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A B S T R A C T

Objective: Epilepsy diagnosis can be difficult in the absence of interictal epileptic discharges (IED) on scalp EEG.
We used high-density EEG to measure connectivity in large‐scale functional networks of patients with focal
epilepsy (Temporal and Extratemporal Lobe Epilepsy, TLE and ETLE) and tested for network alterations during
resting wakefulness without IEDs, compared to healthy controls. We measured global efficiency as a marker of
integration within networks.
Methods: We analysed 49 adult patients with focal epilepsy and 16 healthy subjects who underwent high-den-
sity-EEG and structural MRI. We estimated cortical activity using electric source analysis in 82 atlas-based
cortical regions based on the individual MRI. We applied directed connectivity analysis (Partial Directed
Coherence) on these sources and performed graph analysis: we computed the Global Efficiency on the whole
brain and on each resting state network. We tested these features in different group of patients.
Results: Compared to controls, efficiency was increased in both TLE and ETLE (p < 0.05). The somato-motor-
network, the ventral-attention-network and the default-mode-network had a significantly increased efficiency
(p < 0.05) in both TLE and ETLE as well as TLE with hippocampal sclerosis.
Significance: During interictal scalp EEG epochs without IED, patients with focal epilepsy show brain functional
connectivity alterations in the whole brain and in specific resting-state-networks. This higher integration reflects
a chronic effect of pathological activity within these structures and complement previous work on altered in-
formation outflow. These findings could increase the diagnostic sensitivity of scalp EEG to identify epileptic
activity in the absence of IED.

1. Introduction

It is now well established that epilepsy is a network disease invol-
ving hyperexcitable neuronal networks (Laufs, 2012; Richardson, 2012)
and it is therefore important to study the interactions occurring be-
tween different brain regions. Functional connectivity measures the
statistical dependencies between different regions of the brain. Specific
approaches, notably based on Granger-causality applied to high-density
EEG, can reveal directional relationships between brain regions, i.e.,

the Granger-causal influence that one brain region exerts onto another.
The presence of a common source influence the results and the inter-
pretation must be carried out carefully, even if the correct flow direc-
tions are detected (Gourévitch et al., 2006; Seth et al., 2015). The
complex networks obtained can be described and compared with graph-
theory analysis (Bullmore and Sporns, 2009).

Resting-state EEG studies in epilepsy(Coito et al., 2019) have been
used to characterise abnormal brain activity in the absence of epileptic
activity detectable on scalp EEG and to distinguish patients with
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temporal lobe epilepsy (TLE) from healthy controls using regional
cortical outflow (Verhoeven et al., 2018). During IED, dynamic brain
network alterations seem related to interictal cognitive deficits (Coito
et al., 2015) and surgical outcome (Carboni et al., 2019). However, IED-
dependent changes in brain function are difficult to interpret without
fundamental knowledge of functional differences in individuals with
epilepsy at rest and limit the comparison with healthy controls, in
whom IEDs are absent.

Different resting state networks have shown alterations in patients
with epilepsy in fMRI studies (de Campos et al., 2016; Kay et al., 2013)
as well as in MEG (Andrews-Hanna et al., 2014). These are the default
mode network (Andrews-Hanna et al., 2014; Greicius et al., 2003;
Raichle et al., 2001), the salience network and the fronto‐parietal at-
tention network (Markett et al., 2014; Schmidt et al., 2016). EEG-based
network analysis has shown additional directional information in
resting state imaging (Coito et al., 2019) and could reveal important
features of resting state networks (RSN) changes in epilepsy.

We sought to determine functional alterations during resting state in
different subgroups of patients with focal epilepsy and in specific
resting state networks, using high density EEG (hd-EEG). Here the
network features at global level and at specific resting state level are
described using Global Efficiency (GE) (Carboni et al., 2019; Rubinov
and Sporns, 2010) to characterise the ability of the brain to integrate
pathological information. This work enhances the network and sub-
network perspective on previous results that focused on the local scale
in TLE, in terms of the summed outflow, to describe epileptic networks
(Coito et al., 2019).

