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Diffusion MRI is a well established imaging modality providing a powerful way to probe the structure of
the white matter non-invasively. Despite its potential, the intrinsic long scan times of these sequences
have hampered their use in clinical practice. For this reason, a large variety of methods have been
recently proposed to shorten the acquisition times. Among them, spherical deconvolution approaches
have gained a lot of interest for their ability to reliably recover the intra-voxel fiber configuration with
a relatively small number of data samples. To overcome the intrinsic instabilities of deconvolution, these
methods use regularization schemes generally based on the assumption that the fiber orientation distri-
bution (FOD) to be recovered in each voxel is sparse. The well known Constrained Spherical Deconvolu-
tion (CSD) approach resorts to Tikhonov regularization, based on an ‘2-norm prior, which promotes a
weak version of sparsity. Also, in the last few years compressed sensing has been advocated to further
accelerate the acquisitions and ‘1-norm minimization is generally employed as a means to promote spar-
sity in the recovered FODs. In this paper, we provide evidence that the use of an ‘1-norm prior to regu-
larize this class of problems is somewhat inconsistent with the fact that the fiber compartments all sum
up to unity. To overcome this ‘1 inconsistency while simultaneously exploiting sparsity more optimally
than through an ‘2 prior, we reformulate the reconstruction problem as a constrained formulation
between a data term and a sparsity prior consisting in an explicit bound on the ‘0 norm of the FOD,
i.e. on the number of fibers. The method has been tested both on synthetic and real data. Experimental
results show that the proposed ‘0 formulation significantly reduces modeling errors compared to the
state-of-the-art ‘2 and ‘1 regularization approaches.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Fiber-tracking is probably one of the most fascinating applica-
tions in diffusion MRI (dMRI), gathering a lot of attention since
its introduction because of its ability to reconstruct the main
neuronal bundles of the brain from the acquired data. In fact, the
random movement of the molecules in the white matter can be
exploited for mapping brain connectivity, and structures otherwise
invisible with other imaging modalities can be highlighted. The
study of this structural connectivity is of major importance in a
fundamental neuroscience perspective, for developing our
understanding of the brain, but also in a clinical perspective, with
particular applications for the study of a wide range of neurological
disorders.

The most powerful acquisition modality is diffusion spectrum
imaging (DSI) (Wedeen et al., 2005). It relies on cartesian signal
sampling and is known to provide good imaging quality, but it is
too time-consuming to be of real interest in a clinical perspective.
Diffusion tensor imaging (DTI) (Basser et al., 1994) is always
preferred instead. DTI is a very fast model-based technique provid-
ing valuable diagnostic information but, on the contrary, it is
unable to model multiple fiber populations in a voxel. In a global
connectivity analysis perspective, this constitutes a key limiting
factor. Accelerated acquisitions relying on a smaller number of
samples while providing accurate estimations of the intra-voxel
fiber configuration thus represent an important challenge.

Recently, an increasing number of high angular resolution diffu-
sion imaging (HARDI) approaches have been proposed for tackling
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this problem. In particular, spherical deconvolution (SD) based
methods formed a very active area in this field (Tournier et al.,
2004; Alexander, 2005; Tournier et al., 2007; Dell’acqua et al.,
2007). These methods rely on the assumption that the signal atten-
uation acquired with diffusion MRI can be expressed as the convo-
lution of a given response function with the fiber orientation
distribution (FOD). The FOD is a real-valued function on the unit
sphere ðS2Þ giving the orientation and the volume fraction of the fi-
ber populations present in a voxel. The response function, or ker-
nel, describes the dMRI signal attenuation generated by an
isolated single fiber population; it can be estimated from the data
or represented by means of parametric functions. SD approaches
represented a big step in reducing the acquisition time of diffusion
MRI, but are known to suffer heavily from noise and intrinsic insta-
bilities in solving the deconvolution problem. For this reason, a
regularization scheme is normally employed. A variety of ap-
proaches have been proposed, which are generally based on the
two assumptions that the FOD is (i) a non-negative function and
(ii) sparse, i.e. with only a few nonzero values, either explicitly or
implicitly. In fact, at the imaging resolution available nowadays,
diffusion MRI is sensitive only to the major fiber bundles and it
is commonly accepted that it can reliably disentangle up to 2–3 dif-
ferent fiber populations inside a voxel (Jeurissen et al., 2010;
Schultz, 2012). Hence, the FOD can reasonably be considered
sparse in nature. In particular, the state-of-the-art Constrained
Spherical Deconvolution (CSD) approach of Tournier et al. (2007)
resorts to Tikhonov regularization, based on an ‘2-norm prior.
While its primary purpose is to ensure the positivity of the FOD,
it actually also implicitly promotes sparsity, but only a weak ver-
sion of it.

The recent advent of compressed sensing (CS) theory (Donoho,
2006; Candès et al., 2006; Baraniuk, 2007) provided a mathemati-
cal framework for the reconstruction of sparse signals from
under-sampled measurements mainly in the context of convex
optimization. CS has been extensively studied for inverse deconvo-
lution problems in biomedical imaging, in particular for partial
Fourier imaging in MRI, as in (Ma et al., 2008; Yang et al., 2010;
Huang et al., 2011; Puy et al., 2011, 2012; Fang et al., 2013; Davies
et al., 2013). In particular, this novel theory has inspired in the last
few years new advanced approaches for solving the reconstruction
problem in diffusion MRI and allowed a further dramatic reduction
in the number of samples needed to accurately infer the fiber
structure in each voxel, by promoting sparsity explicitly. For in-
stance, Tristán-Vega and Westin (2011) and Michailovich et al.
(2011) recovered the orientation distribution function (ODF) by
using different representations for the response function, while
Merlet et al. (2011) and Rathi et al. (2011) focused on the full
ensemble average propagator (EAP) of the diffusion process. In this
work, however, we focus on spherical deconvolution based-meth-
ods and the quantity of interest is the FOD. In general these meth-
ods are based on ‘1 minimization, where the ‘1 norm is defined as
kxk1 ¼

Pn
i jxij for any vector x 2 Rn, and the common goal is to re-

cover the FOD with fewest non-zeros that is compatible with the
acquired dMRI data (Ramirez-Manzanares et al., 2007; Pu et al.,
2011; Landman et al., 2012; Mani et al., 2012). However, a mini-
mum ‘1-norm prior is inconsistent with the physical constraint
that the sum of the volume fractions of the compartments inside
a voxel is intrinsically equal to unity.

In this paper, we propose to exploit the versatility of com-
pressed sensing and convex optimization to solve what we under-
stand as the ‘1 inconsistency, while simultaneously exploiting
sparsity more optimally than the approaches based on the ‘2 prior,
and improve the quality of FOD reconstruction in the white matter.
Our approach is as follows. Strictly speaking, the FOD sparsity is
the number of fiber populations, thus identified by the ‘0 norm
of the FOD. ‘0-norm problems are generally intractable as they
are non-convex, which explains the usual convex ‘1-norm relaxa-
tion in the framework of compressed sensing. To this end, some
greedy algorithms have been proposed to approximate the ‘0 norm
through a sequence of incremental approximations of the solution,
such as Matching Pursuit (Mallat and Zhang, 1993) and Orthogonal
Matching Pursuit (Pati et al., 1993). However, the greedy and local
nature of these algorithms, i.e. in the sense that compartments are
identified sequentially, makes them suboptimal as compared to
more robust approaches based on convex optimization, which
are global in nature. In particular, a reweighted ‘1 minimization
scheme was developed by Candès et al. (2008) in order to approach
‘0 minimization by a sequence of convex weighted-‘1 problems.
We thus solve the ‘0 minimization problem by making use of a
reweighting scheme and evaluate the effectiveness of the proposed
formulation in comparison with state-of-the-art aprroaches based
on either ‘2 or ‘1 priors. We report results on both synthetic and
real data.

