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Ultra-short echo-time proton single voxel spectra of rat brain were obtained on a 14.1 T 26 cm horizontal
bore system. At this field, the fitted linewidth in the brain tissue of adult rats was about 11 Hz. New, sep-
arated resonances ascribed to phosphocholine, glycerophosphocholine and N-acetylaspartate were
detected for the first time in vivo in the spectral range of 4.2–4.4 ppm. Moreover, improved separation
of the resonances of lactate, alanine, c-aminobutyrate, glutamate and glutathione was observed. Metab-
olite concentrations were estimated by fitting in vivo spectra to a linear combination of simulated spectra
of individual metabolites and a measured spectrum of macromolecules (LCModel). The calculated con-
centrations of metabolites were generally in excellent agreement with those obtained at 9.4 T. These ini-
tial results further indicated that increasing magnetic field strength to 14.1 T enhanced spectral
resolution in 1H NMR spectroscopy. This implies that the quantification of the neurochemical profile in
rodent brain can be achieved with improved accuracy and precision.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The ability of in vivo short echo-time 1H NMR spectroscopy to
determine the concentrations of at least 18 metabolites (the neuro-
chemical profile) in rodent brain [1] opens the perspective of study-
ing multiple biomarkers in rodent models of human diseases.
Measurements at high magnetic fields are poised to benefit from
the higher signal-to-noise ratio (SNR) and increased spectral disper-
sion, which likely improve quantification accuracy and precision.
The benefits are especially expected to be important for metabolites
having low concentration or overlapping spectral lines and for com-
pounds giving complex J-coupled spectral patterns. Recent studies,
however, have indicated that these advantages may be partially off-
set by a decrease of T2 and T�2 with increasing static magnetic field
[2,3], with some predicting [4] a moderate increase of the signal-
to-noise ratio (SNR) and a nearly linear increase in the spectral line-
width (expressed in Hz) when increasing B0 above 9.4 T.

Most high-field short-echo in vivo proton spectroscopy mea-
surements of rodents in the last decade have been performed at
9.4 T. It was shown that a combination of careful eddy current
compensation [5], automatic first- and second-order localized
shimming [6], and an ultra-short echo-time localization technique
with efficient water suppression enabled to measure high quality
spectra with resolved spectral lines of many metabolites (e.g., the
ll rights reserved.

nárik).
spectrally resolved signals of phosphocreatine and creatine at
3.9 ppm) [7]. The spectral resolution reported in proton spectra
of rat brain at 11.7 T [8,9] appeared consistent with the aforemen-
tioned predictions [4].

Spectra measured at short echo-times are further complicated
by broad signals ascribed mainly to cytosolic proteins [10]. At high
magnetic fields the largely field-independent linewidth of the sig-
nals of macromolecules increasingly approaches that of metabo-
lites and an experimental assessment of macromolecular
contribution to the proton spectrum may become crucial for accu-
rate metabolite quantification.

Even at the highest experimentally achievable magnetic field
for in vivo experimentation, spectral overlap of proton signals from
brain metabolites still may require that concentrations of metabo-
lites are determined by fitting to the measured in vivo data a linear
combination of a ‘‘basis set”, i.e., the spectra of individual metabo-
lites (obtained either experimentally or using spin simulations
[11]). The most frequently used programs for proton spectra quan-
tification are JMRUI [12] and LCModel [13] working in the time and
frequency domain, respectively. Provided such a basis set repre-
sents the tissue composition sufficiently well, the fitting routines
are expected to be enough robust for the quantification of less
abundant metabolites with spectral lines overlapped by dominant
resonances. However, concentrations of metabolites, which are
poorly characterized in the in vivo proton spectra, can be less accu-
rate and their values can be substantially correlated with the con-
centrations of dominant metabolites. Thus, we expect that the
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improved separation of spectral lines at higher magnetic fields re-
sults in a more accurate quantification.

With the availability of the first 14.1 T/26 cm MR system we
aimed to implement and assess the performance of ultra-short
echo-time proton localized spectroscopy of rat brain in vivo and to
determine if new spectral features not previously reported at 9.4–
11.7 T are present. More specifically, the obtained initial results were
compared to the previously suggested field dependence of the spec-
tral linewidth, together with an initial assessment of the reliability
and accuracy of the calculated metabolite concentrations.

