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ARTICLE INFO ABSTRACT

Keywords: Attribute guided face image synthesis aims to manipulate attributes on a face image. Most existing methods
Attribute guided face image synthesis for image-to-image translation can either perform a fixed translation between any two image domains using
Generative adversarial network a single attribute or require training data with the attributes of interest for each subject. Therefore, these

Facial expression recognition methods could only train one specific model for each pair of image domains, which limits their ability in

dealing with more than two domains. Another disadvantage of these methods is that they often suffer from
the common problem of mode collapse that degrades the quality of the generated images. To overcome these
shortcomings, we propose attribute guided face image generation method using a single model, which is
capable to synthesize multiple photo-realistic face images conditioned on the attributes of interest. In addition,
we adopt the proposed model to increase the realism of the simulated face images while preserving the face
characteristics. Compared to existing models, synthetic face images generated by our method present a good
photorealistic quality on several face datasets. Finally, we demonstrate that generated facial images can be
used for synthetic data augmentation, and improve the performance of the classifier used for facial expression

recognition.
1. Introduction is needed. In addition, GAN based approaches are often fragile in
the common problem of mode collapse that degrades the quality of
In this work, we are interested in the problem of synthesizing the generated images. To overcome these challenges, our objective
realistic faces by controlling the facial attributes of interest (e.g. expres- is to use a single model to synthesize multiple photo-realistic images
sion, pose, lighting condition) without affecting the identity properties  from the same input image with varying attributes simultaneously.

(see Fig. 1). In addition, this paper investigates learning from syn-
thetic facial images for improving expression recognition accuracy.
Synthesizing photo-realistic facial images has applications in human-
computer interactions, facial animation and more importantly in facial
identity or expression recognition. However, this task is challenging
since image-to-image translation is ill-defined problem and it is difficult
to collect images of varying attributes for each subject (e.g. images
of different facial expressions for the same subject). The most notable
solution is the incredible breakthroughs in generative models. In partic-
ular, Generative Adversarial Network (GAN) (Goodfellow et al., 2014) loss to generate high-quality face images.

variants have achieved state-of-the-art results for the image-to-image Our paper makes the following contributions:
translation task. These GAN models could be trained in both with
paired training data (Isola et al., 2017) and unpaired training data (Kim

Our proposed model, namely Lean to Synthesize and Synthesize to
Learn (LSSL) is based on encoder—decoder structure, using the image
latent representation, where we model the shared latent representation
across image domains. Therefore, during inference step, by changing
input face attributes, we can generate plausible face images owing
attribute of interest. We introduce bidirectional learning for the latent
representation, which we have found this loss term to prevent generator
mode collapse. Moreover, we propose to use an additional face parsing

1. This paper investigates domain adaptation using simulated face

et al., 2017; Zhu et al., 2017). Most existing GAN models (Shen and images for improving expression recognition accuracy. We show
Liu, 2017; Zhu et al., 2017) are proposed to synthesize images of a that how the proposed approach can be used to generate photo-
single attribute, which make their training inefficient in the case of realistic frontal facial images using synthetic face image and
having multiple attributes, since for each attribute a separate model unlabeled real face images as the input. We compared our results
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Fig. 1. Attribute guided facial image generation using LSSL on the Radboud Faces Database (RaFD) (Langner et al., 2010). The input neutral faces are fed into our model to

exhibit specified attribute. Left to right: input neutral face and seven different attributes including angry, co

respectively.

with SimGAN method (Shrivastava et al., 2017) in terms of ex-
pression recognition accuracy to see improvement in the realism
of frontal faces. The source code is available at https://github.co
m/CreativePapers/Learn-to-Synthesize-and-Synthesize-to-Learn.