2. Methods

2.1. Patients

We selected 49 patients (median age 31 years old, range 14-60y, 24
females) from a total of 215 hd-EEG recordings acquired at the EEG and
epilepsy unit of the Geneva University Hospital. These patients fulfilled
the following criteria: (a) pharmacoresistant focal epilepsy with high-
density (≥128 electrodes) EEG recording, (b) age older than 14 years,
(c) no previous surgery. We excluded 166 patients due to: multifocal or
generalised epilepsy (49), EEG technical problems (18), pre-operative
MRI not suitable for head-model (16), paediatric (68), previous brain
surgery (15).

This study was approved by the local ethics board.
Patients were divided into: (a) temporal lobe (37) and extra-

temporal lobe epilepsy (ETLE) (12), (b) lesional (35) and non-lesional
(14). Supplementary Table 1 summarizes the patients’ clinical details.

2.2. Healthy controls

We recruited 16 healthy control subjects (median age 26 years old,
range 9–54 y, 6 females).

2.3. EEG acquisition and pre-processing

High-density EEG recordings of healthy controls (128 or 256 elec-
trodes, Electrical Geodesic system, sampling rate = 1000 Hz) were
acquired at the University Hospital of Geneva. High-density EEG re-
cordings of epileptic patients (128 or 256 electrodes, Electrical
Geodesic Inc. system, sampling rate = 1000 Hz) were acquired in the
context of pre-surgical evaluation at the University Hospital of Geneva.
A board-certified EEG expert (PDS, BV, MS and SV) first visually
identified and marked EEG epochs during wakefulness with eyes open
without scalp EEG-visible epileptic activity. As simultaneous in-
tracranial recordings were not available for these patients, we cannot
exclude possible contamination of underlying epileptic activity not
visible on the scalp EEG. We included 14/19 patients from previously
published article from our group (Carboni et al., 2019).

For both groups, we selected 45 epochs of 1-s EEG that were filtered
in the interval [1–40] Hz with a 4th-order Butterworth filter to avoid
phase-distortion and down-sampled at 250 Hz. EEG epochs containing
artefacts were discarded after visual inspection, (Fig. 1 for methods
steps).

2.4. MRI acquisition and pre-processing

For each patient and control subject, we created a realistic head
model based on individual structural MRI image, either T1 or MPRAGE,
recorded on a 3 T scanner (Siemens Prisma). Using Freesurfer v6.0.1
and the Connectome Mapper 3 open-source pre-processing software
(Tourbier et al., 2019), we resampled each image to 1 mm3 isotropic
resolution using cubic interpolation and we performed cortical and
subcortical brain parcellation based on Desikan-Killiany (Desikan et al.,
2006; Destrieux et al., 2010) anatomical atlas. This results in 82 parcels
accounting for all grey matter structures, excluding brainstem and
cerebellum. Each parcel was attributed to one of the 7 resting state
networks of Yeo’s parcellation including the visual, somato-motor,
dorsal attention, ventral attention, limbic, frontoparietal systems and
default mode network (Yeo et al., 2011).

2.5. Source space solution

The computation of the individual head model, the linear dis-
tributed inverse solution, as well as the parcellation of the brain into 82
regions of interest (ROIs) was performed as described in our previous
work(Carboni et al., 2019) as well as in the Appendix S1.

2.6. Connectivity estimation

As described in previous studies(Carboni et al., 2019; Coito et al.,
2015; Rubega et al., 2019), we computed time-varying (tv) connectivity
based on the Kalman filter approach for the estimation of high-di-
mensional tv-multivariate autoregressive (MVAR) models (Milde et al.,
2010; Rubega et al., 2019). After the estimation of the MVAR coeffi-
cients, the connectivity matrices were estimated by applying the