2. Methods

2.1. Animals

In vivo experiments were performed on the same group of male
Sprague–Dawley rats, which were anesthetized with 1.5–2.5% iso-
flurane using a nose mask. All animal experiments were conducted
according to federal and local ethical guidelines and the protocols
were approved by the local regulatory body. Body temperature was
maintained at 37.5 ± 1.0 �C by circulating warm water around the
animals.

2.2. Instruments and pulse sequences

Proton spectra were measured from the brain of five animals
using two MR instruments (Varian, Palo Alto, CA, USA): an INOVA
spectrometer interfaced to a 9.4 T, actively shielded magnet with
a 31-cm horizontal bore, and an MRI System interfaced to 14.1 T
magnet with a 26-cm horizontal bore (both magnets from Magnex
Scientific, Oxford, UK). The magnets were equipped with 12-cm in-
ner-diameter actively shielded gradient sets (Magnex Scientific,
Oxford, UK) allowing a maximum gradient of 400 mT/m in
120 ls. Home-built quadrature surface coils consisting of two geo-
metrically decoupled 14-mm diameter single loops were used as
both transmitter and receiver. The total width of the 9.4 T and
14.1 T RF coils was 18 mm and 21 mm, respectively. Eddy currents
were minimized using time dependent quantitative eddy current
field mapping [5]. The static field homogeneity was adjusted using
first- and second-order shims using an EPI version of FASTMAP
[14].

Localizer images were obtained in the coronal and horizontal
planes using a multislice fast spin echo protocol with TE/TR =
60/5000 ms, a slice thickness of 1 mm and an isotropic in-plane
resolution of 94 lm. Spectra were obtained by an ultra-short
echo-time (TE/TR = 2.8/4000 ms) spin echo full intensity acquired
localization (SPECIAL) technique [15], which combined 1D image-
selected in vivo spectroscopy (ISIS) [16] in the vertical (Y) direction
with a slice selective spin echo (SE) in the X and Z directions. The
acquisition of 4096 complex points followed an add-subtract
scheme as in 1D ISIS. Identical RF pulses, gradient amplitudes
and sequence timing were used on both instruments. The spectral
width was 5 kHz and 7 kHz at 9.4 T and 14.1 T, respectively. In the
ISIS part of the sequence, a 2-ms slice selective full-passage hyper-
bolic secant adiabatic pulse with a bandwidth of 10 kHz was ap-
plied in alternate scans. In the SE part of sequence, a 0.5-ms 90�
and a 1-ms 180� asymmetric slice-selective pulses [7,17] were
used in the directions parallel to the coil plane. The bandwidths
of the 90� and 180� pulses were 13.5 kHz and 5.8 kHz, respectively.
VOIs of 50–70 ll were placed laterally to the brain midline and in-
cluded frontal cortex, corpus callosum and striatum. The voxel po-
sition was identical at both field strengths.

Water signal was suppressed by a series of seven 25-ms asym-
metric variable power RF pulses (bandwidth = 270 Hz) with opti-
mized relaxation delays (VAPOR) [7]. The water suppression
pulses were interleaved with three modules of outer volume satu-
ration using six 1.2-ms full-passage hyperbolic secant band-selec-
tive pulses with a bandwidth of 35 kHz. Another frequency-
selective saturation pulse (15 ms Gaussian, bandwidth = 180 Hz)
was added in the delay between the ISIS and SE modules. For
obtaining spectra with comparable SNR at both fields, the number
of accumulations was varied from 64 to 160 at 9.4 T and from 16 to
160 at 14.1 T. Data processing included zero-filling up to 16 K data
points, Gaussian weighting of the FID, Fourier transformation, and
zero- and minimal first-order phase correction. To compensate for
the magnetic field drift, spectra were collected in blocks of 16 aver-
ages, which were stored separately in the memory and were cor-
rected for the relative shift in frequency.

For estimating the spectrum of macromolecules, the SPECIAL
sequence was extended with a 2-ms nonselective full-passage
hyperbolic secant inversion pulse (a bandwidth of 10 kHz), which
was applied before starting the localization part of the sequence.
The repetition time of 2500 ms and the echo time of 2.8 ms or
40 ms were used, the number of accumulations was 640. The mac-
romolecule spectrum was discriminated from signals of metabo-
lites based on a difference in T1 relaxation times, which are much
shorter in macromolecules also at 14.1 T. A series of short echo-
time (TE = 2.8 ms) inversion recovery spectra were measured with
inversion times (TI) of 420, 600, 750, 850 and 1000 ms.