2. We show that use of our method leads to realistic generated
images that contribute to improve the performance of expres-
sion recognition accuracy despite having small number of real
training images. Further, compared to other variants of GAN
models (Zhu et al., 2017; Perarnau et al., 2016; Choi et al.,
2018), we show that a better performance can be attained
through a proposed method to focus on the data augmentation
process;

3. Unlike most of existing GAN based methods (Perarnau et al.,
2016), which are trained with a large number of labeled and
matching image pairs, the proposed method is adopted for un-
paired image-to-image translation. As a matter of fact, the pro-
posed method transfers the learnt characteristics between differ-
ent classes;

4. The proposed method is capable of learning image-to-image
translation among multiple domains using a single model. We
introduce a bidirectional learning for the image latent represen-
tation to additionally enforce latent representation to capture
shared features of different attribute categories and to prevent
generator mode collapse. By doing so, we synthesize face photos
with a desired attribute and translate an input image into an-
other domain image.' Besides, we present face parsing loss and
identity loss that help to preserve the face image local details
and identity.

1 We denote domain as a set of images owning the same attribute value.

d, fearful, happii neutral, and surprised,

7
ptuous,

2. Related work

Recently, GAN based models (Goodfellow et al., 2014) have
achieved impressive results in many image synthesis applications,
including image super-resolution (Ledig et al., 2017), image-to-image
translation (pix2pix) (Isola et al., 2017) and CycleGAN (Zhu et al.,
2017). We summarize contributions of few important related works in
below:

Applications of GANS to face generation. Taigman et al. (2016) proposed
a domain transfer network to tackle the problem of emoji generation
for a given facial image. Lu et al. (2018) proposed attribute-guided face
generation to translate low-resolution face images to high-resolution
face images. Huang et al. (2017) proposed a Two-Pathway Generative
Adversarial Network (TP-GAN) for photorealistic face synthesis by
simultaneously considering local face details and global structures.

Image-to-image translation using GANs. Many of existing image-to-image
translation methods e.g. Isola et al. (2017) and Shrivastava et al. (2017)
formulated GANs in the supervised setting, where example image pairs
are available. However, collecting paired training data can be difficult.
On the other side, there are other GAN based methods, which do
not require matching pairs of samples. For example, CycleGAN (Zhu
et al.,, 2017) is capable to learn transformations from source to target
domain without one-to-one mapping between two domain’s training
data. Li et al. (2016) proposed a Deep convolutional network model
for Identity-Aware Transfer (DIAT) of the facial attributes. However,
these GAN based methods could only train one specific model for each
pair of image domains. Unlike the aforementioned approaches, we use
a single model to learn to synthesize multiple photo-realistic images,
each having specific attribute. More recently, IcGAN (Perarnau et al.,
2016) and StarGAN (Choi et al., 2018) proposed image editing using
AC-GAN (Odena et al., 2017) with conditional information. However,
we use domain adaptation by adding the realism to the simulated faces
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and there is no such a solution in these methods. Similar to Perarnau
et al. (2016), Fader Networks Lample et al. (2017) proposed image
synthesis model without needing to apply a GAN to the decoder output.
However, these methods impose constraints on image latent space to
enforce it to be independent from the attributes of interest, which may
result in loss of information in generating attribute guided images.

GANS for facial frontalization and expression transfer. Zhang et al.
(2018) proposed a method by disentangling the attributes (expression
and pose) for simultaneous pose-invariant facial expression recognition
and face images synthesis. Instead, we seek to learn attribute-invariant
information in the latent space by imposing auxiliary classifier to
classify the generated images. Qiao et al. (2018) proposed a Geometry-
Contrastive Generative Adversarial Network (GC-GAN) for transferring
continuous emotions across different subjects. However, this requires a
training data with expression information, which may be expensive to
obtain. Alternatively, our self-supervised approach automatically learns
the required factors of variation by transferring the learnt characteris-
tics between different emotion classes. Zhu et al. (2018) investigated
GANs for data augmentation for the task of emotion classification. Lai
and Lai (2018) proposed a multi-task GAN-based network that learns to
synthesize the frontal face images from profile face images. However,
they require paired training data of frontal and profile faces. Instead,
we seek to add realism to the synthetic frontal face images without
requiring real frontal face images during training. Our method could
produce synthesis faces using synthetic frontal faces and real faces with
arbitrary poses as input.

