implementation of the gated attention mechanism in the 
NN was the same as in (Ilse et al., 2018) and formed by a FC followed by 
the hyperbolic tangent function (the attention layer) and a FC followed 
by the sigmoid function (the gate layer). The outputs of the attention 

Fig. 1. Examples of Trace, ADC, FLAIR and T1w images in the stroke dataset. The lesion is hyperintense on Trace but hypointense on ADC (Allen et al., 2012). On 
T1w, the lesion is isointense than ADC and is faintly hyperintense on FLAIR. 
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layer and the gate layer were element-wise multiplied and connected to 
a one-neuron FC and the softmax function to generate the normalized 
AWs. The number of neurons in the attention and gate layers depend on 
the experiment. 

In order to validate our method and rank the importance of MRI 
features, the following three experiments were conducted: 1. volume- 
based classification of acute/subacute ischemic stroke vs other strokes 
and healthy controls; 2. patch-based classification of acute ischemic 
stroke lesions vs healthy tissue and 3. patch-based classification of JCLs 
vs PVLs in MS patients. 

2.2.1. Pretrained network with GAMER MRI on stroke 
To assess the performance of GAMER MRI as a ranking method, we 

combined GAMER MRI with the feature extracting compartment of an 
in-house pretrained NN from Siemens Healthineers (Princeton, NJ, 
USA), for the classification of acute/subacute ischemic stroke vs other 
patients and healthy controls using volumetric Trace, ADC, and FLAIR. 
The pretrained NN was trained for the same classification and thus 
learned how to encode relevant hidden features from Trace, ADC, and 
FLAIR. 

2.2.1.1. Inputs and preprocessing. Trace, ADC, and FLAIR images were 
considered in this experiment since these contrasts were used for 
training the pretrained network. Subacute and acute infarct stroke pa-
tients were categorized into group 1, while group 2 included other pa-
tients and healthy controls. There were 5,002 subjects (group 1: 632 and 
group 2: 4,370) in the training dataset. The validation dataset had 1,061 
subjects (group 1: 141 and group 2: 920) and 1,071 subjects (group 1: 
131 and group 2: 940) were in the test dataset. 

2.2.1.2. Architecture. The combined NN was built with three main 
compartments, including the feature extracting compartment of the 
pretrained NN, GAMER MRI and a classifier, as depicted in Fig. 4. The 
feature extracting compartment was, for each contrast, composed of two 
3D convolutional blocks followed by two dense blocks based on the 
concept of DenseNet in (Huang et al., 2017). Each convolutional block 
consisted of a batch normalization layer, leaky ReLU units and a 3D 
convolutional layer. In each dense block, there were two 3D convolu-
tional blocks with the kernel size of 3x3x3 and 1x1x1. The number of 
initial features was 16 and the growth rate was 2. The hidden feature 
vectors from all contrasts were then concatenated as the input to the 
following GAMER MRI so that the hidden feature vector of each contrast 
was encoded independently prior to the computation of AWs. In the 
GAMER MRI, the number of neurons each in the attention layer and in 
the gate layer was 400. The classifier was one sigmoid neuron receiving 
the weighted sum of the hidden features and the AWs. The importance of 
each contrast is represented by the AW. 

2.2.1.3. Training Strategy. The combined NN was trained with a cross- 
entropy loss function and mini-batches. The weighted sampler was 
used to account for the class imbalance during training. The network 

parameters, including the pretrained layers, were updated by the Adam 
optimizer with decoupled weight decay (AdamW) (Loshchilov and 
Hutter, 2019). The evaluation metric was the area under the receiver 
operating characteristic curve (AUC), which was the same metric used in 
training the pretrained network. To avoid overfitting, data augmenta-
tion was independently performed for each contrast on-the-fly. Since 
there is an inherent randomization in the initialization of network pa-
rameters and the split of mini-batches, the assessment of the effect of the 
random initialization is needed to properly describe the behavior of 
repeatability. The training, validation, and test datasets were kept the 
same during training, but the random seed changed in each repetition in 
the repeatability experiment. The leave-one-out (LOO) experiment on 
the selection of sequences was also conducted to characterize the 
method from a different perspective, namely by measuring the drop in 
the evaluation metrics reflecting the impact of the missing channel. 