Fig. 1. Summary of the analysis strategy: Hd-EEG and structural MRI (T1 or MPRAGE) were acquired. Around 5000 source-waveforms distributed equally in the grey
matter were estimated by a distributed source localization algorithm (LAURA) from the resting state hd-EEG. The head model was based on the individual MRI and
parcelled into 82 regions of interest (ROI). The activity in each ROI was summarised with a unique time-series through SVD. Connectivity matrices were estimated
through iPDC. Efficiency was calculated for the entire brain and for the 7 resting state networks.
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information Partial Directed Coherence (iPDC) in the frequency band
[1–35] Hz with 0.5 Hz bins in order to have sufficient frequency re-
solution in the iPDC matrices. The magnitude of iPDC was considered
for the subsequent analysis. Our epochs did not contain a specifically
marked event to study the related brain dynamic and compare across
“trials”/epochs. Nevertheless, we computed time-varying connectivity
measure on the epochs and then averaged across the entire time series.
Indeed, time-varying analysis is more suited for non-stationary signals,
such as the spontaneous EEG.

Eventually, for each patient and control, we obtained a 4-dimen-
sional matrix ( ROIsx ROIsxfrequencyxtime[# # ]) representing the directed
information flow from one ROI to another for each frequency at each
time point. We qualitatively inspected the data and the behaviour was
consistent over frequencies and time, therefore the matrix was then
averaged across frequencies [1–35 Hz] and time obtaining a 2-dimen-
sional matrix ( ROIsx ROIs[# # ]).

2.7. Graph analysis

In order to extract information from these large connectivity ma-
trices, the brain was represented as a weighted directed graph defined
by a collection of nodes (ROIs) and edges (iPDC directed connections).

Subgraphs with all nodes in each separate resting state network
were also built (Yeo et al., 2011). From these graphs, we calculated the
global efficiency at the whole brain level within specific resting state
networks (Latora and Marchiori, 2001; Rubinov and Sporns, 2010).
These measures represent the ability of the network to combine spe-
cialized information from distributed brain regions [see Appendix for
details].

2.8. Statistical analysis

2.8.1. Whole brain efficiency
We constructed a whole brain graph with all the 82 ROIs as nodes

and as edges the magnitude of the iPDC values. As described above, we
computed the efficiency of the network. We used Bonferroni-corrected
Mann-Whitney U test to compare (a) patients vs controls, (b) TLE

patients vs controls, (c) ETLE patients vs controls, (d) TLE patients with
MRI signs of hippocampal sclerosis vs controls, (e) non-lesional TLE
patients vs controls, (f) non-lesional TLE&ETLE vs controls, (g) Right
TLE vs Left TLE, (h) ILAE = 1–2 vs ILAE = 3–5. The Bonferroni cor-
rection was done over the number of comparions, i.e. 8. We further-
more computed the effect size for independent variables based on
Cohen’s d: for d = 0.01: very small effect size, for d = 0.20: small effect
size, for d = 0.50: medium effect size, for d = 0.80: large effect size, for
d = 1.20: very large effect size and for d = 2.00: huge effect size. We
computed the sensitivity, specificity, Positive and Negative Predictive
Value(Lalkhen and McCluskey, 2008) for the whole brain efficiency of
a) all patients, b) TLE, c) ETLE . The reference limit was settled at the
99th percentile of the healthy controls group. Finally we computed the
correlation and the associated p-value between whole brain efficiency
of the entire patient group and 3 clinical variables: Onset of Epilepsy,
Duration of Epilepsy and ILAE classification.

2.8.2. Resting state networks efficiency
We evaluated efficiency in each resting state network by building

sub-graphs with nodes in each separate resting state network. We used a
Bonferroni-corrected Mann-Whitney U test to compare the sub-net-
works’ efficiency (visual, somato-motor, dorsal attention, ventral at-
tention, limbic, fronto-parietal systems and default mode network) in
(a) patients vs controls, (b) TLE patients vs controls, (c) ETLE patients
vs controls, (d) TLE patients with MRI signs of hippocampal sclerosis vs
controls, (e) non-lesional TLE patients vs controls, (f) non-lesional TLE&
ETLE vs controls, (g) Right TLE vs Left TLE. The Bonferroni correction
was done over the number of RSN, i.e. 7. We furthermore computed the
effect size as described above. Finally, we computed the correlation and
the associated p-value between each RSN efficiency of the entire patient
group and 3 clinical variables: Onset of Epilepsy, Duration of Epilepsy
and ILAE classification.