3. Methods

We first introduce our proposed multi-domain image-to-image trans-
lation model in Section 3.1. Then, we explain learning from simulated
data by adding realism to simulated face images in Section 3.2. Finally,
we discuss our implementation details and experimental results in
Sections 4 and 5, respectively.

3.1. Learn to synthesize

Let X and S denote original image and side conditional image
domains, respectively and Y set of possible facial attributes, where
we consider attributes including facial expression, head pose and
lighting (see Fig. 2). As the training set, we have m triple inputs
(x; € X,s5; €S,y;, € V), where x; and y, are the ith input face image and
binary attribute, respectively and s; represents the ith conditional side
image as additional information to guide photo-realistic face synthesis.
Then, for any categorical attribute vector y from the set of possible
facial attributes Y, the objective is to train a model that will generate
photo-realistic version (x’ or s’) of the inputs (x and s) from image
domains X and S with desired attributes y.

Our model is based on the encoder—decoder architecture with do-
main adversarial training. As the input to our expression synthesis
method (see Fig. 3a), we propose to incorporate individual-specific
facial shape model as the side conditional information s in addition to
the original input image x. The shape model can be extracted from the
configuration of the facial landmarks,? where the facial geometry varies
with different individuals. Our goal is then to train a single generator
G with encoder G,,, — decoder G,,. networks to translate the input
pair (x, s) from source domains into their corresponding output images
(x',s") in the target domain conditioned on the target domain attribute
y and the inputs latent representation G, (x,s), Gy (Gone (x,5), ) =
x',s'. The encoder G,,, : (Xsouree, gsourcey R™T6%% is a fully con-
volutional neural network with parameters 6,,. that encodes the input
images into a low-dimensional feature space G,,. (x, s), where n, h, w are
the number of the feature channels and the input images dimensions,

2 We use dlib regression trees algorithm.
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(a) (b)

Fig. 2. Examples of facial attribute transfer. (a) Generating images with varying
poses ranging from O to 45 degrees (yaw angle) in 15 degrees steps. (b) Generating
face images with three different lighting conditions using face image with normal
illumination as input: normal illumination (reconstruction), weak illumination and dark
illumination, respectively.

h ,w
respectively. The decoder G, : <R"xﬁxﬁ, )7) — Xlarsel glarget jg the

sub-pixel (Shi et al., 2016) convolutional neural network with param-
eters 0,,, that produce realistic images with target domain attribute y
and given the latent representation G,,. (x, s). The precise architectures
of the neural networks are described in Section 4.1. During training, we
randomly use a set of target domain attributes y to make the generator
more flexible in synthesizing images. In the following, we introduce the
objectives for the proposed model optimization.

GAN loss. We introduce a model that discovers cross-domain image
translation with GANs. Moreover, at the inference time, we should be
able to generate diverse facial images by only changing attribute of
interest. By doing so, we seek to learn attribute-invariant information in
the latent space representing the shared features of the images sampled
for different attributes. It means if the original and target domains are
semantically similar (e.g. facial images of different expressions), we
expect the common features across domains to be captured by the same
latent representation. Then, the decoder must use the target attribute
to perform image-to-image translation from the original domain to
the target domain. However, this learning process is unsupervised
as for each training image from the source domain, its counterpart
image in the target domain with attribute y is unknown. Therefore, we
propose to train an additional neural network called the discriminator
D (with the parameters 6,,,) using an adversarial formulation to not
only distinguish between real and fake generated images, but also to
classify the image to its corresponding attribute categories. We use
Wasserstein GAN (Gulrajani et al.,, 2017) objective with a gradient
penalty loss L,, (Arjovsky et al., 2017) formulated as below:

EGAN = ]Ex,s [Dsrc (X, S)] - ]Ex,:,y [Dsrc (Gdec (Genc (X, S) s y))]

_/lgp ['gp (Dsrc) ’

The term D,,. (-) denotes a probability distribution over image sources
given by D. The hyper-parameter 4,, is used to balance the GAN objec-
tive with the gradient penalty. A generator (encoder—decoder networks)
used in our model has to play two roles: learning the attribute invari-
ance representation for the input images and is trained to maximally
fool the discriminator in a min-max game. On the other hand, the
discriminator simultaneously seeks to identify the fake examples for
each attribute.

@

Attribute classification loss. We deploy a classifier by returning addi-
tional output from the discriminator to perform an auxiliary task of
classifying the synthesized and real facial images into their respective



B. Bozorgtabar, M.S. Rad, H.K. Ekenel et al.

fixed

Parsing network

Computer Vision and Image Understanding 185 (2019) 1-11

Parsing maps

0010000

Target category

Genc(xa 5)

=k

Genc (',BI ) S’ )

0000100

Source category

e

Parsing network
fixed

(a)

P(categories) P(real)

Parsing maps

Target category
0010000

Source category
0000100

(b)

Gene(z, s)

Genc (wl ) 3’ )

P(categories) P(real)

Fig. 3. Overview of our proposed LSSL method. (a) Attribute-guided face image synthesis model, consisting of three networks, an encoder—decoder generator G, a discriminator
D and face parsing network P. A discriminator’s job is to discriminate the realism of synthetic pair images and to guarantee correct attribute classification on the generated face
images. (b) Pose normalization model, which takes a synthetic face image and unlabeled real image as input and generates photo-realistic version of the frontal face through
identical networks used in (a). The only difference is that a discriminator takes only one single image as input.

attribute categories. An attribute classification loss of real images L,
to optimize the discriminator parameters 6, is defined as follow:

g:]inffcls, = ]Ex,s.,y’ [fr (x’ S, y,)] 4

m (2
£ (x,5,¥)= Z —yi'log D s (x,8) — (1= y;)log (1 = Dy (x, ),

i=1
Here, y denotes original attributes categories for the real images. 7, is
the summation of binary cross-entropy losses of all attributes. Besides,

an attribute classification loss of fake images £, ; used to optimize the
generator parameters (0,,.. 0, ), formulated as follow:

min Eclsf = Ex,s,y’ [Z’ﬂf (x,’sl’y)] >

enc Odec

0,
m

£ (x.s'y) = z —y;log Dy, (x'.5') ®

i=1

= (1=y;)log (1= Dey (x',5))



B. Bozorgtabar, M.S. Rad, H.K. Ekenel et al.

5

Bo B> po o
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Fig. 4. Face parsing maps on the RaFD dataset. Left to right: input neutral face and
parsing maps for its constituent facial parts containing lips (second column), face skin
(third column), eyes (fourth column) and color visualization generated by all three
category parsing maps (last column), respectively. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

where x’ and s are the generated images and auxiliary outputs, which
should correctly own the target domain attributes y. £, denotes sum-
ming up the cross-entropy losses of all fake images.

Identity loss. Using the identity loss, we aim to preserve the attribute-
excluding facial image details such as facial identity before and after
image translation. By doing so, we use a pixel-wise /; loss to enforce
the details consistency of the face original domain and suppress the face
blurriness:

Ly=E,., [”Gm (Goe (%5, ) — le] :

Face parsing loss. The face important components (e.g., lips and eyes)
are typically small and cannot be well reconstructed by solely mini-
mizing the identity loss on the whole face image. Therefore, we use

4

Encoder

Residual Blocks
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Fig. 6. Facial attribute transfer results of LSSL compared with IcGAN (Perarnau et al.,
2016) and CycleGAN (Zhu et al., 2017), respectively.

a face parsing loss to further improve the harmony of the synthetic
faces. As our face parsing network, we use U-Net (Ronneberger et al.,
2015) trained on the Helen dataset (Le et al., 2012), which has ground
truth face semantic labels, for training parsing network. Instead of
utilizing all semantic labels, we use three key face components (lips,
eyes and face skin). Once the network is trained, it remains fixed in
our framework. The parsing loss is back-propagated to the generator to
further regularize generator. Fig. 4 shows some parsing results on the
RaFD dataset (Langner et al., 2010).

