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A B S T R A C T

MRI is a non-invasive medical imaging modality that is sensitive to patient motion, which constitutes a
major limitation in most clinical applications. Solutions may arise from the reduction of acquisition times
or from motion-correction techniques, either prospective or retrospective. Benchmarking the latter methods
requires labeled motion-corrupted datasets, which are uncommon. Up to our best knowledge, no protocol for
generating labeled datasets of MRI images corrupted by controlled motion has yet been proposed. Hence,
we present a methodology allowing the acquisition of reproducible motion-corrupted MRI images as well as
validation of the system’s performance by motion estimation through rigid-body volume registration of fast
3D echo-planar imaging (EPI) time series. A proof-of-concept is presented, to show how the protocol can
be implemented to provide qualitative and quantitative results. An MRI-compatible video system displays a
moving target that volunteers equipped with customized plastic glasses must follow to perform predefined
head choreographies. Motion estimation using rigid-body EPI time series registration demonstrated that head
position can be accurately determined (with an average standard deviation of about 0.39 degrees). A spatio-
temporal upsampling and interpolation method to cope with fast motion is also proposed in order to improve
motion estimation. The proposed protocol is versatile and straightforward. It is compatible with all MRI systems
and may provide insights on the origins of specific motion artifacts. The MRI and artificial intelligence research
communities could benefit from this work to build in-vivo labeled datasets of motion-corrupted MRI images
suitable for training/testing any retrospective motion correction or machine learning algorithm.
1. Introduction

MRI is an essential imaging modality in medicine, which suffers
unfortunately from a great sensitivity to movements that can deteri-
orate image quality. In general, relatively long acquisition times (in
the order of minutes) are required to obtain high resolution structural
MRI images. Hence, there are situations where motion during scan is
unavoidable.

Many researchers have devoted their efforts towards motion im-
pact mitigation by reducing acquisition times or by designing new
motion insensitive a.k.a. ‘‘motion robust’’ pulse sequences as described
in [1]. The latter can leverage non-Cartesian k-space sampling strate-
gies (e.g., spirals, radial), such as the PROPELLER [2] or SNAILS [3]
methods, which usually over-sample the center of k-space.

Several methods have been proposed for motion-tracking that use
either external devices or navigators [4]. Widespread systems are based
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on cameras coupled with special markers [5,6]. One main drawback
of such methods is the need for calibration, which can be quite chal-
lenging [7,8] especially with ‘‘out-of-bore’’ camera systems [9]. An
alternative to visual systems is the use of electro-magnetic (EM) pickup
coils [10,11]. These methods require modifications of the pulse se-
quence to generate gradient pulses needed for the calibration of the
device in the reference frame of the MRI system [12]. Navigator echoes
offer an attractive means for either prospective or retrospective motion
correction [13,14], as they use the MRI intrinsic coordinate system.
In particular, the FIDNav technique can be used, which leverages
multi-coil antennae to obtain motion information [15]. Much like EM
tracking, these navigator-modified sequences increase scan duration
and the method may not be compatible with every type of pulse
sequence.
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Fig. 1. Experimental setup. The subject wears plastic glasses with a sticker attached in front of their pupil, restricting the green dot tracking to head motion only and avoiding
any eye tracking. During a controlled motion experiment, the subject is told to keep the green dot in the center of the pinhole by moving the head. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
Regardless of the chosen method, whether calibration is done by
choreographed head movements or by simulation, there is a need to
obtain controlled head motion acquisitions together with reproducibil-
ity validation for motion correction quality assessment [16]. However,
to the best of our knowledge, no dedicated system is available for the
investigation of controlled motion impact on MRI scans in a straightfor-
ward, inexpensive and versatile (i.e., compatible with any scanner or
pulse sequence, provided that a screen is available to display the visual
stimulus) manner.