2.2.2. Patch-based network with GAMER MRI on stroke 
The second experiment was performed to assess the ability of the 

GAMER MRI in a neural network when it was trained from scratch on the 
stroke dataset. We hypothesize that if GAMER MRI can provide the 
weights reflective of the current clinical understanding in the classifi-
cation of acute infarct stroke lesions versus healthy tissues, it can be used 
in disease studies where the relative importance of MR contrasts is still 
unknown. 

2.2.2.1. Inputs and preprocessing. In consideration of the limited num-
ber of existing acute infarct stroke lesion masks and in order to remove 
the effects of different scanners, Trace, ADC and T1w from 101 acute 
infarct patients without other pathologies, like hemorrhage, and 237 
healthy controls were selected from the stroke dataset for the patch- 
based experiment. T1w was registered to b0 of DWI because the right 
correspondence between contrasts is essential to patch sampling. 
Because acute infarct lesions are of varying sizes, care must be taken 
when choosing the sampled patch size. Too large of a patch size is 
detrimental to small lesions. On the other hand, too small of a patch size 
would under-represent large lesions. Thus, after inspecting a subset of 
acute infarct stroke images, 24x24 voxels was empirically chosen for 2D 
patches. For healthy controls, the patches were randomly upsampled 
three times within the brains so that the healthy brains would not be 
under-represented by a small number of patches. In the end, 3,355 lesion 
patches and 9,917 healthy patches were sampled. Patches were divided 
into training, validation, and test datasets according to the ratios: 0.6, 
0.3, and 0.1. As a result, there were 7,234 patches (2,001 lesion patches 
and 5,233 healthy patches) in the training dataset; 4,531 patches (1,012 
lesion patches and 3,519 healthy patches) in the validation dataset; 
1,507 patches (342 lesion patches and 1,165 healthy patches) in the test 
dataset. The patches containing acute infarct stroke lesions were given 
the label = 1. 

2.2.2.2. Architecture. A patch-based multi-contrast CNN with GAMER 
MRI (NN2) could be decomposed to three compartments as the NN in 

Table 2 
Acquisition parameters of each contrast in the MS dataset. TE: echo time; TR: repetition time; TI: inversion time; FOV: field of view; SR: spatial resolution.   

TE (ms) TR (ms) FOV (mm3) SR (mm3) TI (ms) Additional Parameters 

FLAIR 386 5000 256x256x256 1x1x1 1800 – 
MP2RAGE 3 5000 256x256x256 1x1x1 700, 2500 – 

ME-GRE 
6.7,10.8,14.8,18.9, 

49 195x240x180 0.75x0.75x3 – – 22.9,27,31.1, 
35.1,39.2,43.2 

FAST-T2 0.5 7.5 240x240x160 1.25x1.25x5 – 
T2prep times (ms) 
0 (T2prep turned off), 
7.5,17.5,67.5,147.5,307.5 

mDWI 75 4500 256x256x144 1.8x1.8x1.8 – 
b values (s/mm2) 
0/12 acquisitions; 
700;1000;2000;3000/137 directions in total  
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2.2.1.2 (Fig. 5). The feature extracting compartment included three 
convolutional blocks for each MR contrast. Each convolutional block 
included a convolutional layer of 128 filters, exponential leaky units, 
and a batch normalization layer. The number of filters was chosen based 
on the evaluation metrics without inspecting the AWs prior to the 100- 
time repetitions. The three connected convolutional blocks were fol-
lowed by a FC of 128 neurons encoding the hidden feature vector for 
each contrast. In the GAMER MRI, the number of neurons in the 

attention layer and in the gate layer were both 64. The classifier was the 
same as in 2.2.1.2. 

2.2.2.3. Training strategy. The NN was trained with a weighted cross- 
entropy loss function to account for the effect of class imbalance. The 
mini-batch size was 128 for both training and evaluation. The optimizer 
was Adam (Kingma and Ba, 2015). The F1 score was chosen as the 
evaluation metric because the correct identification for positive cases, i. 

Fig. 3. Study summary.  

Fig. 2. MS lesions and qMRs. In (a), on MP2RAGE, the MS lesion in GM is a black hole (red arrow) and on FLAIR, the MS lesion in WM is hyperintense (green arrow). 
In (b), qT1, NDI, MWF and QSM reflective of different aspects of the microenvironment illustrate various representations of lesions. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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e. acute infarct stroke, was more important than healthy tissue. To avoid 
overfitting, data augmentation and early stopping was performed. 