Ly=Ey [Ap (P(x)-P (x’))] ’

where A, (-,-) denotes a function to compute pixel-wise softmax loss
and P (-) is the face parsing network.

()

Bidirectional loss. Using GAN loss alone usually leads to mode col-
lapse, generating identical labels regardless of the input face photo.

Decoder

n3

Generated Image

Subpixel Conv

I10M}3N JO}eIaudn)

Sy S— iy SN Sm—
n64 n128 n256 n512n1024 n1024 n1024+ny“ n512 n256n128 n64 Side Output
Target Domain
(T "
Real Images

n64 n128 n256 n512  n1024

Generated
Images

n2048

P(Real)

=4

I @
2]

]

=S

P(Categories) g..
z

-3

2

<)

=

Fig. 5. Architecture of generator (top) and discriminator network (bottom). n, denotes the dimension of domain attributes. IN and » and FC denote instance normalization,

number of feature maps and fully connected layer, respectively.
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Fig. 7. Pose-normalized face attribute transfer results of (a) LSSL method compared
with (b) SimGAN method (Shrivastava et al., 2017) on the BU-3DFE dataset (Yin et al.,
2006). The input synthetic frontal face and real profile face are fed into our model
to exhibit specified attribute. Left to right: input synthetic face and seven different
attributes including angry, disgusted, fearful, happiness, neutral, sadness and surprised,
respectively.

This problem has been observed in various applications of conditional
GANs (Isola et al.,, 2017; Dosovitskiy and Brox, 2016) and to our
knowledge, there is still no proper approach to deal with this issue. To
address this problem, we show that using the trained generator, images
of different domains can be translated bidirectionally. We decompose
this objective into two terms: a bidirectional loss for the image latent
representation, and a bidirectional loss between synthesized images and
original input images, respectively. This objective is formulated using
1, loss as follow:

Ly=Ey sy [||X— Xl +1Is = 3“1] +

]EXJ’,V H Genc (X, S) - Genc (X,, S,)

1] ’ (6)
x,vs, = Gdec (Genc (x’ S)’y) ’
5&’ §= Gden (Genc (x,’ S,) ’yl) ’

In the above equation, % and § denote the reconstructed original
image and the side conditional image, respectively. Unlike (Zhu et al.,
2017), where only the cycle consistency losses are used at the image
level, we additionally seek to minimize the reconstruction loss using
latent representation.

Overall objective. Finally, the generator G is trained with a linear
combination of five loss terms: adversarial loss, attribute classification
loss for the fake images, bidirectional loss, identity loss and face parsing
loss. Meanwhile, the discriminator D is optimized using an adversarial
loss and attribute classification loss for the real images:
L =Loan + Apily + /lclsﬁcls, + AiaLiq + AL, e
Lp=—=Lan + AesLess,»

where A, 4,, 4;;, and 4, are hyper-parameters, which tune the impor-
tance of bidirectional loss, face parsing loss, identity loss and attribute
classification loss, respectively.
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Fig. 8. Impact of the amount of training synthetic images on performance in terms of
expression recognition accuracy.

()

Fig. 9. Facial attribute transfer results from our proposed method for (a) subject 1 and
(b) subject 20, respectively. The input face images are manipulated to exhibit desired
attribute. Left to right: input neutral face and seven different attributes including anger,
disgust, fear, happiness, neutral, sadness and surprise, respectively.