2.3. Quantification

Metabolite concentrations were calculated by LCModel using
databases of simulated spectra of metabolites combined with spec-
tra of macromolecules measured at both fields. Databases of simu-
lated spectra were created by a home written program in MATLAB
(MathWorks, Natick, MA, USA) based on the density matrix formal-
ism [18], using published values of coupling constants and chemi-
cal shifts [11]. The macromolecule spectrum at 14.1 T was
measured as a part of this study while the spectrum for the 9.4 T
database was taken from the previous study [15]. The spectrum
of macromolecules at 14.1 T was processed using the Hankel–Lanc-
zos singular value decomposition (HLSVD) technique [19] imple-
mented in the JMRUI software. In order to assess the importance
of the measured spectrum of macromolecules in the quantification
of metabolites at 14.1 T, the LCModel analysis of a series of five
spectra was repeated twice, with and without including the spec-
trum of macromolecules in the LCModel database, respectively.
In the latter case, LCModel estimated the macromolecular ‘‘base-
line” using predefined peaks of macromolecules and lipids and a
spline function.

3. Results

A high magnet stability and the quality of the gradient system
were considered important prerequisites for high performance of
1H NMR spectroscopy. The magnetic field drift on the 14.1 T mag-
net was less than 0.05 ppm/hour. Eddy currents were minimized to
below 0.02%. An increase of approximately 10–20% in SNR values
provided by LCModel was observed at 14.1 T in comparison with
9.4 T. The best water and total creatine (CH3) linewidths measured
in 5 spectra of adult rats after FASTMAP optimization of first- and
second-order shims were about 17 Hz and 14 Hz, respectively. The
best values obtained at 9.4 T were about 12.5 Hz and 10.5 Hz for
water and creatine signals, respectively.

3.1. New features of 14.1 T proton spectra

Fig. 1 shows single voxel 9.4 T and 14.1 T spectra of rat brain,
measured by the SPECIAL technique, with peak assignments. Two



Fig. 1. Comparison of 9.4 T (a) and 14.1 T (b) spectra of rat brain. The expanded region of the 14.1 T spectrum shows the assignment of small peaks and peak shoulders in the
downfield part of the spectrum to model spectra of individual metabolites. A shifted Gaussian function, exp[�(t � 0.08)2/0.112], was used in both spectra for modest
resolution enhancement. The peak of NAA at 4.4 ppm in the 14.1 T spectrum is partially saturated by water suppression pulses.
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novel prominent features were immediately apparent at 14.1 T, in
particular a group of spectral lines resonating between 4.2 and
4.4 ppm, and the narrowing (in ppm) of the spectral lines of GABA,
Glu and NAA in the spectral range from 1.8 ppm to 2.6 ppm. In the
complex peak at 2.45–2.55 ppm, the glutamate CH2 protons of GSH
(2.56 ppm) were partially resolved from those of NAA (2.49 ppm).

This figure further illustrates increased dispersion at 14.1 T. The
improved spectral quality enabled to discern several low-intensity
peaks in the spectral region from 3.5 ppm to 4.2 ppm, which were
assigned to Lac (at 4.11 ppm), Glc (3.85 ppm) and GPC (3.67 and
3.87 ppm) (Fig. 2, inset). The resonances in the chemical shift range
above 4.2 ppm were detected for the first time in vivo due to the
effectively narrower bandwidth used for water suppression, which
represents a further manifestation of the increased spatial resolu-
tion. They were ascribed to NAA, GPC and PCho at 4.38, 4.31 and
4.27 ppm.

3.2. Estimation of the macromolecule spectrum at 14.1 T

The inversion recovery spectra measured with different inver-
sion times are shown in Fig. 2. Residual peaks of major metabolites
were seen in all the spectra due to the high SNR. Since T1 relaxation
times of metabolite resonances were not identical, a macromole-
cule spectrum with completely nulled metabolite resonances could
not be obtained. Thus, the spectrum at TI = 750 ms (Fig. 2c) with
the smallest, positive or negative, residual peaks was taken as a ba-
sis for the spectrum of macromolecules. Intensity of the residual
metabolite peaks in this spectrum was less than 10% of the original
signal intensity except for the Cr/PCr peak at 3.9 ppm having sub-
stantially shorter T1 as in previous studies [1]. Identification of
these peaks was based on the course of their intensities (changing
from negative to positive) over the series of inversion recovery
spectra. In addition, the identification was confirmed by measuring
an inversion recovery spectrum with TI = 750 ms and TE = 40 ms
(Fig. 2f). In this spectrum the residual signals of metabolites were
retained due to longer T2 relaxation times, while the signals of
macromolecules were substantially reduced due to the more rapid
signal decay, ascribed to faster T2 relaxation. In this way, residual
peaks of NAA at 2.0 and 2.7 ppm, Tau at 3.4 ppm, total choline at
3.2 ppm, Ins at 3.6 ppm and total Cr at 3.9 ppm were identified.
The final macromolecule spectrum after removing residual peaks
of metabolites is shown in Fig. 2g.