Fig. 2. Global Efficiency: (a) controls vs patients (N = 49), (b) controls vs TLE (N = 37) vs ETLE (N = 12), (c) controls vs TLE with Hippocampal sclerosis (TLE HS,
N = 20) vs TLE non-lesional (N = 9), (d) controls vs non-lesional (TLE-ETLE) (N = 15), (e) Left TLE (N = 14) vs Right TLE (N = 13). In each boxplot, the central
line is the median value, the edges of the boxes are the 75th and the 25th percentiles.
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3. Results

3.1. Whole brain efficiency

For the entire network, we found an increased global efficiency in
patients compared to controls (p < 0.001, effect size = 1.32) (Fig. 2
A). This was also found separately in patients with TLE (p = 0.003,
effect size = 1.25) and in patients with ETLE compared to controls
(p = 0.01, effect size = 1.40) (Fig. 2 B).

Furthermore, in subgroups of TLE, patients having hippocampal
sclerosis (p = 0.005, effect size = 1.33) as well as those classified as
non-lesional (p = 0.03, effect size = 1.04) showed an increased global
efficiency compared with controls (Fig. 2 C). For the subgroup of all
non-lesional TLE and ETLE we found an increased (p = 0.03, effect
size = 1.19) global efficiency as compared with controls (Fig. 2 D). We
found an increase (p = 0.02, effect size = 0.9) global Efficiency in Left
TLE as compare to Right TLE (Fig. 2 E).

Finally, we further divided the subgroup of operated patients
(N = 45) in good seizure outcome after surgery (ILAE = 1–2) and poor
seizure outcome after surgery: we did not find any significant difference
(p > 0.05, Supplementary Figure S1).

We found high specificity and positive predictive value for the three
groups of patients but low sensitivity and low negative predictive value.
(Table 1).

Finally, we did not find any significant correlation values (all
p > 0.05) between the efficiency at whole brain level and any of the
following clinical variables: Onset of Epilepsy, Duration of Epilepsy and
ILAE (Supplementary Table 2): data for the different variables do not
homogeneously cover the entire range of expected values, given the
limited number of patients.

3.2. Resting state networks efficiency

In all patients, we found a significant increase of the efficiency in
the somato-motor network (p < 0.001, effect size = 1.36), in the
ventral attention network (p < 0.001, effect size = 1.26) and in the
default mode network (p = 0.001, effect size = 1.19) as compared to
controls. (Fig. 3).

In all TLE and in TLE with hippocampal sclerosis (TLE-HS) we found
a significant increase of the efficiency in the somato-motor (TLE:
p < 0.001, effect size = 1.38, TLE-HS: p = 0.001, effect size = 1.49),
ventral attention (TLE: p < 0.001, effect size = 1.27, TLE-HS:
p = 0.004, effect size = 1.37), and default mode networks (TLE:
p = 0.003, effect size = 1.20, TLE-HS p = 0.006, effect size = 1.35),
as compared to healthy controls (Supplementary Figure S2). TLE pa-
tients without lesions showed no significant difference in any resting
state network from healthy controls (p > 0.05) (Supplementary Figure
S3). No significant difference was found between right and left TLE, in
any resting state network (p > 0.05) (Supplementary Figure S3).

The subgroup of all non-lesional TLE and ETLE showed significant
difference in the ventral attention network (non-lesional ETLE + TLE
p < 0.001, effect size = 1.35) as compared to controls
(Supplementary Figure S4).

Other lesions could not be grouped in sufficiently large groups for
analysis.

In ETLE patients we found a significant increase of the efficiency in
the somato-motor network (p = 0.01, effect size = 1.55), in the ventral
attention network (p = 0.01, effect size = 1.45) and in the default
mode network (p = 0.03, effect size = 1.21), as compared to healthy
controls, similarly to the temporal lobe patients (Supplementary Figure
S5). Given the size of the ETLE sample, no further subgroup analysis
was performed.

Finally, we did not find significant correlation values (p > 0.05)
between the efficiency at in any RSN and any clinical variable such as
the Onset of Epilepsy, Duration of Epilepsy and ILAE: data for the dif-
ferent variables do not span the entire range give the limited number of
patients.