To appropriately characterize the performance, in addition to the 
aforementioned training strategy on the different random initializations, 
the next level of assessment was to split training, validation, and test 
datasets differently in different repetitions to make sure the power of the 
method does not come from the split. 

2.2.3. Patch-based network with GAMER MRI on MS lesions 
The third experiment was the evaluation of the mechanism on the 

classification of JCLs and PVLs from the MS dataset using qMRs, where 
the relative importance is unknown in the clinic. 

2.2.3.1. Inputs and preprocessing. 3D patches close to 5x5x5 mm3 were 
chosen as samples for training the neural network for the following three 
reasons: JCLs and PVLs are defined within 3 mm regions, the minimal 
slice thickness of qMRs is 5 mm, and various resolutions. This led to 
different patch sizes for each qMR to avoid confounding of the quanti-
tative values by the interpolation in the registration. Considering the 
defined JCLs and PVLs being in the WM, each qMR was masked by the 
WM mask. Lesion patches were divided into training, validation, and 
test datasets following the ratios: 0.6, 0.3 and 0.1. Therefore, there were 
648 lesion patches (504 JCLs and 144 PVLs) in the training dataset, 256 
lesion patches (179 JCLs and 77 PVLs) in the validation dataset, and 88 
lesion patches (67 JCLs and 21 PVLs) in the test dataset. 

Fig. 5. The network structure is composed of the feature extraction, the GAMER MRI and the classifier. Conv stands for a convolutional block of 2D convolutional 
filters. FC is the fully connected layer. Concat is the concatenating layer. ⊙ represents the element-wise multiplication. 

Fig. 4. The network structure consists of the pretrained feature extraction, the GAMER MRI and the classifier. Conv stands for the 3D convolutional block. FC is the 
fully connected layer. Concat is the concatenating layer. ⊙ represents an element-wise multiplication. 
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2.2.3.2. Architecture. A patch-based multi-contrast CNN with a GAMER 
MRI similar to the NN in 2.2.2.2, was built (Fig. 6). The feature 
extraction compartment included two convolutional blocks followed by 
a FC, as in 2.2.2.2, for each qMR. The convolutional layer in the con-
volutional block had 32 filters and the FC has 16 neurons encoding the 
hidden feature vector for each qMR. The criterion to choose the number 
of filters was the same as in 2.2.2.2. The hidden feature vectors from all 
qMRs were then concatenated as the input to the following GAMER MRI. 
In GAMER MRI, the number of neurons in the attention layer and gate 
layer were both 32. The classifier was the same as in 2.2.2.2. 

2.2.3.3. Training strategy. The loss function and the mini-batch size, 
data augmentation, early stopping and the learning-rate-reduce-plateau 
scheduler were the same as in 2.2.2.3. The optimizer and the evaluation 
metric were the same as in 2.2.1.3. 

In addition to the characteristics evaluated in the previous two ex-
periments, resampling patches prior to the split of datasets was per-
formed. To avoid sampling bias in the patch-based classification, 
randomly resampling patches is pivotal for reproducibility. The pair- 
wise one-sided 10,000 permutation t-tests were performed on the ob-
tained orders of AW of all repetitions and the multiple comparison 
problem was tackled by Bonferroni correction. See the supplementary 
data for further details. 

2.3. Data and code availability statement 

The datasets, provided by the Mount Sinai Hospital and Basel Uni-
versity Hospital, used in this study are not publicly available because the 
IRB of the study limits access to the data. The code used for training the 
models has dependencies on Siemens’ internal tooling, infrastructure 
and hardware, and its release is therefore not feasible. However, the 
architecture, layer details and hyperparameters are described in 

sufficient details in the manuscript to support replication with non- 
proprietary libraries. 

3. Results 

3.1. Pretrained network with GAMER MRI on the stroke dataset 

Validation and test results of the NN in 2.2.1 using three different 
random seeds for the random sampler, which led to different initiali-
zations and split of mini-batches, are given in Table 3. In each repetition, 
the mean AW (mAW) were averaged over the AWs of the corrected 
predicted samples. The reported mean AWs (rmAWs) were the average 
of all mAW across repetitions. 