Fig. 2. Estimation of the spectrum of macromolecules based on IR-SPECIAL spectra
using inversion times of 420 ms (a), 600 ms (b), 750 ms (c), 850 ms (d) and 1000 ms
(e) and TE = 2.8 ms, and the spectrum measured with the inversion time of 750 ms
and TE = 40 ms (f). The spectrum (c) showing minimal residual peaks (negative
peaks of NAA at 2 ppm and Tau at 3.4 ppm, and positive peaks of NAA at 2.7 ppm,
GPC/PCho at 3.2, Ins at 3.6 ppm and Cr/PCr at 3.9 ppm) was considered as a
spectrum of macromolecules after removing the residual peaks of metabolites by
the HLSVD algorithm (g). The residual signal of NAA at 2.7 ppm marked with
asterisk in the spectrum (f) is reduced and inverted relative to that in the spectrum
(c) due to J-evolution.

ig. 3. Comparison of LCModel results obtained on the same spectrum using a
ectral database without (a) and with (b) including the spectrum of macromol-

cules. The upper traces show overlaid experimental (thin line) and simulated
hick line) spectra. The traces below represent, from top to bottom, modeled (a) or
xperimental (b) macromolecules, residual baseline and the difference between the
xperimental and simulated spectra.
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3.3. Determination of metabolite concentrations

Fig. 3 demonstrates that the spectrum fitted without an exper-
imental macromolecule spectrum was a poorer match of the
experimental spectrum, with residuals observed particularly in
the spectral region from 0.5 to 2.0 ppm, compared to the LCModel
run with the macromolecule spectrum. When omitting the spec-
trum of macromolecules, the metabolite concentrations of Glc,
GABA, PCho, GSH, PE and Asp were higher by about 30–70%
whereas the concentrations of Ala, Asc, NAAG and Lac were lower
by 70–100% (data not shown).

The LCModel analysis of a representative 14.1 T spectrum is
shown in Fig. 4. Five spectra having the same SNR (within ±3%)
as judged from LCModel outputs at both fields were used to com-
pare mean concentrations, their standard deviations and mean
Cramer–Rao lower bounds (CRLB) for 19 metabolites (Table 1).
The concentrations were fitted from the spectral ranges of either
0–4.1 ppm (at 9.4 T and 14.1 T) or 0–4.4 ppm (at 14.1 T only). In
general, an excellent agreement between the concentrations ob-
tained at 9.4 and 14.1 T was noted. Substantial differences were
observed only for metabolites which are not well characterized
at 9.4 T such as Ala, GPC and PCho, GABA, Gly and NAAG.

4. Discussion

A constant trend towards using higher magnetic fields is seen in
high resolution NMR due to the increased SNR and improved reso-
lution. However, the benefits of ultra high fields for in vivo MR
spectroscopy may be offset by increases in linewidth due to the
heterogeneity of the brain tissue.

Our experiments demonstrated new spectral features at 14.1 T
not seen previously at 9.4–11.7 T. For example, the resolved reso-
nances at 4.31 and 4.27 ppm, which typically are saturated at low-
er fields by water suppression pulses, and additional peaks/peak
shoulders of GPC resolved between 3.6 ppm and 3.9 ppm (Fig. 1)
may substantially improve the accuracy of the GPC and PCho quan-
tification. The spectra of GPC and PCho at lower magnetic fields
F
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e
e