2. Materials and methods

2.1. Intra-voxel structure recovery via spherical deconvolution

As shown by Jian and Vemuri (2007), spherical deconvolution
methods can be cast into the following computational framework:

Sðb; q̂Þ=S0 ¼
Z

Rq̂ðp̂Þ f ðp̂Þ dXðp̂Þ; ð1Þ

where f is the FOD to be estimated, Rq̂ the response function rotated
in direction q̂ 2 S2 and the integration is performed over the unit
sphere with p̂ ¼ ð/; hÞ 2 S2 and dX ¼ sin / d/ dh. Sðb; q̂Þ represents
the dMRI signal measured on the q-space shell acquired with b-va-
lue b in direction q̂ 2 S2, while S0 is the signal acquired without dif-
fusion weighting. The FOD f is normally expressed as a linear
combination of basis functions, e.g. spherical harmonics, as
f ðp̂Þ ¼

P
jwjfjðp̂Þ. The measurement process can thus be expressed

in terms of the general formulation:

y ¼ Uxþ g; ð2Þ

where x 2 Rn
þ are the coefficients of the FOD, y 2 Rm is the vector

with the dMRI signal measured in the voxel with yi ¼ Sðb; q̂iÞ=S0

for i 2 f1; . . . ;mg;g represents the acquisition noise and
U ¼ f/ijg 2 Rm�n is the observation matrix modeling explicitly the
convolution operator with the response function R, with
/ij ¼

R
Rq̂i
ðp̂Þ f jðp̂Þ dXðp̂Þ. Several choices for the convolution ker-

nels and basis functions exist in the literature; more details will
be provided on the specific U used with each algorithm considered
in this work.

2.2. ‘2 prior

In the original formulation of Tournier et al. (2004), the FOD x
and the measurements y were expressed by means of spherical
harmonics (SH), and the deconvolution problem was solved by a
simple matrix inversion. To reduce noise artifacts, a low-pass filter
was applied for attenuating the high harmonic frequencies. The
method was improved in Tournier et al. (2007) by reformulating
the problem as an iterative procedure where, at each iteration,
the current solution xðtÞ is used to drive to zero the negative ampli-
tudes of the FOD at the next iteration with a Tikhonov regulariza-
tion (Tikhonov and Arsenin, 1977):

xðtþ1Þ ¼ arg min
x
kUx� yk2

2 þ k2kLðtÞxk2
2; ð3Þ

where k � kp are the usual ‘p norms in Rn, the free parameter k con-
trols the degree of regularization and LðtÞ can be understood as a sim-
ple binary mask preserving only the directions of negative or small
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values of xðtÞ. The ‘2-norm regularization term therefore tends to
send these values to zero, as probably spurious, hence favoring large
positive values. Interestingly, beyond the claimed purpose of enforc-
ing positivity, the operator L thus also implicitly promotes a weak
version of sparsity. However, this ‘2 prior does not explicitly guaran-
tee either positivity or sparsity in the recovered FOD. In Alexander
(2005) a maximum-entropy regularization was proposed to recover
the FOD as the function that exhibits the minimum information con-
tent. The method showed higher robustness to noise than previous
approaches, but was limited by the very high computational cost
and did not promote sparsity. Other regularization schemes have
been proposed in the literature, but FOD sparsity has never been ad-
dressed with a rigorous mathematical formulation.

2.3. ‘1 prior

Compressed sensing provides a powerful mathematical frame-
work for the reconstruction of sparse signals from a low number
of data (Donoho, 2006; Candès et al., 2006), mainly in the context
of convex optimization. According to this theory, it is possible to
recover a signal from fewer samples than the number required
by the Nyquist sampling theorem, provided that the signal is
sparse in some sparsity basis W. Let x 2 Rn be the signal to be recov-
ered from the m� n linear measurements y ¼ Ux 2 Rm and a 2 Rn

a sparse representation of x through W 2 Rn�n. If the observations y
are corrupted by noise and U obeys some randomness and incoher-
ence conditions, then the signal x ¼ Wa can be recovered by solv-
ing the convex ‘1 optimization problem:

arg min
a
kak1 subject to kU W a� yk2 6 �; ð4Þ

where � is a bound on the noise level. Assuming Gaussian noise, the
square ‘2 norm of the residual represents the log-likelihood of the
data and follows a v2 distribution. For a sufficiently large number
of measurements, this distribution is extremely concentrated
around its mean value. This fact is related to the well-known phe-
nomenon of concentration of measure in statistics. Consequently,
� can be precisely defined by the mean of the v2.

In the context of FOD reconstructions, the sparsity basis W boils
down to the identity matrix, thus x ¼ a. In Ramirez-Manzanares
et al. (2007) and Jian and Vemuri (2007) the sensing basis U, also
called dictionary, is generated by applying a set of rotations to a gi-
ven Gaussian kernel (i.e. diffusion tensor) and the sparsest coeffi-
cients x of this linear combination best matching the
measurements y are recovered by solving the following con-
strained minimization problem:

arg min
xP0

kxk1 subject to kU x� yk2 6 �; ð5Þ

where the positivity constraint on the FOD values was directly
embedded in the formulation of the convex problem. For SNR > 2
the noise in the magnitude dMRI images can be assumed Gauss-
ian-distributed1 (Gudbjartsson and Patz, 1995). However, a statisti-
cal estimation of � is not reliable, precisely because the number of
measurements is very small and the v2 is not really concentrated
around its mean value. Thus, � becomes an arbitrary parameter of
the algorithm. At very low SNR, one can also extrapolate the choice
of the ‘2 norm as a simple penalization term independent of statis-
tical considerations.

The reconstruction problem can also be re-formulated as a reg-
ularized (as opposed to constrained) ‘1 minimization as in Land-
man et al. (2012) and Pu et al. (2011):
1 Since dMRI data is commonly normalized by the baseline S0, the S0 image must be
accurately estimated in order to keep the same noise statistics of the non-normalized
signal. This is normally the case, though, as multiple S0 volumes are commonly
acquired in practice.
arg min
xP0

kUx� yk2
2 þ bkxk1; ð6Þ

where the free parameter b controls the trade-off between the
data and the sparsity constraints. In general, b depends on the
acquisition scheme and the noise level and it must be empirically
optimized. Following the general CS approach, problems (5) and
(6) consider an ‘1-norm prior on the FOD x. However, in the
dMRI context, a minimum ‘1-norm prior is inconsistent with
the physical constraint that the sum of the volume fractions of
the compartments inside a voxel is intrinsically equal to unity,
i.e. kxk1 �

P
ixi ¼ 1. For this reason, we reckon that also

these ‘1-based formulations are intrinsically suboptimal. Fig. 1
illustrates this inconsistency by reporting the ‘1 norm of recon-
structed FODs as a function of the amplitude of measurement
noise.

Our main goal in this work is to demonstrate the suboptimali-
ties of the approaches based on ‘2 and ‘1 priors and to suggest a
new formulation, based on an ‘0 prior, adequately characterizing
the actual sparsity lying in the FOD.

2.4. ‘0 prior

In the aim of adequately characterizing the FOD sparsity, we re-
formulate the reconstruction problem as a constrained ‘0 minimi-
zation problem:

arg min
xP0

kUx� yk2
2 subject to kxk0 6 k; ð7Þ

where k � k0 explicitly counts the number of nonzero coefficients
and k represents an upper bound on the expected number of fiber
populations in a voxel.