3.2. Synthesize to learn

In an unconstrained face expression recognition, accuracy will drop
significantly for large pose variations. The key solution would be using
simulated faces rendered in frontal view. However, learning from syn-
thetic face images can be problematic due to a distribution discrepancy
between real and synthetic images. Here, our proposed model generates
realistic face images given real profile face with arbitrary pose and a
simulated face image as input (see Fig. 3b). We utilize a 3D Morphable
Model using bilinear face model (Vlasic et al., 2005) to construct a
simulated frontal face image from multiple camera views. Here, the
discriminator’s role is to discriminate the realism of synthetic face
images using unlabeled real profile face images as a conditional side
information. In addition, using the same discriminator, we can generate
face images exhibiting different expressions.

We compare the results of LSSL with SiImGAN method (Shrivastava
et al., 2017) on the BU-3DFE dataset (Yin et al.,, 2006) to evaluate
the realism of face images. SimGAN method Shrivastava et al. (2017)
considers learning from simulated and unsupervised images through
adversarial training. However, SimGAN is devised for much simpler
scenarios e.g., eye image refinement. In addition, categorical informa-
tion was ignored in SimGAN, which limits the model generalization. In
contrast, LSSL overcomes this issue by introducing attribute classifica-
tion loss into objective function. For a fair comparison with SimGAN
method, we add the attribute classification loss by modifying the
SimGAN’s discriminator, while keeping the rest of network unchanged.
We achieve more visually pleasing results on test data compared to the
SimGAN method (see Fig. 7).
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Fig. 10. Visualization of some hidden units in the encoder of LSSL trained on the BU-
3DFE dataset (Yin et al., 2006). We highlight regions of face images that a particular
convolutional hidden unit maximally activates on.

4. Implementation details

All networks are trained using Adam optimizer (Kingma and Ba,
2014) (B, =0.5,8, =0.999) and with a base learning rate of 0.0001.
We linearly decay learning rate after the first 100 epochs. We use a
simple data augmentation with only flipping the images horizontally.
The input image size and the batch size are set to 128 x 128 and 8 for
all experiments, respectively. We update the discriminator five times
for each generator (encoder—decoder) update. The hyper-parameters in
Egs. (7) and (1) are set as: 4,; = 10 and 4;; = 10, A, =10, Az, =10 and
As = 1, respectively. The whole model is implemented using PyTorch
on a single NVIDIA GeForce GTX 1080.

4.1. Networks architectures

For the discriminator, we use PatchGAN (Isola et al., 2017) that
penalizes structure at the scale of image patches. In addition, LSSI
has the generator network composed of five convolutional layers with
the stride size of two for downsampling, six residual blocks, and four
transposed convolutional layers with the stride size of two for upsam-
pling. We use sub-pixel convolution instead of transposed convolution
followed by instance normalization (Ba et al.,, 2016). For the face
parsing network, we used the same net architecture as U-Net proposed
in Ronneberger et al. (2015), but our face parsing network consists of
depthwise convolutional blocks proposed by MobileNets (Sandler et al.,
2018). The network architecture of LSSL is shown in Fig. 5.

5. Experimental results

In this section, we first propose to carry out comparison between our
LSSL method and recent methods in image-to-image translation from
a qualitative perspective, then we demonstrate the generality of our
method (quantitative analysis) using different techniques for the face
expression recognition.

5.1. Datasets

Oulu-CASIA VIS (Zhao et al., 2011): This dataset contains 480
sequences (from 80 subjects) of six basic facial expressions under
the visible (VIS) normal illumination conditions. The sequences start
from a neutral face and end with peak facial expression. This dataset
is chosen due to high intra-class variations caused by the personal
attributes. We conducted our experiments using subject-independent
10-fold cross-validation strategy.
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MUG (Aifanti et al.,, 2010): The MUG dataset contains image se-
quences of seven different facial expressions belonging to 86 subjects
comprising 51 men and 35 women. The image sequences were captured
with a resolution of 896 x 896. We used image sequences of 52 subjects
and the corresponding annotation, which are available publicly via the
internet.