Motion correction is a complex problem, which depends on many
parameters such as pulse sequence, type of motion (where it occurs
in k-space, abrupt vs progressive motion, etc.) and also on the motion
detection/estimation methods. Therefore, it is often difficult to know
the exact link between an observed artifact and a given motion [17].
So far, researchers in the field have mostly focused on ‘‘free motion’’
and there is a need for labeled motion-controlled datasets acquired
within ranges that are most likely to occur during clinical scans. This
kind of labeled data should allow the evaluation of motion correction
techniques in a more tractable and systematic manner.

We propose a general and straightforward method allowing repro-
ducible head choreographies to be performed by subjects inside any
MRI scanner equipped with a video display system. The choreographic
control is based on the visual pursuit of a target solely by the subject’s
head displacement. The performance of the controlled motion system
is validated by estimating motion during a fast time series acquisition.
In practice, each subject undergoes a target-tracking training session
during a fast echo planar imaging (SMS-EPI) [18,19] acquisition, from
which subject motion is estimated by rigid-body volume registration.
Then, the same type of motion is performed during standard structural
brain imaging in order to create corrupted images based on controlled
head motion. Any sequence can be used to produce corrupted images
with known motion patterns, provided that the choreography control
video is synchronized with the start of the sequence and the availability
of an MRI-compatible screen (as in a standard fMRI setup).

Previous work has shown that abrupt head motion can be as fast
as 200 ms [20] and EPI repetition times are usually of the order of
the second. In order to improve the accuracy of motion estimation
of EPI time series, especially with rapid motion occurring within EPI
repetition time (TR), a spatio-temporal upsampling and interpolation
method is proposed. It leverages the interleaved simultaneous multi-
slice (SMS) scheme used in conjunction with EPI. Methods leveraging
the SMS scheme have been proposed, such as [18], but the usage of
Kalman filtering may hinder detection of fast abrupt motion and no
implementation is freely available. We provide a Matlab implemen-
tation for our method at: https://gitlab.unige.ch/Oscar.Dabrowski/te
mporally-improved-volume-registration-by-data-driven-subvolume-inte
rpolation-of-simultaneous-multislice-epi-time-series.
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Our motion-control method enables the creation of labeled datasets
of motion-corrupted MRI images that could be used for motion cor-
rection algorithm benchmarking or serving as the basis for motion
artifact simulation, for a better understanding of the phenomenon. The
protocol is designed to allow reproducible motion artifacts within a
known range of parameters and following a precise timing. Among
many applications, the dataset obtained following this procedure may
be used as a test set to assess the performance of any retrospective
motion correction technique.

2. Methods

2.1. System setup

Motion instructions were provided to the subjects via an LCD screen
placed at the back of the MRI and viewed by a mirror mounted on the
standard head coil. Subjects wore a modified pair of plastic glasses to
restrict their field-of-view (Fig. 1). The idea of motion tracking with
this equipment is to mimic the same principle as following a moving
target with binoculars or a spyglass. One eye is masked, and for the
other, a pinhole forces an eye-pinhole-marker alignment. It has been
shown that head and eye motion both contribute to tracking during
a visual pursuit [19]. Using glasses with a sight (masking crosshair
marker), naturally constrains motion to the head only, removing any
eye tracking contribution. This simple device alleviates the experiment
from any variation in instruction comprehension or implementation
such as subject ability to not move the eyes while tracking.

To generate a suitable target pursuit movie for the head choreogra-
phy, the distance in pixels 𝑥𝑝𝑥 on the screen is expressed as a function
of the head angle 𝜃 with respect to the rest position as shown in Fig. 1:

𝑥𝑝𝑥(𝜃) = 𝐷 ⋅
𝑤𝑝𝑥

𝑤𝑐𝑚
⋅ tan(𝜃) (1)

where 𝐷 = 𝑑 + 𝑑′ is the distance between the subject’s eye and
screen, 𝑤𝑐𝑚 is the screen width in centimeters and 𝑤𝑝𝑥 is the horizontal
resolution in pixels.