As already stated, the ‘0 problems as such are intractable. The
reweighting scheme proposed by Candès et al. (2008) proceeds
by sequentially solving weighted ‘1 problems of the form (7),
where the ‘0 norm is substituted by a weighted ‘1 norm defined
as kwak1 ¼

P
iwijaij, for positive weights wi and where i indexes

vector components. At each iteration, the weights are set as the in-
verse of the values of the solution of the previous problem, i.e.
wðtÞi � 1=xðt�1Þ

i . At convergence, this set of weights makes the
weighted ‘1 norm independent of the precise value of the nonzero
components, thus mimicking the ‘0 norm while preserving the
tractability of the problem with convex optimization tools. Of
course, it is not possible to have infinite weights for null coeffi-
cients; so a stability parameter s must be added to the coefficients
in the selection of the weights.

Algorithm 1. Reweighted ‘1 minimization for intra-voxel struc-
ture recovery

Input: Diffusion MRI signal y 2 Rm and sensing basis
U 2 Rm�n

Output: FOD x 2 Rn

Set the initial status:

t  0 and wð0Þi  1; i ¼ 1; . . . ;n
(the symbol  denotes assignment)
repeat

Solve the problem:

xðtÞ  arg min
xP0

kUx� yk2
2 subject to kwðtÞxk1 6 k

Update the weights:

wðtþ1Þ
i ¼ 1

jxðtÞi jþs

t  t þ 1
until stopping criterion is satisfied
x xðt�1Þ



Fig. 2. Quantitative comparison as a function of the number of samples. The values of the four quality metrics are reported for L2L2 (blue boxes), L2L1 (red diamonds) and
L2L0 (green circles) as the number of samples changes. Values shown here correspond to an experimental setting with b ¼ 2000 s=mm2 and SNR ¼ 25. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

L2L2
L2L1
L2L0

Fig. 1. Sum of volume fractions and impact on the reconstructions. Top plots report the kxk1 of the FODs reconstructed by L2L2 (blue boxes), L2L1 (red diamonds) and L2L0

(green circles), while the NMSE of the recovered signal is shown at the bottom. The reference value kxk1 ¼ 1 is plotted in magenta. Results are reported as a function of the
SNR in 2 experimental settings with 30 samples: b ¼ 1000 s=mm2 (left) and b ¼ 3000 s=mm2 (right). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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The main steps of the reweighted scheme are reported in the
Algorithm 1; in the remaining of the manuscript we will refer to
it as L2L0, as it is based on a ‘0 prior. We empirically set

�3 kxðtÞ�xðt�1Þk �3
s ¼ 10 and the procedure was stopped if 1
kxðt�1Þk1

< 10 be-
tween two successive iterations or after 20 iterations. At the first
iteration the weighted ‘1 norm is the standard ‘1 norm given
w ¼ 1, and therefore the constraint kwð0Þxk1 6 k is a weak bound
on the sum of the fiber compartments and does not constitute a
limitation in the procedure.

The proposed ‘0 approach thus strongly promotes sparsity (by
opposition with the ‘2 approach) and circumvents the ‘1 inconsis-
tency. It is noteworthy that our formulation at least partially ad-
dresses the problem of arbitrary parameters such as � in (5) and
b in (6), or k in (3). Our parameter k indeed explicitly identifies
an upper bound on the number of fibers. As discussed before and
largely assumed in the literature, we can expect to have at maxi-
mum 2–3 fiber compartments in each voxel. The algorithm was
found to be quite robust to the choice of k, and differences were
not observed for values up to k ¼ 5.

Finally, an explicit constraint
P

ixi ¼ 1 might have been added,
as it represents the physical property that the volume fractions
must sum up to unity. For the sake of simplicity, in this work this
constraint was not included (as it is always the case), assuming it is
carried over by the data and well-designed bases as pointed out by
Ramirez-Manzanares et al. (2007). In Sections 3.1.1 and 3.2.3 we
will provide evidence that actually this physical constraint is not
met when using ‘2 or ‘1 priors, whereas it is correctly satisfied with
our proposed ‘0 formulation. This might have severe consequences
on the reconstruction quality.

2.5. Comparison framework

We compared our ‘0 approach based on problem (7) against
state-of-the-art ‘2 and ‘1 approaches respectively based on prob-
lems (3) and (6), and referred to as L2L2 and L2L1. To run L2L2

reconstructions we made use of the original mrtrix implementa-
tion of Tournier et al. (2012), setting the optimal parameters as
suggested by the software itself. To solve the L2L1 and L2L0 prob-
lems we used the SPArse Modeling Software (SPAMS),2 an open-
source toolbox written in C++ for solving various sparse recovery
problems. SPAMS contains a very fast implementation of the LARS
algorithm (Efron et al., 2004) for solving the LASSO problem and
its variants as the L2L1 problem in Eq. (6) and the weighted ‘1 min-
imizations required for our L2L0 approach in Eq. (7). Numerical sim-
ulations on synthetic data were performed to quantitatively assess
the performance of L2L2, L2L1 and L2L0 under controlled condi-
tions. The effectiveness of the three priors was also assessed in case
of real human brain data.

2.6. Numerical simulations

Independent voxels with two fiber populations crossing at
specific angles (30–90� range) and with equal volume fractions
were synthetically generated. The signal S corresponding to each
voxel configuration was simulated by using the exact expression
given in Soderman and Jonsson (1995) for the dMRI signal attenu-
ation from particles diffusing in a restricted cylindrical geometry of
radius q and length L with free diffusion coefficient D0. The follow-
ing parameters were used (Özarslan et al., 2006; Jian and Vemuri,
2007): L ¼ 5 mm;q ¼ 5 lm;D0 ¼ 2:02� 10�3 mm2=s;D ¼
20:8 ms; d ¼ 2:4 ms. The signal S was contaminated with Rician
noise (Gudbjartsson and Patz, 1995) as follows:
2 http://spams-devel.gforge.inria.fr.
Snoisy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSþ n1Þ2 þ ðn2Þ2

q
; ð8Þ

where n1; n2 � N ð0;r2Þ and r ¼ S0=SNR corresponds to a given
signal-to-noise ratio on the S0 image. We assumed S0 ¼ 1 without
loss of generality. Because of this assumption, we have implicitly
considered a constant echo-time for acquisitions with different
b-values, thus ignoring the fact that higher b-values normally
require longer echo-times and therefore the images have a lower
signal-to-noise ratio. The study of the impact of the echo-time on
different regularization priors is beyond the scope of our
investigation.

For each voxel configuration, the signal was simulated at differ-
ent b-values, b 2 f500;1000; . . . ;4000gs=mm2, and seven q-space
sampling schemes were tested, respectively with 6, 10, 15, 20,
25, 30 and 50 samples equally distributed on half the unit sphere
using electrostatic repulsion (Jones et al., 1999) assuming antipo-
dal symmetry in diffusion signal. Six different noise levels were
considered, SNR ¼ 5;10; . . . ;30. For every SNR, 100 repetitions of
the same voxel were generated using different realizations of the
noise. In our experiments, the actual signal-to-noise ratio in the
simulated signal was always in a range where the Gaussian
assumption on the noise holds. In the extreme setting with a
SNR ¼ 5 on the S0 and b ¼ 4000 s=mm2 the actual signal-to-noise
ratio in the diffusion weighted signal was about 1.4.
2.7. Evaluation criteria

As one of the aims of this work is to improve SD reconstructions,
we adopted standard metrics widely used in the literature
(Ramirez-Manzanares et al., 2008; Landman et al., 2012; Michailo-
vich et al., 2011) to assess the quality of the reconstructions with
respect to number and orientation of the fiber populations:

	 Probability of false fiber detection. This metric quantifies the cor-
rect assessment of the real number M of populations inside a
voxel:
Pd ¼
jM � eMj

M
� 100%; ð9Þ
where eM is the estimated number of compartments. As Pd does not
distinguish between missed fibers and extra compartments found
by the reconstruction, we also make use of the following two quan-
tities where needed, n� and nþ, explicitly counting the number of
under- and over-estimated compartments, respectively.
	 Angular error. This metric quantifies the angular accuracy in the

estimation of the directions of the fiber populations in a voxel:
�h ¼
180
p

arccosðjd � ~djÞ; ð10Þ
where d is a true direction and ~d is its closest estimate. The final va-
lue is an average over all fiber compartments by first matching the
estimated directions to the ground-truth without using twice the
same direction.