BU-3DFE (Yin et al., 2006): The Binghamton University 3D Facial
Expression Database (BU-3DFE) (Yin et al., 2006) contains 3D models
from 100 subjects, 56 females and 44 males. The subjects show a
neutral face as well as six basic facial expressions and at four different
intensity levels. Following the setting in Tariq et al. (2013) and Zhang
et al. (2018), we used an openGL based tool from the database cre-
ators to render multiple views from 3D models in seven pan angles
(0°, £15°,4£30°, +45°).

RaFD (Langner et al., 2010): The Radboud Faces Database (RaFD)
contains 4,824 images belonging to 67 participants. Each subject makes
eight facial expressions.

Qualitative evaluation. As shown in Fig. 6, our facial attribute transfer
test results (unseen images during the training step) are more visually
pleasing compared to recent baselines including IcGAN (Perarnau et al.,
2016) and CycleGAN. (Zhu et al., 2017). We believe that our proposed
losses (parsing loss and identity losses) help to preserve the face im-
age details and identity. IcGAN even fails to generate subjects with
desired attributes, while our proposed method could learn attribute
invariant features applicable to synthesize multiple images with desired
attributes. In addition, to evaluate the proposed pose normalization
method, the face attribute transfer results of our proposed method have
been compared with the SiImGAN method (Shrivastava et al., 2017) on
the BU-3DFE dataset (Yin et al., 2006) (see Fig. 7).

Quantitative evaluation. To conduct the quantitative analysis, we ap-
ply LSSL to data augmentation for facial expression recognition. We
augment real images from Oulu-CASIA VIS dataset with the synthetic
expression images generated by LSSL as well as its variants and then
compare with other methods to train an expression classifier. The
purpose of this experiment is to introduce more variability and enrich
the dataset further, in order to improve the expression recognition
performance. In particular, from each of the six expression category,
we generate 0.5k, 1k, 2k, 5k and 10k images, respectively. As shown
in Fig. 8, when the number of synthetic images is increased to 30k,
the accuracy is improved drastically, reaching to 87.40%. The perfor-
mance starts to become saturated when more images (60k) are used.
We achieved a higher recognition accuracy value using the images
generated from LSSL than other CNN-based methods including popular
generative model, StarGAN (Choi et al., 2018) (see Table 1). This
suggests that our model has learned to generate more realistic facial
images controlled by the expression category. In addition, we evaluate
the sensitivity of the results for different components of LSSL method
(face parsing loss, bidirectional loss and side conditional image, re-
spectively). We observe that our LSSL method trained with each of
the proposed loss terms yields a notable performance gain in facial
expression recognition.

Moreover, we evaluate the performance of LSSL on the MUG facial
expression dataset (Aifanti et al., 2010) using the video frames of the
peak expressions. Fig. 9 shows sample facial attribute transfer results on
the MUG facial dataset (Aifanti et al., 2010). It should be noted that the
MUG facial expression dataset are only available to authorized users.
We only have permission from few subjects including 1 and 20 for using
their photos in our paper. In Table 2, we report the results of average
accuracy of a facial expression on synthesized images. We trained a
facial expression classifier with (90%/10%) splitting for training and
test sets using a ResNet-50 (He et al.,, 2016), resulting in a near-
perfect accuracy of 90.42%. We then trained each of baseline models
including CycleGAN, IcGAN and StarGAN using the same training set
and performed image-to-image translation on the same test set. Finally,
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Fig. 11. The training losses for the network’s discriminator on the RaFD dataset (Langner et al., 2010). (a) An attribute classification loss of real images, (b) the discriminator
loss for the pair of fake generated images, (c) discriminator gradient penalty loss and (d) discriminator loss for the pair of real images, respectively.