The impact of the distance measurement inaccuracy is clearly neg-
ligible compared to the subject’s angle reproduction precision (human
error), considering that a ±1 cm distance error translates to an error of
approximately ±0.0065 degrees.

As a proof of concept of the system, a choice had to be made
with respect to the motion parameters and pulse sequences to use.
The widely used 2D (T1-w-SE) and 3D (T1-w MP-RAGE) sequences
were chosen as well as EPI for motion estimation. Two motion types
were chosen: ‘‘abrupt’’ (fast) and ‘‘motion and hold’’ (slower), with 3
different angles 𝜃 ∈ {1◦, 2◦, 3◦} representative of the range of motion
which may occur during a clinical scan.

Due to the restricted field of view, all relevant information regard-
ing head choreographies was displayed in the central region delineated
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Fig. 2. (a) Three consecutive groups of 4 SMS slices are combined in to a partial volume acquired each third of a TR (b) spatially interpolated into a full volume (c) suitable for
rigid-body registration (w.r.t. first full volume) with SPM.
by the pinhole (Fig. 1). Head choreography movies were designed with
specific timings corresponding to fast abrupt and slower motion and hold
motion types in up/down and right/left directions. A set of symbols
shown in Fig. 1 informs the subjects on which movements to perform.
A countdown timer is displayed during rest periods and two seconds
before motion onset, a crosshair appears on the targeted angle to avoid
a ‘‘surprise’’ effect, which could potentially lead to ‘‘overshooting’’.
To obtain accurate timings for the occurrence of motion artifacts, the
video must start synchronized with the beginning of the acquisition
sequences. The MRI scanner device-specific sync setup used here is
described in Appendix D.

2.2. Subject preparation

Before sending volunteers inside the MRI scanner, their interpupil-
lary distance is checked to match with the glasses pinhole (adjustments
were rarely needed). Then, subjects are placed on the MRI table and
equipped with a mirror-mounted head coil. Glasses vertical position
is adjusted on subject’s faces and the glasses are taped on their fore-
head and temples. Finally, subjects are sent to the isocenter, and
final left/right adjustments of the screen is performed following their
feedback.

2.3. Experimental protocol

All experiments were performed at University Hospitals of Geneva
on a 3T MRI system (MAGNETOM Prisma fit, Siemens Healthineers, Er-
langen, Germany) with a 20-channel receiver head coil. Six volunteers
participated in the study.

After the acquisition of no-motion T1-w Spin-Echo and T1-w 3D MP-
RAGE sequences for reference, the protocol consists of an EPI (training)
sequence used for motion estimation. Spin-Echo and T1 3D MP-RAGE
sequences were then acquired for each type of motion.

The parameters of the SMS-EPI time series were TR = 600 ms, TE
= 30 ms at a resolution of 64 × 64 pixels per slice, 36 axial slices per
volume with a voxel size of 3.0 ×3.0× 3.3 mm, number of repeated
acquisitions = 645. Other parameters were a 2 × GRAPPA acceleration
factor with 4 simultaneous slice excitations and TA = 6 m 27 s.

Spin-Echo sequence parameters consisted of axial slices with a
resolution of 256 × 256 pixels, TR = 750 ms (externally triggered with
an acquisition window of 800 ms), TE = 12 ms and TA = 3 m 1 s. Voxel
size was 0.9 × 0.9 × 4.0 mm.

T1 3D MP-RAGE sequences were acquired with sagittal orientation
with a resolution of 288 × 288 × 208 pixels, TR = 1930 ms (externally
triggered with an acquisition window of 1950 ms), TE = 2.36 ms, TA
= 3 m 36 and IT = 972 ms. Voxel size was: 0.9 mm isotropic.
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2.4. Sub-TR volume-to-volume registration for accurate abrupt motion esti-
mation

Two different situations may arise for practitioners using the pro-
posed protocol. Either the motion is slow or it is fast with respect to
TR period. In the latter case, motion will be undersampled, therefore
misestimated. The phenomenon can be understood in a similar way –
although not strictly identical – than the Nyquist–Shannon theorem that
requires a sampling period (TR) being two times shorter than the fastest
motion period to be estimated. In our experiments TR = 600 ms, and
fast head motion ‘‘period’’ was estimated to be around 800 ms, hence a
TR = 400 ms would be needed at least. In the current application, we
performed a threefold increase in temporal upsampling, which would
approximately correspond to TR = 200 ms.