show only one common intense resonance line with almost identi-
cal chemical shifts, 3.212 ppm and 3.208 ppm, respectively [11].
The other small signals in the range of 3.6–3.9 ppm are obscured
by intense signals of Ins, Glu, Gln, Cr and PCr, thus providing very
few spectral features that can lead to a robust and separate quan-
tification of GPC and PCho. The concentration of PCho calculated by
LCModel at 9.4 T are larger than that of GPC, with calculated stan-
dard deviations of about 30%, whereas the concentrations obtained
at 14.1 T are reversed and their standard deviations dropped by
more than one-half (Table 1). The obtained concentrations of PCho
and GPC can in principle be compared with 31P NMR data, where
PCho and GPC peaks have been resolved. We are aware only of
studies on human brain [20] and on brain of newborn piglets
[21] showing resolved PCho and GPC peaks. In these 31P NMR spec-
tra, peak intensities of GPC and PCho agree well with the GPC/PCho
ratio found at 14.1 T. The importance of the upfield spectral region
for the quantification of PCho and GPC is demonstrated by the
LCModel fit at 14.1 T. When only the spectral range from 0 to
4.1 ppm was used (Table 1), standard deviations dramatically in-
creased and the mean PCho and GPC concentrations changed.
These data indicate that the detection of the new spectral lines
at 14.1 T improves substantially the precision and likely also accu-
racy of quantification of GPC and PCho. Similarly, determination of
Glc should be improved at 14.1 T since, along with the well-sepa-
rated peak at 5.23 ppm, there is another spectral line of this com-
pound at 3.85 ppm, which is clearly visible at 14.1 T even at
euglycemia. However, the Glc and Lac concentrations could not
be reliably compared with those at 9.4 T due to their dependence
on animal physiology, such as anesthesia and glycemia.



Fig. 4. From the top, a 14.1 T spectrum from rat brain (70 ll volume of interest
including frontal cortex, corpus callosum and striatum, 240 scans), its LCModel fit
and a residual spectrum. The spectra below are fits of individual metabolites. The
symbols are explained in Table 1, Mac is the macromolecule spectrum.

Table 1
Mean metabolite concentrations (±standard deviations) and mean CRLB calculated
from five pairs of spectra measured at 9.4 T and 14.1 T, respectively

Metabolite 9.4 T 14.1 T

Concentration
(mmol/kg) ± SD

CRLB
(%)

Concentration
(mmol/kg) ± SD

CRLB
(%)

Alanine (Ala) 0.37 ± 40% 23 0.63 ± 19%a 11
Aspartate (Asp) 1.7 ± 31% 14 1.9 ± 10% 9
Phosphocholine (PCho) 0.47 ± 33% 16 0.32 ± 16%a 16

0.49 ± 26%b 17
Glycerophosphocholine (GPC) 0.33 ± 30% 18 0.87 ± 5%a 6

0.66 ± 32%ab 12
Creatine (Cr) 3.9 ± 12% 4 4.0 ± 11% 3
Phosphocreatine (PCr) 4.5 ± 9% 3 4.3 ± 10% 3
c-Aminobutyrate (GABA) 1.1 ± 22% 9 1.5 ± 13%a 6
Glutamine (Gln) 3.0 ± 19% 3 2.8 ± 19% 3
Glutamate (Glu) 9.8 ± 6% 1.5 10.3 ± 8% 1.2
Glutathione (GSH) 1.0 ± 12% 7 1.3 ± 14%a 5
Glycine (Gly) 0.50 ± 32% 22 0.81 ± 17% 13
Glucose (Glc) 1.2 ± 66% 30 2.3 ± 10%a 9
myo-Inositol (Ins) 5.9 ± 6% 2 6.2 ± 5% 2
N-Acetylaspartate (NAA) 9.2 ± 10% 1.0 9.3 ± 12% 1.0
Taurine (Tau) 6.1 ± 12% 2 6.0 ± 9% 2
Ascorbate (Asc) 1.2 ± 40% 14 1.4 ± 33% 11
N-Acetylaspartylglutamate

(NAAG)
0.40 ± 51% 6 0.96 ± 16%a 6

Phosphoethanolamine (PE) 2.1 ± 9% 6 2.2 ± 12% 9
Lactate (Lac) 1.4 ± 33% 7 0.73 ± 19%a 12

The spectra in each pair had the same SNR (within ±3%), the overall range of SNR
was 27–40.

a Metabolite concentrations, which were found significantly different at 14.1 T
compared to 9.4 T (t < 0.1).

b Only the spectral range from 0 to 4.1 ppm was used in the LCModel fit.
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Despite excellent spectral dispersion at 14.1 T, many spectral
lines of metabolites remained overlapped among each other as
well as with macromolecule signals. We demonstrated that an
experimental estimation of the macromolecule spectrum repre-
senting the ‘‘baseline” of ultra-short echo-time proton spectra
can improve the quality of the fit between experimental and sim-
ulated spectra at this magnetic field. The absence of the measured
macromolecule spectrum in the database led to a large and unpre-
dictable bias in concentrations of many metabolites, in the case of
Lac even to the absence of any estimated value.