The LOO experiment was conducted twice for each pair combination 
of Trace, ADC, and 

FLAIR. The drops in validation AUC were averaged across the repe-
titions and compared between combinations in Table 4. 

Fig. 6. The network structure includes feature extraction, GAMER MRI and classifier. Conv stands for a convolutional block of 3D convolutional filters. FC is the fully 
connected layer. Concat is the concatenating layer. ⊙ represents the element-wise multiplication. 

Table 3 
Pretrained network with GAMER MRI on the stroke dataset: Mean validation and 
test results over three repetitions. The mean area under the curve (AUC) is re-
ported to show the classification performance and the sum of reported mean 
attention weights (rmAWs) of Trace and ADC and the rmAW of FLAIR are shown 
to provide the importance ranking of the MRI metrics.  

Pretrained-network with GAMER MRI in stroke 

Dataset Validation Test 

AUC 0.919 0.881  

AWs Trace + ADC, FLAIR Trace + ADC, FLAIR  
(0.890, 0.110) (0.886, 0.114)  
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3.2. Patch-based network with GAMER MRI on the stroke dataset 

The NN in 2.2.2 was evaluated 100 times using the same training, 
validation and test datasets with different random initialization of the 
network and mini-batches. Furthermore, the NN was evaluated 100 
times using different splits of training, validation, and test datasets; 
respective validation results are reported in Table 5. 

3.3. Patch-based network with GAMER MRI on MS lesions 

The NN in 2.2.3 was trained 100 times on the resampled datasets to 
ensure reproducibility of the method for classification of MS lesions 
where the important order of sequences is unknown. The performance of 
the repetition experiment on the validation and test datasets is reported 
in Table 6. In Table 7, we report the mean and standard deviation of the 
mean AWs, which is defined as in 3.1. Furthermore, the results of per-
mutation t-test on the obtained order of AWs are reported. 

4. Discussion 

We developed a Gated-Attention MEchanism Ranking of multi- 
contrast MRI in brain pathology (GAMER MRI) and demonstrated its 
ability to rank the relative importance of MRI contrasts / qMRs in the 
three different classification scenarios including the differentiation of 
well-studied infarct strokes and that of less understood MS lesions. 

4.1. Pretrained network with GAMER MRI on stroke 

To accomplish the classification task, the NN should be able to 
extract unique and common information from the input contrasts. We 
demonstrated in 3.1 that GAMER MRI could utilize the unique and 
common information from each contrast to provide the AW as a proxy of 
the importance of each contrast. The mean AUC in this experiment was 
comparable to the performance of the original pre-trained network in a 
similar classification task. In addition, the mean AUC of validation and 
test datasets (Table 3) indicated that the combination of a pretrained 
encoder and GAMER MRI well performed. Because the AWs of the 
correctly classified samples formed the correct pattern with the hidden 
features for the classifier to make the right decision, we then proceeded 
to average those AWs to obtain the mAW for each repetition: in fact, 
considering the AWs of the incorrectly classified samples would not have 
reflected their real importance in the identification of stroke lesions. The 
consistent ratio between the sum of rmAWs of Trace and ADC and the 
rmAW of FLAIR showed that FLAIR was less important compared to the 
other two contrasts in the given classification task. This is in line with 
the relative clinical importance of these contrasts for the diagnosis of 
acute and subacute infarct stroke (González and Schwamm, 2016). 

We observed an inconsistent ratio between the rmAWs of Trace and 
that of ADC, which is probably due to the strong correlation between the 
contrasts. Because of the known evolvement of the infarct stroke rep-
resentation from the acute to the subacute stage on Trace and ADC, the 
representations become pseudonormal and similar. This leads to 

Table 4 
The validation result of the leave-one-out experiment. The averaged AUC, the 
drop in performance, and the rmAWs are reported. For the experiment using 
only Trace and ADC, the rmAWs varied greatly in the repetitions. The rmAWs in 
the first repetition were (Trace, ADC)=(0.871, 0.129) and in the second repe-
tition were (0.138, 0.861).  

Leave-one-out Experiment 

Input Contrasts ADC, FLAIR Trace, FLAIR Trace, ADC 

AUC 0.866 0.914 0.91 
Drop in AUC 0.052 0.004 0.008  

AWs ADC, FLAIR Trace, FLAIR Trace, ADC  
(0.843, 0.157) (0.866, 0.134) (0.505*, 0.495*)  
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stronger correlation between the information brought by Trace and ADC 
in addition to the intrinsic physical correlation between these two 
contrasts. 