The goal of EPI acquisitions is to estimate head motion in relation
with the instructions displayed on the screen. As just mentioned, rapid
motion may be too fast to be properly sampled by EPI with TR =
600 ms, which leads to its underestimation. In order to have more
accurate motion estimation of rapid movements, the SMS scheme can
be leveraged to perform temporal upsampling of the EPI acquisitions,
which, in turn, leads to spatial undersampling which can be dealt with
interpolation.

The method is based on splitting entire EPI acquisitions into mul-
tiple time series (TS) according to the slice ordering of the SMS ac-
quisition. For the proof of concept presented here, 36 slices/volume
were acquired during each TR, with an SMS factor of 4. We separated
the time series into 3 TS (TS1, TS2, TS3) corresponding to 12 slices
per volume. This choice represents a good compromise between spatial
and temporal resolution. Since incomplete spatial coverage impairs
realignment algorithms, each subvolume was spatially interpolated.
The proposed interpolation algorithm computes optimal affine pairwise
transforms between adjacent slices, i.e., from slice 𝑛 to slice 𝑛 + 1 and
from slice 𝑛 to slice 𝑛 − 1, referred to as ‘‘forward’’ and ‘‘backward’’,
respectively. The interpolation is obtained by weighted averages of for-
ward and backward transformed slices in a given subvolume according
to hand-crafted weight matrices constructed for each time series. The
latter matrices specify the location of existing slices and the weights to
use. A qualitative example of interpolation is provided in Fig. 2. Each
time series was processed separately. They were each realigned with
respect to their first – fully interpolated – corresponding volume with
SPM [21]. The latter uses an ‘‘intensity-based’’ registration algorithm,
i.e., based on a MSE metric between volumes.

A fully upsampled (×3) time series can be reconstructed by tempo-
rally interleaving the motion parameter vectors. A zoom on two motion
blocks shows a comparison of the realignment results between the
original (non-upsampled, non-interpolated) acquisitions and the same
acquisitions processed with our method (Fig. 3). Rigid-body volume
registration was performed with respect to a temporally close volume
to avoid baseline offset between time series that results in apparent
oscillation of the timeline as observed in Fig. 3(a). In practice motion
estimation is performed by considering each time series independently
and is not affected by the choice of the reference volume.
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Fig. 3. Zoom on the two last motion blocks of an EPI training session. (a) Angles estimated with respect to each local baseline (TS1,2,3-b). Maximum angle amplitude is
taken for abrupt motion and maximum average for motion&hold. (b) Temporally interleaved 200 ms upsampled signal from (a) (realigned w.r.t. volume#525) superimposed on
volume-to-volume, non-upsampled, 600 ms, time series. (1D motion parameter signal (blue) is linearly interpolated to allow visual comparison with upsampled signal (red).) (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
2.5. Data postprocessing

The interpolation and upsampling method described previously was
applied to each subject’s EPI data and motion parameters were obtained
for each time series separately.

Motion parameters were computed considering local baselines,
i.e., resting positions before each motion onset (Fig. 3). Ideally, the
baselines should be at zero degrees, but unavoidable variations do
occur due to deviations in the spatial content of the slices, when
registration is performed with respect to the initial volume (instead
of a temporally closer volume, as mentioned in Section 2.4). For the
‘‘abrupt’’ motion type, the maximum peak value among each time series
was considered. For the ‘‘motion and hold’’ type, the maximum average
value of the ‘‘plateau’’ points, among each time series, was taken.