Peaks detection was performed using a local maxima search
algorithm on the recovered FOD, considering a neighborhood of
orientations within a cone of 15� around every direction. For this
reason, evaluation metrics are not sensitive for small crossing
angles and results are reported in a conservative range 30–90�.
To filter out spurious peaks, values smaller than 10% of the largest
peak were discarded; in the case of L2L2 we had to increase this
threshold to 20%, as suggested in Tournier et al. (2007), in order
to compare with the other methods.

http://spams-devel.gforge.inria.fr
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2.8. Real data

The human brain data have been acquired from 3 young healthy
volunteers on a 3T Magnetom Trio system (Siemens, Germany)
equipped with a 32-channel head coil using standard protocols
routinely used in clinical practice. Each dataset corresponds to a
distinct subject. Two DTI scans (referred in the following as
dti30 and dti20 ) were acquired at b ¼ 1000 s=mm2 using 30
and 20 diffusion gradient directions, respectively, uniformly dis-
tributed on half the unit sphere using electrostatic repulsion (Jones
et al., 1999). Other acquisition parameters were as follows:
TR=TE ¼ 7000=82 ms and spatial resolution=2:5� 2:5� 2:5 mm
for dataset dti30 , while TR=TE ¼ 6000=99 ms and spatial resolu-
tion=2:2� 2:2� 3 mm for dataset dti20 . One HARDI dataset (re-
ferred as hardi256 ) was acquired at b ¼ 3000 s=mm2 using 256
directions uniformly distributed on half the unit sphere (Jones
et al., 1999), TR=TE ¼ 7000=108 ms and spatial resolu-
tion=2:5� 2:5� 2:5 mm. To study the robustness of the three algo-
rithms to different under-sampling rates, the hardi256 dataset has
been retrospectively under-sampled and two additional datasets
(hardi50 and hardi20 ) have been created, consisting of only 50
and 20 diffusion directions, respectively. These subsets of direc-
tions were randomly selected in order to be as much equally dis-
tributed on half the unit sphere as possible. The actual SNR in
the b ¼ 0 images, computed as the ratio of the mean value in a re-
gion-of-interest placed in the white matter and the standard devi-
ation of the noise estimated in the background, was about 60 in
dti30 , 30 in dti20 and 30 in hardi256 .

2.9. Implementation details

In all our experiments, the response function was estimated from
the data following the procedure described in Tournier et al.
(2007). A different response function was estimated for every com-
bination of experimental conditions (number of samples, b-value,
SNR), which was then used consistently in the three reconstruction
methods. Specifically, the 300 voxels with the highest fractional
anisotropy were selected as expected to contain only one fiber
population, and a tensor was fitted from the dMRI signal in each.
In the case of numerical simulations, an additional set of data con-
taining 300 voxels with a single fiber compartment was generated
for this scope. The estimated coefficients were then averaged to
provide a robust estimation of the signal profile for the response
function. As we used the tool estimate_response of mrtrix

for these operations, the estimated kernel was already suitable to
be fed into the L2L2 algorithm. Note that the fiber directions rely
on a maxima identification from the SH coefficients, which can
take any continuous position on the sphere. Conversely, in the case
of both L2L1 and L2L0, the estimated kernel was used to create
the dictionary U by rotating it along 200 orientations uniformly
distributed on half the unit sphere. Because of this discretization,
the resulting grid resolution is about 10
 and thus the intrinsic
average error when measuring the angular accuracy is about 5
.
In other words, the precision of both L2L1 and L2L0 is limited
by the resolution of the grid used to construct the dictionary. For
this reason differences between methods below this threshold will
be considered not significant. Note that, to improve the precision it
would be sufficient to increase the number of directions of the dis-
cretization which, however, would have serious consequences on
the efficiency and stability of the minimization algorithm. Interest-
ingly, recent works of Tang et al. (2012) and Candés and Fernan-
dez-Granda (2012) explored a novel theory of CS with
continuous dictionaries, in the context of which FOD peaks could
be thought to be located with infinite precision. This topic will
be the subject of future research. Finally, in order to model ade-
quately any partial/full contamination with cerebrospinal fluid
(CSF) that may occur in real data, an additional isotropic compart-
ment has been considered by adding a column to U. This compart-
ment was estimated by fitting an isotropic tensor in voxels within
the lateral ventricles.

The free parameter controlling the degree of regularization had
to be estimated for both L2L2 and L2L1 algorithms. For the former
we used the default values suggested in the original implementa-
tion available in the mrtrix software. For the latter, the regulari-
zation parameter b was empirically estimated following the
guidelines of Landman et al. (2012), in order to place the method
in its best conditions. In numerical simulations, we created an
additional training dataset for every combination of experimental
conditions (number of samples, b-value, SNR) and 50 reconstruc-
tions were performed varying the parameter b from 10�4b� to b�,
with b� ¼ k2UT yk1 computed independently in each voxel. The va-
lue providing the best reconstructions (according to the above
metrics) was then used to run L2L1 on the actual data used for
the final comparison. We did not observe any improvement in
the reconstructions outside this range. In real data, we tested dif-
ferent values for b but, as the ground-truth is unknown, the opti-
mal value was chosen on the basis of a qualitative inspection of
the reconstructions considering their shape, spatial coherence
and adherence to anatomy. Nonetheless, we found that the algo-
rithm was quite robust to the choice of b and the value providing
visually the best results was always very close to b ¼ 0:1 � b�, as
suggested in the same work. Therefore this value was used in all
real data experiments. This stability might be probably due to
the adaptive strategy of estimating b� in each voxel from the signal
y. As already emphasized, L2L0 does not require any free parameter
to be tuned. In fact, in numerical simulations k can be fixed in all
iterations to 3 while we can safely assume k ¼ 5 in real data, hence
larger than the 2–3 fibers normally assumed.
3. Results and discussion

3.1. Numerical simulations

We quantitatively compared the three approaches on synthetic
data with the aim of assessing the impact on the reconstructions
of each regularization scheme (i.e. ‘2; ‘1 and ‘0 priors) under con-
trolled conditions. In particular, the quality of the reconstructions
was evaluated using the metrics introduced above and selectively
varying (i) the number of samples and (ii) the b-value of the
acquisition scheme, (iii) the noise level and (iv) the crossing angle
between the fiber compartments. Results are reported indepen-
dently for each experimental condition.
3.1.1. Volume fractions and ‘1 norm
As previously stated, the physical constraint that the volume

fractions sum to unity is normally omitted in every problem for-
mulation, as it is expected to be carried over by the data and prop-
erly designed bases (Ramirez-Manzanares et al., 2007). In Fig. 1 we
explicitly tested whether this property is actually satisfied by the
algorithms considered in this work. A more detailed analysis of
the performance of each prior is performed in the following
sections.