In Table 4, the obvious drop in performance of the LOO experiment 
when Trace was excluded indicates that Trace provides more unique 
information than ADC and FLAIR. Indeed, in the two LOO experiments 
including FLAIR, the rmAWs of FLAIR were smaller suggesting its rela-
tive lower importance in this classification, which echoes the result in 
Table 3. In the experiment performed without using FLAIR images, the 
inconsistent ratio of AWs between Trace and ADC bolsters the implica-
tion of confounds caused by the strong correlation between these two 
contrasts. One main assumption behind the previous interpretation is 
that the amount of extractable information is the same across the LOO 
experiments. The comparison of the obtained results with the current 
clinical understanding of stroke lesions indicates this assumption is 
valid. 

Considering the results in 3.1, we obtained empirical evidence that 
the proposed variant of the attention mechanism can provide AWs 
representative of the importance of non-correlated contrasts. 

4.2. Patch-based model with attention mechanism 

We then aimed to assess whether GAMER MRI combined with a NN, 
which is trained from scratch for the classification of acute infarct 
stroke, is able to provide AWs representative of the known relative 
importance of MR contrasts in clinical practice. 

The obtained F1 scores on both validation and test datasets (Table 5) 
indicated that the NN combined with GAMER MRI learned information 
necessary to classify the patch containing acute infarct stroke lesions 
regardless of being trained with different random initialization or 
different split of training, validation, and test datasets. 

In both repetition experiments, the rmAWs of Trace, ADC, and T1w 
showed that Trace carried more characteristic information than ADC 
followed by T1w images, which is in accord with the clinical under-
standing that on Trace, acute infarct stroke is hyperintense and more 
obvious than on ADC, and that the light hypointense appearance of an 
acute stroke in T1w images is less evident than the drop in signal often 

observed in ADC maps (González and Schwamm, 2016). In addition, 
while the number of repetitions slightly varied across the different 
experimental conditions, the importance order of Trace, ADC and T1w 
remained consistent (Table 5). This demonstrates that the NN was able 
to extract relevant information in the given samples. The order of 
importance of Trace, T1w, and ADC might be a result of the patches 
having similar information on Trace and ADC. As a result, the NN would 
learn less unique information from ADC leading to its lower mAW than 
the one of Trace. 

The consistent results in 3.2 validated the assumption that the AWs 
obtained with GAMER MRI can be used to assess the relative importance 
of MRI contrasts without the restriction on an informative pre-trained 
NN. Also considering the results in 3.1, which demonstrated that 
GAMER MRI could obtain a clinically meaningful ranking of MRI con-
trasts, the method may be well applicable to neurological diseases that 
are less understood. 

4.3. MS patch-based model with attention mechanism 

In this last scenario, we aimed at assessing if the GAMER MRI could 
be applied to other MRI measures and diseases, where the relative 
importance of measures is less understood. Therefore, we studied 
whether the GAMER MRI could rank myelin/axonal sensitive measures 
such as qT1, MWF, NDI, and QSM to classify lesions that are known to 
have different myelin and axonal content, such as lesions located near to 
the ventricles (PVL: lower myelin and axonal content) and next to the 
cortex (JCL: relatively higher myelin and axonal content) (Goldschmidt 
et al., 2009; Tonietto, 2018). 

For both the validation and the test datasets, the network exhibited a 
moderate performance (Table 6): balanced accuracy was ca 78% - with a 
specificity that was slightly higher than the sensitivity (74% vs 82%), 
and the F1 score was ca 65%. In this experiment, different than in the 
previous one, we have assessed the network performance by using other 
summary measures than the F1 score: this is essentially because the F1 
score does not consider true negative results, hence it may not equally 
consider lesions, whose characteristics are not completely understood (i. 
e. JCLs and PVLs). The multiple statistical tests on pairwise rmAWs 
showed that the metric best discriminating PVL vs JCL microstructure is 
qT1 followed by MWF, NDI, and QSM. qT1 quantifies the overall 
microstructural tissue damage within MS lesions (Bonnier et al., 2014), 
whereas MWF and NDI provide specific information about myelin and 
axonal content (Nguyen et al., 2016; Zhang et al., 2012). The order of 
importance reflects the overall difference in myelin/axonal content 
revealed in pathological studies (Goldschmidt et al., 2009), which qT1 
depicts with the highest sensitivity. Hence, through this experiment, we 
could establish the reliability of GAMER MRI in a context where the 
relative contribution of MR measures to the discrimination of focal pa-
thology is not clear. 