Descriptive statistics are presented in the form of boxplots and
curves displaying signed errors between estimated angles with respect
to target values. Boxplots aggregate all subjects’ data together to de-
scribe overall error whereas curves describe the temporal error-wise
behavior of each subject. Both boxplots and curves take baselines into
account for error computation.

Representative artefacted Spin-Echo were obtained from raw multi-
coil k-space combination using the ESPIRiT algorithm [22]. Represen-
tative MP-RAGE DICOM images are also provided to allow qualitative
estimation of motion artifacts.

2.6. Dataset labeling

The screen defines a 2D projection of the corresponding 6 DoF
that subjects are performing. Motion estimation obtained by rigid-body
volume registration of EPI training sessions gives empirical labels for
acquisitions performed thereafter. Data labeling can be done by extract-
ing the corresponding average motion parameters from the training
acquisition once subjects are trained, (after 2.5 min, see results). Hence,
in the context of training a supervised deep learning model [23], it
is possible to build a labeled dataset {𝐱(𝑖), 𝐲(𝑖)}, where 𝑖 is the dataset
element index, and where each MRI image 𝐱(𝑖) is associated with its
mpirical target 𝐲(𝑖) ∈ R𝑛×6, a matrix of 6 motion parameters for each
f the 𝑛 phase encoding lines (e.g., in the case of a classical Spin-Echo
cquisition).

. Results and discussion

.1. Choreography training sessions and motion estimation

For each participant, the experiment begins with a target tracking
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raining session during repeated SMS EPI acquisitions that allows the
investigation of subjects’ spatio-temporal motion accuracy using rigid-
body registration, as well as their learning behavior. The EPI training
sessions also provides the labels for the dataset of corrupted MRI
images. As described in the last methods subsection, the stimulus
parameter space (2D) maps to the spatial parameter space of a subject’s
head (6-DoF), that corresponds to the ‘‘response function’’ for each
subject. This includes the theoretical 6 DoF motion as well as any
experimental fluctuations (e.g., internal constraints such as subject
neck/back pain as well as external parameters such as excessively
inflated air cushion padding, etc.). In this work, we rely on intra-session
repeatability to ensure consistent motion control that can be applied
reliably in subsequent structural MRI acquisitions. Thus, the training
session provides the real motion labels for the data, which are more
accurate than ’’theoretical’’ target motion labels. Consequently, our
approach aims at accurately estimating the motion even if the subject did
not perform the motion accurately (as long as the subject performance
is consistent within the session). The EPI training session is therefore
required for each subject and each session not only to validate motion
reproduction but also to obtain the empirically labeled dataset we aim
at.

Fig. 4 shows rotational motion estimations for a given subject during
a training session after the corresponding upsampled and interpolated
EPI acquisition has been realigned with SPM. The first row represents
the targeted movements that should be performed by the subject.

Qualitatively, we observe that the subjects motion patterns match
the targets well. The ‘‘Up/Down’’ motion angle amplitudes are gener-
ally smaller than the ‘‘Right/Left’’ ones (Figs. 4 and 5). According to
subject’s feedback, this can be explained by the ‘‘Up/Down’’ motion
being more difficult to perform accurately.

The other two rows show the effective movements made by the
subject as estimated by rigid-body EPI volume registration. Volumes
acquired during each EPI sequence are realigned with respect to the
first volume to obtain rigid-body motion parameters allowing sub-
ject motion estimation. It can be observed that the volunteer (S2)
‘‘overshoots’’ the target angles at the beginning of the acquisition but
stabilizes relatively fast, i.e., after about the first two motion blocks
(‘‘motion and hold’’ and ‘‘abrupt’’). To prevent potential overshooting,
a countdown timer is displayed 2 s before each motion starts and
a crosshair appears on the targeted angle. This ‘‘anticipation timing
performance’’ process proved to improve time response and motion
accuracy [24].