The estimated spectrum of macromolecule was obtained by a
single inversion recovery technique, although this was not the only
approach evaluated. The double inversion spectrum reproduced
poorly our experimental ‘‘baseline” in the spectral region of 0.5–
2 ppm because signal intensities in the macromolecule spectrum
obtained by this method were differently T1-weighted [4] (data
not shown). Due to a relatively high SNR we were able to identify
residual peaks of metabolites and remove them from the macro-
molecule spectrum in the time domain. The LCModel calculations,
employing a database of simulated spectra of metabolites com-
bined with the measured spectrum of macromolecules, provided
an excellent fit to experimental data (Fig. 4).

Table 1 indicates that relative standard deviations and CRLBs of
metabolite concentrations are nearly the same or lower at 14.1 T
than at 9.4 T. It should be noted that spectra with the same SNR
were compared. Therefore, the observed decrease of standard devi-
ations of Ala, Asp, GABA, Gly and NAAG can be attributed to im-
proved separation of their spectral lines. The removal of residual
peaks from the spectrum of macromolecules at 14.1 T could further
improve accuracy of quantification of some metabolites having
their spectral lines co-registered with the residual peaks, namely
Gly, Asp and PCho. Thus, the concentrations of several poorly rep-
resented metabolites are expected to be more accurate at 14.1 T.
Specifically, the Ala concentration of 0.6 mmol/kg found at 14.1 T
is close to the value of about 0.65 mmol/kg found by ex vivo 1H
NMR in the rat cortex [22]. The concentration of GABA measured
at 14.1 T is similar to the concentration of 1.8 mmol/kg found in
the whole rat brain and to the average value of 1.25 and
2.21 mmol/kg found in rat cortex and striatum, respectively, by
enzymatic–fluorometric analysis of brain extracts [23]. The
LCModel estimate at 14.1 T for the Gly concentration was in excel-
lent agreement with the value of 1.0 mmol/kg determined by high
performance liquid chromatography in brain extracts [24] and by
in vivo spectroscopy of rat brain at a longer echo time [25].

For comparing uncertainties of metabolite concentrations at
both fields we used two parameters: standard deviations, which
contain also inter-animal variations, and CRLBs. The CRLBs are esti-
mates of standard deviations of concentrations in individual spec-
tra, however, they assume that the model is correct or at least
sufficiently parameterized to describe the data (S. Provencher,
LCModel & LCMgui User’s Manual, http://s-provencher.com/
pages/lcmodel.shtml). Thus, comparison of CRLBs for PCho, GPC,
Lac and NAA using different models, with and without spectral
lines in the 4.1–4.4 ppm region, might not be fully adequate.

The smaller than the theoretically predicted 50% increase in
sensitivity can be in part explained by small differences in hard-
ware of both scanners. The width of the RF coil at 14.1 T was
slightly larger than the width of the coil used at 9.4 T, which was
estimated to account for a 25% decrease in signal intensity at
14.1 T. Another 10% signal attenuation was due to cable insertion
losses at 14.1 T, which can be minimized by moving the preampli-
fier closer to the RF coil. Taking these differences in hardware into
account, the observed increase in SNR at 14.1 T was consistent
with theoretical expectations of �50%.

The width of water and Cr lines at 14.1 T were larger than the
values obtained at 9.4 T by a factor of about 1.35, which was
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slightly, but markedly less than predicted by de Graaf et al. [4]. The
linewidth in the 14.1 T spectra, as fitted by LCModel, was about
11 Hz, which is much smaller than the value of about 14 Hz ob-
tained experimentally on the methyl signal of total Cr at
3.03 ppm. However, the linewidth of the Cr signal comprises not
only the natural linewidth but also the difference of 0.002 ppm
(1.2 Hz at 14.1 T) between the chemical shifts of PCr and Cr reso-
nances. Its measurement is further likely affected by the overlap-
ping signals of macromolecules, GABA and GSH.

In summary, we conclude that increasing magnetic field
strength to 14.1 T improves spectral resolution in in vivo 1H NMR
spectroscopy, which enables to detect resonances previously not
seen in rodent brain. The newly observed spectral features amend
the accuracy of metabolite concentrations calculated by LCModel
and generally decrease their Cramer–Rao lower bounds.
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