The figure reports the average value for the sum of the volume
fractions of the reconstructed FODs (i.e. kxk1), as a function of the
noise level, for two acquisition schemes with 30 samples at
b ¼ 1000 s=mm2 and b ¼ 3000 s=mm2, respectively. The impact
on the reconstructions is shown by means of the normalized
mean-squared error NMSE ¼ ky � ~yk2

2=kyk
2
2 (Michailovich et al.,

2011) between the measured signal y and its estimate ~y. The image
clearly demonstrates that both L2L2 and L2L1 reconstructions do
not fulfill the

P
ixi ¼ 1 physical constraint, as the sum of the



Fig. 3. Quantitative comparison as a function of the crossing angle. The performances of the three reconstruction methods are detailed separately for each crossing angle used
in the simulations. Results are reported for 30 and 15 samples, using the same experimental configuration of Fig. 2, i.e. b ¼ 2000 s=mm2 and SNR ¼ 25.
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recovered volume fractions always tends to be over-estimated by
L2L2 and under-estimated by L2L1. This is a clear effect of the
weakness of the sparsity constraint in the L2L2 approach and of
the inconsistency of the ‘1 prior in L2L1. On the contrary our
L2L0 approach appears to correctly satisfy the constraint, with
deviations from unity only with very high noise levels (SNR � 5).
With high quality data this over/under-estimation behavior is
fairly mild (at SNR = 30, kxk1 � 0:7 for L2L1 and kxk1 � 1:2 for
L2L2), but it progressively intensifies as the noise level increases.
The trend is even amplified with high b-value data, in which case
the kxk1 can be as high as � 2:1 for L2L2 and as low as �0.25 for
L2L1.



Fig. 4. Quantitative comparison as a function of the b-value. The dependence of the reconstruction quality on the b-values used in the acquisition is reported here for 30 and
15 samples with a SNR ¼ 25.

Fig. 5. Quantitative comparison as a function of the SNR. The robustness to noise of the three reconstruction methods in shown for 30 and 15 samples at b ¼ 2000 s=mm2.
Reported values for the SNR correspond to the signal-to-noise ratio of the S0 dataset.
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Despite showing quite different behaviors with respect to the
kxk1, L2L2 and L2L0 exhibit very similar NMSE values. On the con-
trary, L2L1 shows significantly higher reconstruction errors than
both L2L2 and L2L0, pointing to the aforementioned ‘1 inconsis-
tency. Debiasing methods (Zou, 2006) have been proposed with
the aim to correct the magnitude of the recovered coefficients



Fig. 6. Qualitative comparison on DTI human brain data. Reconstructions of the FODs in the corona radiata region are shown for: L2L2 (A and D), L2L1 (B and E) and L2L0 (C
and F). FODs in subplots A–C correspond to dMRI images acquired using 30 samples, superimposed on the ADC map, while D–F are relative to the acquisition with 20 samples,
superimposed on the FA map. All images have been acquired at b ¼ 1000 s=mm2.

828 A. Daducci et al. / Medical Image Analysis 18 (2014) 820–833
and mitigate this effect. Nonetheless, a critical step for applying
these techniques consists in the proper identification of the sup-
port of the solution, otherwise this procedure can lead to really
bad results. As we will show in the next sections, this is the case
in this work, as the three methods differ significantly in their abil-
ity to estimate the number of fiber populations. As the very same
data and reconstruction basis have been used for all the methods,
we can conclude that any deviation from the unit sum has to be
attributed to the different regularization employed in each algo-
rithm. In the following we will investigate the consequences on the
reconstructions of using different regularization schemes.

3.1.2. Comparison as a function of the number of samples
Fig. 2 reports the performance of the three reconstruction

methods as the number of samples changes. We considered seven
acquisition schemes from 6 to 50 samples and results are reported
for a standard scenario, specifically a shell at b ¼ 2000 s=mm2 with
a SNR ¼ 25. The dependence on the b-value and the robustness to
noise will be investigated in detail in the following sections. The
quality metrics are reported here as the average value computed
over all simulated crossing angles (30–90�).

Looking at the plots the benefits of using an ‘0 prior are clear:
L2L0 always outperforms both L2L2 and L2L1 in identifying the
correct number of fiber populations (Pd) and results are consistent
for all number of samples considered. The main benefit of L2L0
seems to be the drastically decreased number of missed fibers
(smaller n�), even though also the number of over-estimated com-
partments (nþ) is significantly reduced. Concerning the angular
accuracy of the recovered fiber populations (�h), reconstructions
with L2L0 always resulted in smaller errors as compared to both



Fig. 7. Qualitative comparison on HARDI human brain data. Reconstructions of the FODs in the corona radiata region are shown for: L2L2 (A, D and G), L2L1 (B, E and H) and
L2L0 (C, F and I). Subplots A–C correspond to the fully-sampled dataset hardi256 (256 samples), D–F to the dataset hardi50 (50 samples) while G–I are relative to hardi20
(20 samples). Images have been acquired at b ¼ 3000 s=mm2.

A. Daducci et al. / Medical Image Analysis 18 (2014) 820–833 829
L2L2 and L2L1. Although the difference with respect to L2L1 is
not significant as always within the intrinsic grid precision, both
methods showed a substantial improvement over L2L2, which
appeared to suffer from a sudden and significant deterioration of
the reconstructions (�10–15�) for less than 30 samples. This can
be explained with the SH representation used internally by L2L2.
In fact, even though the FOD is a function on the sphere containing
high-resolution features by definition, a maximum SH order
lmax ¼ 4 (or less) can be used for acquisitions with less than 30
samples, hence drastically reducing the intrinsic angular resolution
of the recovered FOD. At least 30–60 samples are normally advised
for using L2L2, so in our experiments we have actually tested L2L2

beyond its applicability range. On the contrary, L2L1 and L2L0 do
not make use of SH and the reconstruction quality degrades more
smoothly with the under-sampling rate of the dMRI data. In the
following we will focus on two acquisition schemes to further ana-
lyze the performance of three methods: (i) in a normal setting with
30 samples and (ii) in a regime of high under-sampling with only
15 samples.

3.1.3. Comparison as a function of the crossing angle
In Fig. 3 the performances of L2L2, L2L1 and L2L0 are plotted

in detail as a function of the crossing angle between the fiber pop-
ulations. Results are shown for two acquisitions with 30 and 15
samples, both simulated at b ¼ 2000 s=mm2 and SNR ¼ 25.

With 30 samples, the major source of errors for both L2L2 and
L2L1 is represented by under-estimation (n�), although spurious
orientations are not negligible (nþ � 0:2). In particular, both
methods start to severely miss fibers for crossing angles below
60�, where they tend to recover a single peak lying between the
two real fiber directions. In these situations, the maximum angu-
lar error for the sole estimated peak is generally upper bounded
by half the angle separating the two fibers; for this reason the
overall �h performances of L2L2 and L2L1 do not differ signifi-
cantly from L2L0 despite the drastic improvement in terms of
Pd;n� and nþ. On the other hand, in an under-sampling scenario
with 15 samples L2L2 and L2L1 exhibit much higher Pd values
and a stronger tendency to over-estimate compartments, usually
in completely arbitrary orientations not even close to the true
fiber directions. The overall improvement in the angular accuracy
of L2L0 is more evident, with an average enhancement up to 5�
with respect to L2L1, whereas L2L2 exhibits a severe drop of
the performance mainly due to modeling limitations, as previ-
ously pointed out.