3.2. Intra-subject motion repeatability and baseline estimation

The starting position is by convention the zero-degree position. It

can be observed that the baseline fluctuates over time because subjects
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Fig. 4. Displayed target rotation (top) and estimated performed angle for right/left
(middle) and for up/down (bottom) motions. Motion estimation is performed on 3 times
upsampled and interpolated multi-volume EPI. Baseline variation for ‘‘motion&hold’’
and ‘‘abrupt’’ motion types are highlighted in frames (a) and (b), respectively.

Fig. 5. Signed error in degrees, i.e., the difference between measured angles and
targets, for each type of motion. Movements in the Right/Left direction exhibit less
error than in the Up/Down direction.

need to get accustomed to the expected dot position and speed. After
about one trial of each motion type, subjects tend to reach a more stable
baseline. Hence, they undergo a training phase. Baseline variation
factors may include slight position readjustments during the experiment
(e.g., if the subject felt uncomfortable or swallowing, coughing, etc.).

Different deviations from the ideal baseline can be observed among
different subjects. However, it can be observed that the baseline offsets
within each group of (fast) abrupt movements are relatively constant
(Fig. 4, frame a and b). When the duration between motion events
is longer, i.e., in motion and hold blocks, the offset varies more.
This observation could be explained by proprioceptive memory that
is known to allow subjects to retain accurate motion memory during
a repetitive movement reproduction task, when it is performed within
short delays between trials [25]. Therefore, to obtain a reliable angle
amplitude measurement, we estimate a local baseline before each mo-
tion onset. The actual angles are computed by taking the maximum
peak amplitude for abrupt motion and the mean angle amplitude for
sustained motion with respect to the local baseline for each time series
(Fig. 3).
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3.3. Temporal resolution increase by volume splitting and fast motion
estimation

Taking the maximum angle value is justified because temporal
upsampling removes mixtures of different movements occurring within
one TR by splitting them into separate time series. Therefore, the
highest peak is the best motion estimation available.

Abrupt peak detection and mean angle computation between mo-
tion and hold peaks was performed automatically with a sliding win-
dow approach (similar to some well-known peak-detection algorithms
as in [26]), but with prior knowledge of the target, which allowed us
to directly place the search window around the correct positions and
avoid outliers.

With temporal upsampling and spatial interpolation, a significant
abrupt peak amplitude improvement is obtained as shown in Fig. 3b.
The typical amplitude gain is shown. As expected, motion amplitude
estimation for ‘‘motion and hold’’ sequences does not change much with
upsampling, since head positions are maintained for periods longer
than the duration of one TR (acquisition of one volume). We recall that
the goal of temporal upsampling is to improve the estimation of fast
motion (occurring while a volume is acquired), which, in turn, allows
to validate motion reproduction.

3.4. Subject motion accuracy and reproducibility

It is important to point out that we care about intra-session repro-
ducibility, i.e., that a subject is able to perform consistently within
a session, since the motion pattern estimated by EPI time series re-
alignment is applied to structural imaging performed during the same
session. It likely that the response function cannot be applied in another
session, since the estimated motion parameters even for the same
subject is prone to change significantly due to experimental conditions
(e.g., different FoV, and other parameters mentioned in Section 3.1).

In Figs. 5 and 6, errors with respect to the target are reported by
type of motion (U/D or R/L, abrupt or motion&hold) and by target
angle amplitude. In Fig. 5 the data acquired for all subjects is aggre-
gated in each boxplot to show the error distributions for each target
angle and motion type. The first measurement for each subject was
discarded due to the effect of transient adaptation to the task. Hence,
each boxplot represents the distribution of 6 subjects * 4 measurements
= 24 data points per target angle and per motion type. In Fig. 6 the 5
measurements (i.e., including the first) for each motion block (abrupt
or motion&hold) are shown separately. Each color corresponds to one
subject. Measures are connected by a line to make the graph easier to
read. The dashed line is the average measure for each subject at each
point and the gray shaded area shows one standard deviation above and
below the mean. The error is computed by taking local baselines into
account, for each subject. It is the difference between the target angle
and the effective angle. Each row shows results for the same type of
motion and each column corresponds to a given angle.