4. Discussion

Our study investigated the dynamic resting state connectivity pat-
terns in focal epilepsy, in order to improve our understanding of the
complex interplay between pathological areas and whole brain net-
works. We measured network efficiency at the global brain level and in
specific resting state networks to test for alterations in network in-
tegration related to focal epilepsy.

For both TLE and ETLE, we found an increased global efficiency
compared to healthy controls. Increased efficiency reflects higher in-
tegration of different brain area and can be interpreted as a more ex-
tensive pathological (epileptic) network within the brain. In our pre-
vious work, increased efficiency was found during IED of patients with
poor versus good outcome of epilepsy surgery (Carboni et al., 2019). In
the current study, such increased integration appears as a fundamental
aspect of brain network reorganisation in patients with epilepsy, even
in the absence of EEG-visible epileptic activity. The finding of increased
network efficiency during IEDs and in their absence is supported by
simultaneous EEG-fMRI studies that showed similar epileptic network
patterns during IEDs and in their absence (Iannotti et al., 2016). In
other epileptic conditions, increased efficiency in infants with tuberous
sclerosis was found to be predictive of the subsequent occurrence of
epileptic spasms, therefore also suggesting more widespread epileptic
networks (Davis et al., 2019). In Benign Epilepsy with Centro-Temporal
Spikes (BECTS) results are more difficult to interpret, due to hetero-
geneity of EEG analysis strategies (Adebimpe et al., 2016; Ji et al.,
2017). Further, increased connectivity patterns independent of focal
IEDs were measured by intracranial EEG analysis (Bettus et al., 2009).

These combined findings strengthen the role of network efficiency
and integration measures as markers of hyperexcitable pathologic ac-
tivity associated with epilepsy. Beyond the transient impact of IED on
brain networks, these IED-independent alterations offer a promising
approach to study interictal alterations.

In our study we show large effect size, allowing the hypothesis that
GE at both whole brain scale and RSN scale could be used as meaningful
feature in diagnostic algorithms. In recent years, some algorithms have
already reported high sensitivity and specificity with the use of classi-
fiers based on machine learning (Verhoeven et al., 2018). Our very high
specificity and positive predictive value for the three groups of patients
suggest that, if present, increased efficiency could have a confirmatory
diagnostic role. The lack of relevant correlation with some clinical
variables including outcome after surgery could be related to the pa-
tient’s population heterogeneity.

Further studies that consider connectivity measures together with
other clinical/neuropsychological variable are needed to explain
changes in the EEG connectivity and its added value at individual level
for diagnosis or monitoring of disease activity in the absence of IED on
scalp EEG. The situation of non-lesional epilepsies is particularly re-
levant for diagnostic purposes. In the absence of lesion and sometimes
visually normal EEG recordings, additional biomarkers are needed.

Table 1
Sensitivity, Specificity, Positive Predictive Value (Pos. Pred. Val.) and Negative
Predictive Value (Neg. Pred. Val.) for all Patients, TLE and ETLE.

Patients TLE ETLE

Sensitivity 28.50% 27% 33.30%
Specificity 93.70% 93.70% 93.70%
Pos. Pred. Val 93.30% 90.90% 80%
Neg. Pred. Val 30% 35% 65%
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4.1. Whole brain efficiency in TLE

We consistently found increased efficiency in TLE compared to
controls. In our previous connectivity studies based on high-density
EEG, we reported other network characteristics in TLE, such as summed
outflow (main drivers)(Coito et al., 2016) and clustering coefficient
(segregation)(Coito et al., 2019). Here we focused on efficiency as a
marker of network integration, considering that such measure could
represent a reliable marker of the propagation of epileptic activity and
therefore of the extension of the epileptic network. Since the activity of
an entire network is dependent on the functional interaction between
its nodes, even small changes in connectivity may cause dysfunction in
global brain networks (Cataldi et al., 2013). In this work we extended
previous local results based on the driving importance of each node
(summed outflow) (Coito et al., 2016) by adding insight on the in-
formation transfer between nodes (edge/global network information)
on a resting state network scale(Schaefer et al., 2018; Yeo et al., 2011)
and a whole functional connectivity networks(Ridley et al., 2015) scale.
Concordant results were obtained in a resting state fMRI study where
increased efficiency of the thalamus was correlated with poor post-
surgical outcome, again suggesting widespread propagation of epileptic
activity (He et al., 2017).