These differences can have dramatic consequences for
fiber-tracking applications. In fact, tractography algorithms are
particularly prone to these estimation inaccuracies, i.e. number
and orientation of fiber populations, because the propagation of
these (perhaps locally small) errors can lead to completely wrong
final trajectories. For instance, a missed compartment might stop
prematurely a trajectory, while a spurious peak might lead to
create an anatomically incorrect fiber tract. Hence, the ability to
accurately recover the intra-voxel fiber geometry is of utmost
importance.



Fig. 8. Sum of volume fractions in real data. The sum of the volume fractions of the FODs reconstructed with L2L2 (A and B), L2L1 (C and D) and L2L0 (E and F) is reported in
a representative slice of the high b-value data. The top row corresponds to the fully-sampled dataset (hardi256 ) while the bottom to the under-sampled one with 20 samples
(hardi20 ).
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3.1.4. Comparison as a function of the b-value
So far L2L2, L2L1 and L2L0 have been compared for given

acquisition schemes at a fixed b ¼ 2000 s=mm2. Fig. 4 reports the
quality of the reconstructions with the three approaches as a func-
tion of the b-value. The results are shown for 30 and 15 samples
with a SNR ¼ 25.

L2L2 tends to miss compartments for low b-values and over-
estimate them at higher b (nþ and n� are not shown here for brev-
ity). This is even more apparent when decreasing the number of
samples in the acquisition to 15, where L2L2 estimates a lot of
spurious peaks at high b-values (high nþ) and thus the angular
accuracy of the estimated fiber directions drops considerably.
Interestingly, L2L1 shows the opposite behavior, under-estimating
at high b and over-estimating at low b, although at a smaller rate
thus preventing the performance to degrade significantly. Again,
in comparison, L2L0 shows a very stable estimation of the number
of fibers. Concerning the angular accuracy, all methods showed a
minimum for �h corresponding to b � 1500—2500 s=mm2, repre-
senting a sort of trade-off between the loss in angular resolution
happening at small b-values and the stronger noise influence at
higher b. In fact, as in this work we report the noise level as the
SNR of the S0 dataset, images at high b-values will have lower ac-
tual signal-to-noise ratio, and thus the noise effects will be inher-
ently stronger. Overall, L2L0 always results in smaller angular
errors than the other two methods. The improvement with respect
to L2L1 is not significant, while the difference with L2L2 is much
more pronounced (up to 20�) especially as the b-value increases.
3 The images have been created using the tool mrview of mrtrix. As a
nsequence, the FODs from L2L1 and L2L0 had to be converted to SH, and this

peration caused some blur in the sparse reconstructions of these two methods.
3.1.5. Comparison as a function of the SNR
Finally, Fig. 5 compares the robustness to noise of the three

methods. Six noise levels have been considered, with the SNR of
the S0 dataset varying from 5 to 30. The comparison is reported
for 30 and 15 samples at b ¼ 2000 s=mm2. The results show that
L2L0 clearly outclasses the other two methods concerning the esti-
mation of the number of compartments (Pd) and results are consis-
tent as the SNR changes, both with 30 and 15 samples. In terms of
angular accuracy, L2L0 and L2L1 have very similar �h perfor-
mances, almost indistinguishable from one another. On the
contrary, L2L2 systematically obtains significantly higher �h values
at all considered SNRs (up to 6
 with 30 samples). In a high under-
sampling regime (right plots), the angular accuracy drastically
degrades in the case of L2L2 and it appears almost independent
of the noise level. This is again consistent with the limitations of
the SH representation for acquisitions with very few samples.
3.2. Real data

3.2.1. Qualitative evaluation on DTI data
Fig. 6 compares the reconstructions3 obtained with the three

regularization schemes in the case of real data acquired with a typ-
ical DTI protocol. Subplots A, B and C correspond to the dti30 data-
set acquired using 30 samples. Even though the acquisition scheme
used for this dataset is not the setting where our numerical simula-
tions highlighted the most substantial differences between the three
methods, important conclusions can be drawn in favor of L2L0.
Looking at the regions in the white circles, the ability of both L2L1

and L2L0 to properly model the isotropic compartment in voxels
with full or partial contamination with CSF is clearly visible. On
the contrary, as L2L2 does not explicitly model any CSF compart-
ment, it appears unable to adequately characterize the signal in
these cases, but it rather approximates any isotropic contribution
with a set of random and incoherent fiber compartments. Besides,
comparing B and C we can observe that L2L0 successfully differen-
tiates gray matter (light gray regions) from CSF voxels with pure iso-
tropic and fast diffusion (very bright areas), whereas L2L1 appears
unable to distinguish them.

The yellow frames highlight the corona radiata, a well-known
region in the white matter containing crossing fibers. As expected
from our simulations at this still relatively high number of sam-
ples, differences are not obvious between the three methods. How-
ever, we observe that L2L0 clearly results in sharper and more
defined profiles than L2L1, whereas the improvements with
co
o
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respect to L2L2 are confined only to few voxels. The not so good
performance of L2L1 might be related to the value chosen for b.
In contrast, no free parameter has to be empirically optimized in
our approach. When decreasing the acquisition samples to 20 (sub-
plots D, E and F corresponding to dti20 dataset), fiber directions
are definitely much better resolved with L2L0 than with both
L2L2 and L2L1. In fact L2L2 clearly breaks, missing many fiber
compartments probably due to the aforementioned limitations of
the SH representation. The same happens to L2L1, whose recon-
structions appear very blurred and noisy.

3.2.2. Qualitative evaluation on HARDI data
The comparison with high b-value data is reported in Fig. 7. The

figure shows also the robustness to different under-sampling rates
of each scheme. Subplots A, B and C correspond to the fully-sam-
pled dataset hardi256 . In this situation, no evident differences be-
tween the three approaches can be observed as they perform
essentially the same. With moderate under-sampled data (subplots
D, E and F corresponding to hardi50 ) both L2L2 and L2L0 do not
show any significant difference in the quality of the reconstruc-
tions, so far exposing neat and sharp profiles. On the other hand,
the FODs reconstructed by L2L1 show some signs of progressive
degradation, appearing a little more blurred as compared to those
reconstructed from fully-sampled data (compare subplots E and B).
The situation changes drastically with highly under-sampled data,
as easily noticeable by comparing the subplots G, H and I, which
correspond to the reconstructions performed with only 8% of the
original data. In fact, while L2L0 does not show yet any significant
degradation of the FODs, both L2L2 and L2L1 clearly do not pro-
vide as sharp and accurate reconstructions as in the case of fully-
sampled data (compare G to A and H to B). In addition, in the case
of L2L2 we can observe a higher incidence of negative peaks (iden-
tified in the plots by small yellow spikes), a clear sign of aug-
mented modeling errors.

3.2.3. Quantitative comparison: volume fractions and ‘1 norm
In Fig. 8 we tested whether the physical constraint of unit sum

is satisfied also in case of real data. The images confirm the obser-
vations previously made with synthetic data (cf. Fig. 1). In fact, the
Fig. 9. Comparison between fully- and under-sampled real data. The performance of L
hardi256 as ground-truth and computing Pd for the reconstructions on under-sampled
bottom to 20 (hardi20 ).
sum of the recovered volume fractions tends to be over-estimated
by L2L2 (subplots A and B) and under-estimated by L2L1 (sub-
plots C and D), whereas L2L0 reconstructions (subplots E and F)
appear to meet the property of unit sum as expected. All methods
coherently show a mild over-estimation in the corpus callosum,
compatible with the highly-packed axonal structure in this region.
Finally, L2L2 seems to suffer from over-estimation more with
fully- than with under-sampled data, which might be related to
the SH order employed for different number of samples.