For all subjects, motion accuracy error increases with angle am-
plitude. It can also be observed that subjects were able to quickly
generalize the learning process. Considering S2: we can infer that there
was a ‘‘strong learning effect’’ during the first two Right/Left motion
blocks (Fig. 4). Afterwards, subject angle accuracy is quite stable even
for the first Up/Down motion blocks, although there is a slight improve-
ment near the end of the acquisition. Moreover, rapid convergence
can be observed in Fig. 6, mostly in the first row, i.e., motion&hold
in Right/Left direction, as the standard deviation decreases quickly.
That direction (Right/Left) corresponds to the first training session and
suggests that most of the learning was achieved there. Indeed, in the
third row, i.e., for motion&hold in the Up/Down direction, no such
phenomenon is visible, and the standard deviation is very low. This
leads us to the conclusion that subjects are able to generalize well
the task to perform from only a few training blocks. Therefore, other
researchers interested in this method can reduce training time and
perform a single training session with a mixture of the different motion

types, according to their needs.
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Fig. 6. Error (difference between target and effective subject angle) per angle and per motion type for all subjects (baseline taken into account). The black dashed line is the
mean of each group of measurements; shaded area is the standard deviation for each group. The standard deviation is in general positively correlated with angle.
3.5. Generating motion artifacted images

Representative images acquired with the proposed protocol are
presented in Fig. 7 to illustrate the type of motion artifacts produced.
The angles used for head choreographies were chosen empirically,
based on the range of angles observed in clinical exams, and arbitrarily
set to three angles covering this range, namely 1,2, and 3 degrees. The
assumption being that it is unrealistic for a given subject – except in
young pediatric patients – to move much more than this in a padded
head coil. The proposed head choreographies used the same motion
patterns than the EPI training sessions.

Classical T1 Spin-Echo is widely used in clinical settings for Gd-
uptake scans. Hence, studying such kind of pulse sequence presents
a practical interest and has the advantage of following a simple se-
quential and Cartesian k-space sampling scheme. Examples of artifacts
produced during a 2D Spin-Echo acquisition are shown in Fig. 7. Motion
artifacts are qualitatively similar for all subjects and take the form of
‘‘ringing artifacts’’ in the phase encoding direction (R/L).

An example of empirical labeling with 6 DoF is shown in Fig. 8.
The average k-space magnitude over all slices of the corresponding
acquisition (Spin-Echo) is shown next to the label to highlight the cor-
rupted regions. Motion impacts mostly the phase-encoding direction,
since this is the slowest one to acquire. The effect of motion can be seen
as dark lines appearing in k-space magnitude at phase encoding lines
corresponding to motion onset. This well-known artifact [27] depends
on the position of affected lines in k-space as well as the type of motion.

The 3D MP-RAGE acquisition presents more complex patterns as
it uses two phase encoding directions, namely phase encoding per
se (A/P) and slice encoding (R/L). Therefore, visual inspection of k-
space magnitude is not as informative as for a classical Spin-Echo.
Representative examples of motion artifacts observed in 3D T1 MP-
RAGE acquisitions are shown in Fig. 7. Mild ringing artifacts can be
observed in the frontal regions of the sagittal and axial slices (see
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Fig. 7. Sample of acquired Spin echo (axial) artifacts (a, b, c) and MP-RAGE (coronal)
(d, e, f). It can be observed that artifacts are qualitatively similar (ringing/ghosting
with similar spacing) and clearly visible for all subjects, which is what we aimed to
achieve. MP-RAGE artifacts are milder than those observed on Spin echo acquisitions.