4.2. Whole brain efficiency in left and right TLE

The global efficiency was significantly higher in left TLE compared
to right TLE. Comparison with our previous TLE connectivity studies
based on high-density EEG is difficult, as we previously reported other
network characteristics, such as summed outflow (main drivers) (Coito
et al., 2016)and clustering coefficient (segregation)(Coito et al., 2019).
Here we focused on efficiency as a marker of network integration and of
the propagation of epileptic activity in the epileptic network. In the
current approach we added a perspective not only at the whole-brain
networks but also in specific resting state networks (Schaefer et al.,
2018; Yeo et al., 2011) (Ridley et al., 2015).

Despite widespread reported connectivity alterations in both pa-
tients’ groups, more bilateral abnormalities have been described in
right vs left TLE (Coito et al., 2015; de Campos et al., 2016). Structural
connectivity studies show greater and more diffuse changes in left TLE,
compared to primarily ipsilateral changes in right TLE (Ahmadi et al.,
2009).

The comparison between studies is not trivial, due to different
functional connectivity and network analyses. Here, we measured the

contribution of all the brain regions to the efficiency of the network and
the results cannot be compared to the asymmetries of outflow from a
few selected high drivers. The resting state networks were considered as
bilateral and symmetrical sub-network preventing lateralisation ana-
lysis. Lateralization effects of ipsilateral temporal epileptic regions were
therefore potentially washed out by the contribution of all other re-
gions. Furthermore, in temporal lobe disorders, a range of imaging data
supports an association of left-lateralised epilepsies with a greater
burden of changes in connectivity (Ridley et al., 2015).

4.3. Whole brain efficiency in ETLE

Patients with ETLE showed alterations in the same RSN as temporal
lobe patients. Earlier simultaneous EEG-fMRI studies suggested distinct
spatial patterns for FLE and TLE (Fahoum et al., 2012). Our ETLE pa-
tients were heterogeneous in their expression, aetiology, semiology and
prognosis even if gathered in the same group (Berg et al., 2010). The
limited number of ETLE patients precluded further subgroup analysis,
notably FLE. The brain parcellation into regions that did only partly
overlap with specific RSN may also have reduced the specificity of our
findings regarding selected patient groups.

4.4. Resting state network efficiency in TLE and ETLE

Despite an overall higher global efficiency in TLE with and without
hippocampal sclerosis vs controls, the resting state networks in patients
with HS appear more severely altered than in non-lesional cases, with a
specific alteration in DMN, somato-motor and ventral attention. In our
previous TLE study involving a majority of HS (24/40), connectivity
alterations were found in regions overlapping with the DMN, but con-
nectivity changes inside the DMN (i.e. between DMN regions) had not
been investigated yet(Coito et al., 2019). A strong correspondence be-
tween hippocampal activity and parts of the DMN has been previously
shown (Laufs et al., 2007). We cannot determine if the group difference
in our study reflects a deeper or more syndrome-specific medial tem-
poral dysfunction in TLE with HS or whether non-lesional TLE were less
localised in the medial temporal structures. Furthermore, no differences
were found in left vs right TLE. In ETLE widespread alterations were
found in the different resting state networks despite the variable loca-
lisation of the epileptic focus and in the absence of IED.