3.2.4. Quantitative comparison: fully- vs under-sampled data
We compared the reconstructions obtained from under-sam-

pled data (i.e. hardi50 and hardi20 ) to those with fully-sampled
data (i.e. hardi256 ), considering this latter as ground-truth, as
done by Yeh and Tseng (2013). In agreement with the results from
numerical simulations, no significant difference was found
between the three approaches in terms of angular accuracy. The
average error using 50 samples was 10.9 ± 9.9� (mean � standard
deviation) for L2L2, 8.8 ± 8.1�for L2L1 and 10.0 ± 11.3� for L2L0.
The reconstructions using 20 samples clearly showed higher angu-
lar errors. The differences between L2L1 and L2L0 were below the
resolution of the sphere discretization used in this study:
11.6 ± 9.1� and 12.6 ± 12.4� respectively. L2L2 revealed signifi-
cantly higher �h values: 17.2 ± 12.8�. On the other hand, results def-
initely confirmed the superior performance of L2L0 in terms of Pd

that was previously observed in synthetic experiments. With 50
samples L2L0 had an average Pd ¼ 4:0� 13:9% as opposed to
sensibly higher values for L2L2 and L2L1, respectively
17:8� 32:6% and 17:3� 24:3%. For 20 samples, the performance
of L2L2 and L2L1 visibly deteriorated, 42.1 ± 43.6% for the former
and 21.3 ± 27.7% for the latter. L2L0 reconstructions appeared very
stable with an average Pd ¼ 5:5� 15:8%. These enlightening
results are illustrated in Fig. 9.

3.3. Limitations and future work

Our proposed formulation represents an extension of classical
spherical deconvolution and sparse reconstruction methods
(Tournier et al., 2007; Landman et al., 2012) and, as such, it also
2L2 (A and B), L2L1 (C and D) and L2L0 (E and F) was quantified by considering
data. The top row corresponds to the dataset with 50 samples (hardi50 ) and the
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inherits all the intrinsic limitations and shortcomings of this class
of techniques. Like all its predecessors, in fact, our method is based
on the assumption that the response function can be estimated
from the data and especially that it is adequate for characterizing
the diffusion process in all the voxels of the brain. Moreover, the
validity of these approaches has yet to be properly assessed with
more critical intra-voxel configurations (Sotiropoulos et al., 2012)
or pathological brain conditions. Yet, as these methods are cur-
rently widely used in this field, we have shown in this work that
by expressing adequately the regularization prior used for promoting
sparsity the quality of the reconstructions can significantly be im-
proved, with no additional cost.

Some of the aforementioned limitations might be addressed by
enhancing the estimation of the dictionary accounting for more
complex configurations, such as using different response functions
for different brain regions and/or pathological tissues and includ-
ing specific kernels which explicitly model fiber fanning/bending.
In addition, even though we focused here on single voxel experi-
ments, future work will be devoted to study the applicability and
the effectiveness of our approach in more sophisticated frame-
works exploiting the spatial coherence of the data. Finally, future
research will investigate the use of the recently proposed continu-
ous CS theory (Tang et al., 2012; Candés and Fernandez-Granda,
2012) with the aim of further improving the accuracy of the recon-
structions and reducing the acquisition time.
4. Conclusion

In this paper we focused on spherical deconvolution methods
currently used in diffusion MRI for recovering the FOD and esti-
mating the intra-voxel configuration in white matter. In particular,
we investigated the effectiveness of state-of-the-art regularization
schemes based on ‘2 and ‘1 priors and provided evidence that these
formulations are intrinsically suboptimal: the former because it
does not explicitly promote sparsity in the FOD, the latter because
it is inconsistent with the fact that the fiber compartments must
sum up to unity. We proposed a formulation that rather places a
strict bound on the number of expected fibers in the voxel through
a bound on the ‘0 norm of the FOD, relying on a reweighted ‘1

scheme. We compared our L2L0 approach with the state-of-the-
art L2L2 and L2L1 methods, both on synthetic and real human
brain data. Results showed that our proposed formulation
significantly improves single-voxel FOD reconstructions, with no
additional overheads. This evolution is most remarkable in a high
q-space under-sampling regime, thus driving the acquisition cost
of HARDI closer to DTI.
Acknowledgments

This work was supported by the Center for Biomedical Imaging
(CIBM) of the Geneva and Lausanne Universities, EPFL, the Leena-
ards and Louis-Jeantet foundations, the EPFL-Merck Serono Alli-
ance award and the Swiss National Science Foundation (SNSF)
under Grant PP00P2-123438.
References

Alexander, D.C., 2005. Maximum entropy spherical deconvolution for diffusion MRI.
In: Information Processing in Medical Imaging (IPMI), pp. 76–87.

Baraniuk, R., 2007. Compressive sensing. IEEE Signal Process. Mag. 24, 118–121.
Basser, P., Mattiello, J., Le Bihan, D., 1994. MR diffusion tensor spectroscopy and

imaging. Biophys. J. 66 (1), 259–267.
Candés, E., Fernandez-Granda, C., 2012. Towards a Mathematical Theory of Super-

Resolution. 1203.5871.
Candès, E., Romberg, J., Tao, T., 2006. Robust uncertainty principles: exact signal

reconstruction from highly incomplete frequency information. IEEE Trans. Inf.
Theory 52 (2), 489–509.
Candès, E., Wakin, M., Boyd, S., 2008. Enhancing sparsity by reweighted ‘1

minimization. J. Fourier Anal. Appl. 14 (5), 877–905.
Davies, M., Puy, G., Vandergheynst, P., Wiaux, Y., 2013. A Compressed Sensing

Framework for Magnetic Resonance Fingerprinting. 1312.2465.
Dell’acqua, F., Rizzo, G., Scifo, P., Clarke, R., Scotti, G., Fazio, F., 2007. A model-based

deconvolution approach to solve fiber crossing in diffusion-weighted MR
imaging. IEEE Trans. Biomed. Eng. 54, 462–472.

Donoho, D., 2006. Compressed sensing. IEEE Trans. Inf. Theory 52 (4), 1289–1306.
Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., 2004. Least angle regression. The

Ann. Statist. 32, 407–499.
Fang, R., Chen, T., Sanelli, P.C., 2013. Towards robust deconvolution of low-dose

perfusion CT: Sparse perfusion deconvolution using online dictionary learning.
Med. Image Snalysis 17, 417–428.

Gudbjartsson, H., Patz, S., 1995. The Rician distribution of noisy MRI data. Magn.
Resonan. Med. 34 (6), 910–914.

Huang, J., Zhang, S., Metaxas, D., 2011. Efficient MR image reconstruction for
compressed MR imaging. Med. Image Anal. 15, 670–679.

Jeurissen, B., Leemans, A., Jones, D., Tournier, J., Sijbers, J., 2010. Estimating the
number of fiber orientations in diffusion MRI voxels: a constrained spherical
deconvolution study. In: International Society for Magnetic Resonance in
Medicine (ISMRM), p. 573.

Jian, B., Vemuri, B.C., 2007. A unified computational framework for deconvolution to
reconstruct multiple fibers from diffusion weighted MRI. IEEE Trans. Med.
Imaging 26, 1464–1471.

Jones, D.K., Horsfield, M.A., Simmons, A., 1999. Optimal strategies for measuring
diffusion in anisotropic systems by magnetic resonance imaging. Magn. Reson.
Med. 42, 515–525.

Landman, B.A., Bogovic, J.A., Wan, H., Elshahaby, F.E.Z., Bazin, P.L., Prince, J.L., 2012.
Resolution of crossing fibers with constrained compressed sensing using
diffusion tensor MRI. NeuroImage 59 (3), 2175–2186.