Compared to the results obtained on the stroke dataset, the smaller 
differences between rmAWs of different qMRs might be caused by the 
smaller size of MS lesion datasets and/or higher similarities between 
lesion groups. A much larger effect is expected if an increased number of 
samples in datasets is included. Another potential underlying cause of 
this difference is the fact that the applied qMRs have in part redundant 
information. Indeed, the microstructural environment measured by qT1 
encompasses the myelin content and neuro-axonal integrity measured 
by MWF and NDI. On the other hand, QSM measures both iron deposi-
tion and myelin properties since it is sensitive to susceptibility effect due 
to paramagnetic substances and to the orientation of myelin sheaths. 
Besides, it has to be considered that – different than the contrasts applied 
in stroke (e.g. Trace) – qMRs in the MS experiment could not sharply 
delineate the boundary of MS lesions, hereby reflecting the local vari-
ations surrounding the focal damage. Despite all this, however, GAMER- 
MRI still demonstrated a statistically significant difference between 
rmAWs of the qMRs. 

Table 7 
The rmAWs, the standard deviation of mAWs and the statistical test on the pair- 
wise comparison. The upper section shows the results of the validation dataset 
and in the lower section are the results of the test dataset. ***: corrected p <
0.001.   

Validation 
Contrast AW Statistical test P value Significance 

qT1 0.285 ± 0.027 qT1 > MWF 0.0001 *** 
MWF 0.256 ± 0.015 MWF > NDI 0.0001 *** 
NDI 0.241 ± 0.014 NDI > QSM 0.0001 *** 
QSM 0.218 ± 0.022 — — —   

Test 

Contrast AW Statistical test P value Significance 
qT1 0.284 ± 0.030 qT1 > MWF 0.0001 *** 
MWF 0.256 ± 0.016 MWF > NDI 0.0001 *** 
NDI 0.241 ± 0.021 NDI > QSM 0.0001 *** 
QSM 0.218 ± 0.023 — — —  

Table 6 
Performance of the patch-based network on MS lesions. The average mean and 
standard deviation of the metrics as a percentage of 100 repetitions are reported.  

Mean metrics 
(%) 

Balanced 
Accuracy 

Sensitivity Specificity F1 score 

Validation 
dataset 

78.34 ± 3.09 74.21 ± 7.86 82.49 ±
5.12 

64.66 ±
4.00 

Test dataset 77.65 ± 5.49 73.90 ±
10.10 

81.41 ±
8.21 

65.09 ±
8.93  
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4.4. Guideline on GAMER MRI 

In consideration of the obtained results, we propose to use GAMER 
MRI as follows:  

1. Train and evaluate the method multiple times to see if there is strong 
or mild correlation between the resultant AWs of input measures. If 
there is strong correlation, an ablation study should be performed to 
remove the correlated modality showing a smaller drop in perfor-
mance. Train and evaluate the method on the remaining measures to 
obtain AWs.  

2. If there is no strong correlation, the importance order based on the 
mean AWs across the repetitions is recommended. 

4.5. Conclusion 

Our work shows that GAMER MRI provides a clinically meaningful 
order of importance for MR-based features in the classification of infarct 
strokes. In addition, even though qMRs in the classification of JCLs and 
PVLs in MS had redundant information, GAMER MRI still managed to 
reveal a close but significant order of importance. Considering this 
importance order, it may be possible to reduce the number of input MRI 
measures while retaining most of the useful information. 

The main disadvantage of this method is the need for multiple 
evaluations since the criteria on the so-called strong correlation is based 
on the AWs, not just on the input contrasts, as shown in the experiments 
of NN2. Future work will be required to remove this constraint. 
Furthermore, future work should center on combining the proxy quan-
tification of the importance of qMRs with the values of qMRs to form 
meaningfully combined patterns for further studies since qMRs charac-
terize different physical processes and physiological environments. 
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