Alterations in the somatomotor network in focal epilepsy, particu-
larly TLE, could be related to the frequent abnormal findings in pre-
central cortex (part of the somatomotor network) in functional and

Fig. 3. Global Efficiency in the different
resting state networks for all patients
(N = 49) (in red) and controls (in blue).
For visualisation, two outliers in the Dorsal
Attention Network Patients group have
been removed. The central line is the
median value, the edges of the boxes are
the 75th and the 25th percentiles. (For in-
terpretation of the references to colour in
this figure legend, the reader is referred to
the web version of this article.)
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structural connectivity studies (Lemkaddem et al., 2014; Trimmel et al.,
2018), as well as morphometric ones (Garcia et al., 2017). Impairment
of the ventral attention network in TLE during an “oddball paradigm’’
has been described with high-density EEG(Bocquillon et al., 2009) and
linked with reduced attentional performances(Fleck et al., 2002). These
differences, found also during task-free condition, strengthen the view
that TLE chronically modifies functional brain networks (Cataldi et al.,
2013).

In non-lesional cases, we found abnormalities in the ventral atten-
tion network but results in this subgroup could have been biased by a
mixed effect of both TLE and ETLE, with ETLE driving this result. The
clinical usefulness of this findings needs to be specifically addressed,
with balanced numbers of TLE and ETLE. Interestingly, the other net-
works were not altered, suggesting a less widespread involvement of
epileptic activity in non lesional epilepsy.

4.5. Methodological considerations

As in our study, most of the previous graph theory studies using
fMRI in temporal lobe epilepsy have applied anatomical parcellation to
functional maps and compared differences in temporal lobe patients
sub-groups in comparison to controls (Bettus et al., 2009; Wang et al.,
2009). Moreover, networks obtained from MEG and EEG recordings are
similar to the fMRI RSNs (Britz et al., 2010; Brookes et al., 2011; Chen
et al., 2013; Liu et al., 2017). Therefore, selectively mapping alterations
of these functional interactions may improve the identification of
changes related to neurological disorders. In our regrouping of ROI into
RSN, the resting state network did not always follow the anatomical
border so that the attribution of one brain area to one resting state
network was based on the largest overlap. One of the consequences was
that there were few regions attributed to the limbic network. This could
explain the lack of difference in the limbic network measures, notably
in TLE due to insufficient statistical power. The low contribution from
the medial temporal regions to the EEG signal may have added to this
problem. The atlases used in EEG source studies have been primarily
developed for fMRI analysis and region shape and extent may not be
adequately summarized by one single source signal. New atlas parcel-
lation options, including cortical regions better represented by a single
EEG source signal and reflecting the spatial organization of resting state
networks, would enhance the relevance of connectivity analysis based
on ESI.

The sample size of patients with extra-temporal epilepsy was

limited, thus preventing further analysis of lateralization and localiza-
tion of network alterations in this population. Also, our study was un-
derpowered to investigate correlations between connectivity measures
and clinical variables (age, disease duration, seizure semiology, drug
load.
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Appendix 1

Selection of frequency for connectivity analysis

We filtered the EEG data between 1 and 40 Hz, the high pass was chosen in order to remove possible slow drifts in the recordings. The duration of
the epochs selected, i.e. 1 sec., is typical of other related studies. Formally, a longer window would be needed to precisely estimate the connectivity
in the lowest part of the selected frequency band (1–2 Hz). However, when adding/removing the lowest frequency bins, we did not experience a
notable effect of on the broadband connectivity estimation so that the impact of slow frequency bins is considered to be low.

Inverse solution

For the forward model, we used a simplified realistic head model with consideration of skull thickness (Locally Spherical Model with Anatomical
Constraints (LSMAC))(Michel and Brunet, 2019) and a grid of around 5000 sources (solution points), distributed equally in the grey matter. Both the
lead-field matrix and the inverse matrix were computed using the freely available software Cartool (Michel and Brunet, 2019) and the inverse
solution performed with LAURA (Local AUtoRegressive Average). Epochs were transformed into source-waveforms at every solution point contained
in the 82 regions of interest (ROIs) defined above. As the representative time-series for each region, we considered the first singular vector computed
by a singular-value decomposition of all the 3D source-waveform (dipoles) in the same ROI(Rubega et al., 2019).

Network measures

Global efficiency evaluates the ability of the brain to rapidly combine specialized information from distributed brain regions(Latora and
Marchiori, 2001). The global efficiency measures the inverse of the shortest path length. Structural networks usually are similarly organized and
share a high global efficiency whereas functional networks have weaker connections between modules and consequently a weaker global efficiency
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