Ma, S., Yin, W., Zhang, Y., Chakraborty, A., 2008. An efficient algorithm for
compressed MR imaging using total variation and wavelets. In: IEEE
Conference on Computer Vision and Pattern Recognition, 2008. CVPR 2008.
IEEE. pp. 1–8.

Mallat, S., Zhang, Z., 1993. Matching pursuits with time-frequency dictionaries. IEEE
Trans. Signal Process. 41, 3397–3415.

Mani, M., Jacob, M., Guidon, A., Liu, C., Song, A., Magnotta, V., Zhong, J., 2012.
Acceleration of high angular and spatial resolution diffusion imaging using
compressed sensing. In: IEEE International Symposium on Biomedical Imaging
(ISBI), pp. 326–329.

Merlet, S., Cheng, J., Ghosh, A., Deriche, R., 2011. Spherical Polar Fourier EAP and
ODF reconstruction via compressed sensing in diffusion MRI. In: IEEE
International Symposium on Biomedical Imaging (ISBI), pp. 365–371.

Michailovich, O., Rathi, Y., Dolui, S., 2011. Spatially regularized compressed sensing
for high angular resolution diffusion imaging. IEEE Trans. Med. Imaging 30 (5),
1100–1115.

Özarslan, E., Shepherd, T., Vemuri, B., Blackband, S., Mareci, T., 2006. Resolution of
complex tissue microarchitecture using the diffusion orientation transform
(DOT). NeuroImage 31, 1086–1103.

Pati, Y., Rezaiifar, R., Krishnaprasad, P.S., 1993. Orthogonal matching pursuit:
recursive function approximation with applications to wavelet decomposition.
In: 27th Asilomar Conference on Signals, Systems and Computers, pp. 40–4.

Pu, L., Trouard, T.P., Ryan, L., Huang, C., Altbach, M.I., Bilgin, A., 2011. Model-based
compressive diffusion tensor imaging. In: IEEE International Symposium on
Biomedical Imaging (ISBI), pp. 254–257.

Puy, G., Marques, J.P., Gruetter, R., Thiran, J., Van De Ville, D., Vandergheynst, P.,
Wiaux, Y., 2012. Spread spectrum magnetic resonance imaging. IEEE Trans.
Med. Imaging 31, 586–598.

Puy, G., Vandergheynst, P., Wiaux, Y., 2011. On variable density compressive
sampling. IEEE Signal Process. Lett. 18, 595–598.

Ramirez-Manzanares, A., Cook, P.A., Gee, J.C., 2008. A comparison of methods for
recovering intra-voxel white matter fiber architecture from clinical diffusion
imaging scans. In: Medical Image Computing and Computer-Assisted
Intervention (MICCAI), pp. 305–312.

Ramirez-Manzanares, A., Rivera, M., Vemuri, B., Carney, P., Mareci, T., 2007.
Diffusion basis functions decomposition for estimating white matter
intravoxel fiber geometry. IEEE Trans. Med. Imaging 26, 1091–1102.

Rathi, Y., Michailovich, O., Setsompop, K., Bouix, S., Shenton, M.E., Westin, C.F., 2011.
Sparse multi-shell diffusion imaging. In: Medical Image Computing and
Computer-Assisted Intervention (MICCAI), pp. 58–65.

Schultz, T., 2012. Learning a reliable estimate of the number of fiber directions in
diffusion MRI. In: Medical Image Computing and Computer-Assisted
Intervention (MICCAI), pp. 493–500.

Soderman, O., Jonsson, B., 1995. Restricted diffusion in cylindrical geometry. J. Mag.
Reson. Ser. A 117, 94–97.

Sotiropoulos, S.N., Behrens, T.E., Jbabdi, S., 2012. Ball and rackets: Inferring fiber
fanning from diffusion-weighted MRI. NeuroImage 60, 1412–1425.

Tang, G., Narayan Bhaskar, B., Shah, P., Recht, B., 2012. Compressed Sensing off the
Grid. 1207.6053.

Tikhonov, A.N., Arsenin, V.Y., 1977. Solutions of Ill-Posed Problems. Winston & Sons,
New York.

Tournier, J.D., Calamante, F., Connelly, A., 2007. Robust determination of the fibre
orientation distribution in diffusion MRI: non-negativity constrained super-
resolved spherical deconvolution. NeuroImage 35, 1459–1472.

Tournier, J.D., Calamante, F., Connelly, A., 2012. MRtrix: Diffusion tractography in
crossing fiber regions. Int. J. Imaging Syst. Technol. 22, 53–66.

http://refhub.elsevier.com/S1361-8415(14)00024-3/h0075
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0080
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0080
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0085
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0085
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0085
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0090
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0090
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0095
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0095
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0095
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0100
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0105
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0105
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0110
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0110
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0110
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0115
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0115
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0120
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0120
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0125
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0125
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0125
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0130
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0130
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0130
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0135
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0135
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0135
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0140
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0140
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0145
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0145
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0145
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0150
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0150
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0150
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0155
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0155
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0155
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0160
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0160
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0165
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0165
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0165
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0170
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0170
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0175
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0175
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0180
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0180
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0185
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0185
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0185
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0190
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0190


A. Daducci et al. / Medical Image Analysis 18 (2014) 820–833 833
Tournier, J.D., Calamante, F., Gadian, D., Connelly, A., 2004. Direct estimation of the
fiber orientation density function from diffusion-weighted MRI data using
spherical deconvolution. NeuroImage 23, 1176–1185.

Tristán-Vega, A., Westin, C.F., 2011. Probabilistic ODF estimation from reduced
HARDI data with sparse regularization. In: Medical Image Computing and
Computer-Assisted Intervention (MICCAI), pp. 182–190.

Wedeen, V., Hagmann, P., Tseng, W.Y., Reese, T., Weisskoff, R., 2005. Mapping
complex tissue architecture with diffusion spectrum magnetic resonance
imaging. Mag. Reson. Med. 54, 1377–1386.
Yang, J., Zhang, Y., Yin, W., 2010. A fast alternating direction method for TVL1-L2
signal reconstruction from partial Fourier data. IEEE J. Sel. Top. Signal Process. 4,
288–297.

Yeh, F.C., Tseng, W.Y., 2013. Sparse solution of fiber orientation distribution
function by diffusion decomposition. PLoS One 8, e75747.

Zou, H., 2006. The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 101,
1418–1429.

http://refhub.elsevier.com/S1361-8415(14)00024-3/h0195
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0195
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0195
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0200
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0200
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0200
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0205
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0205
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0205
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0210
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0210
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0215
http://refhub.elsevier.com/S1361-8415(14)00024-3/h0215

	Sparse regularization for fiber ODF reconstruction: From the suboptimality of ? and ? priors to ? 
	1 Introduction
	2 Materials and methods
	2.1 Intra-voxel structure recovery via spherical deconvolution
	2.2 ? prior
	2.3 ? prior
	2.4 ? prior
	2.5 Comparison framework
	2.6 Numerical simulations
	2.7 Evaluation criteria
	2.8 Real data
	2.9 Implementation details

	3 Results and discussion
	3.1 Numerical simulations
	3.1.1 Volume fractions and ? norm
	3.1.2 Comparison as a function of the number of samples
	3.1.3 Comparison as a function of the crossing angle
	3.1.4 Comparison as a function of the b-value
	3.1.5 Comparison as a function of the SNR

	3.2 Real data
	3.2.1 Qualitative evaluation on DTI data
	3.2.2 Qualitative evaluation on HARDI data
	3.2.3 Quantitative comparison: volume fractions and ? norm
	3.2.4 Quantitative comparison: fully- vs under-sampled data

	3.3 Limitations and future work

	4 Conclusion
	Acknowledgments
	References