Appendix) and towards the upper right parts on the coronal views. The
artifacts are qualitatively similar for all subjects, which suggests that
head choreographies could be well reproduced. In addition to being
visually similar, the artifacts appear in the expected regions.
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Fig. 8. Spin-Echo k-space magnitude combined from raw data with the ESPIRiT algorithm [22] for one subject (all slices averaged). For classical Spin-Echo, the full k-space is
acquired sequentially line by line (in 180 [s] in this case). Right: screen target and dataset label (6 DoF). (Head choreography timing performed by subject closely matches k-space
corruption.)
Fig. 9. Slices from three representative 3D T1 MP-RAGE acquisitions in sagittal and axial directions corrupted by ‘‘motion and hold’’ R/L choreography. The artifacts are qualitatively
similar among different subjects. Mild ringing-like artifacts can be observed near the frontal lobe.
The proposed method is usable as such for repetitive movements
because it can be considered as an ‘‘anticipation timing performance’’
task and subjects response time can be neglected [24]. Our system
would allow generating head choreography tracking movies based on
real motion data (estimated from EPI sequences or by other means) but
in that case, subjects’ temporal accuracy should be measured.

To summarize, volume registration confirms correct head chore-
ography reproduction and provides empirical labels for the dataset.
The same choreography performed by different subjects resulted in
qualitatively similar artifacts, indicating that the method may be useful
in artifact simulation validation. Our experimental protocol providing
well-defined motion patterns and amplitudes will help to better under-
stand the effects of motion on MRI images and will provide a practical
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basis to compare or validate motion models. The method can easily be
extended to more complex motion patterns according to specific needs.

3.6. Limitations of the system

The proposed approach is inherently limited to head motion. The
screen is a 2D projection of the 6-DoF movement of a subject’s head.
Left/right or up/down motion on screen will be translated to a combi-
nation of these 6-DoF (mainly yaw and pitch, respectively). Roll motion
is difficult to reproduce accurately and would require adaptations of the
system. A rotating crosshair could be displayed on the moving dot and
customized optics could be adjusted on the glasses.
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Fig. 10. Motion estimation plots for temporally upsampled and interpolated EPI volumes for all subjects. This plot is provided to allow a global view of all subject’s performance
side by side.
Fig. 11. (a & b) Raw volume-to-volume realignment output from SPM. (c) 3-DoF matrix for in-plane rotation with (𝑡𝑥 , 𝑡𝑦) offset from image center showing the preservation of
the rotation and residual translations (a similar equation can be derived for 6DoF).
It would not be practically feasible to constrain a subject to do pure
translations, but this type of motion is not realistic in the scope of a
clinical scan, except for a slight translation in the axis of the scanner
(𝑧 axis), most likely due to subject neck relaxation in the beginning of
the scan (cf. Appendix C).
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4. Conclusion

A versatile, straightforward and inexpensive methodology to control
head movements in an MRI scanner is proposed. A method to improve
registration in case of motion faster than TR has been developed. The
apparatus and protocols provided allows systematic and reproducible
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,

Fig. 12. Schematic view of the hardware setup used in our experiments. For pulse
sequence providing trigger pulses, the scanner controls the start of the video. When
triggering is unavailable, optical pulses are sent to the scanner from Arduino Uno. (In
the worst case, manual triggering would always be possible.)

motion-controlled experiments, which, in turn, opens means to bet-
ter understand the effects of motion and provides a practical basis
for simulation. The method can also be used for generating realistic
motion-corrupted datasets suitable for benchmarking any retrospective
motion-correction technique or training supervised machine learning
algorithms.

The proposed methodology can be adapted by researchers based on
their needs. For example, a different range of angles and motion types
could be investigated depending on the application. In particular, it can
help to study the impact of motion on different k-space regions.
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Appendix A. Other experimental results

See Fig. 9.

Appendix B. EPI data of all subjects

See Fig. 10.

Appendix C. Raw realignment data

See Fig. 11.

Appendix D. Ad hoc setup for video synchronization

See Fig. 12.
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