Table 1
Performance comparison of expression recognition accuracy between the proposed
method and other state-of-the-art methods.

Table 2
Performance comparison on the MUG dataset in terms of average classification
accuracy.

Method Accuracy Method Accuracy
HOG 3D (Klaser et al., 2008) 70.63% Real test set 90.42%
AdaLBP (Zhao et al., 2011) 73.54% CycleGAN (Zhu et al., 2017) 84.40%
Atlases (Guo et al., 2012) 75.52% IcGAN (Perarnau et al., 2016) 80.32%
STM-ExpLet (Liu et al., 2014) 74.59% StarGAN (Choi et al., 2018) 85.15%
DTAGN (Jung et al., 2015) 81.46% LSSL W/O face parsing loss 89.91%
StarGAN (Choi et al., 2018) 83.90% LSSL 90.35%
LSSL W/O side input 84.70%

LSSL W/O bidirectional loss 84.30%

LSSL W/O face parsing loss 86.95%

LSSL 87.40% BU-3DFE dataset. It can be observed from Table 3 that pose normal-

we classified the expression of these generated images using the above-
mentioned classifier. As can be seen in Table 2, our model achieves the
highest classification accuracy (close to real image), demonstrating that
our model could generate the most realistic expressions among all the
methods compared.

Pose normalization analysis. Using BU-3DFE dataset (Yin et al., 2006),
we have designed subject-independent experimental setup. We per-
formed 5-fold cross validation using 100 subjects. Training data in-
cludes images of 80 (frontal face) subjects, while test data includes im-
ages of 20 subjects with varying poses. We use VGG-Face model (Parkhi
et al., 2015), which is pretrained on the (RaFD) (Langner et al., 2010)
and then we further fine-tune it on the frontal face images from

ization helps to improve expression recognition performance of the
non-frontal faces (ranging from 15 to 45 degrees in 15 degrees steps).
Having said that, adding realism to simulated face images helps to
bring additional gains in terms of expression recognition accuracy.
In particular, our method outperforms two recent works, Lai and Lai
(2018) and Zhang et al. (2018) that addressed pose normalization
task. Our proposed losses (parsing loss and identity losses) facilitates
the synthesized frontal face images to preserve much detail of face
characteristics (e.g. expression and identity).

5.2. Visualizing representation

Fig. 10 visualizes some activations of hidden units in the fifth
layer of an encoder (the first component of the generator). Although
all units are not semantic, but these visualizations indicate that the
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Fig. 12. Facial expression synthesis on the Radboud Faces Database (RaFD). Left to right: input neutral face and synthesis results of all eight emotion classes including angry,
contemptuous, disgusted, fearful, happiness, neutral, sadness and surprised, respectively.
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Table 3

Recognition accuracies on normalized face images at different pose angles.
Method +15 +30 +45
Real profile face images 70.15% 66.50% 58.90%
Simulated frontal face images 70.91% 65.90% 59.30%
CycleGAN 71.60% 67.32% 61.50%
Lai and Lai (2018) 71.45% 67.60% 61.95%
Zhang et al. (2018) 71.72% 67.65% 62.10%
LSSL W/O face parsing loss 72.10% 68.52% 63.35%
LSSL 72.70% 69.10% 64.05%

network learns to identity the most informative visual cues from the
face regions.

5.3. Training losses additional qualitative results

Fig. 11 shows the training losses of the proposed attribute guided
face image synthesis model for the discriminator. Here, we use the face
landmark heatmap as the side conditional image. The face landmark
heatmap contains 2D Gaussians centered at the landmarks’ locations,
which are then concatenated with the input image to synthesize differ-
ent facial expressions on the RaFD dataset (Langner et al., 2010). In
addition, the target attribute label is spatially replicated and concate-
nated with the latent feature. Results in Fig. 11 are for 100 epochs,
50,000 iterations of training on the RaFD dataset. Moreover, Fig. 12
shows additional images generated by LSSL.

6. Conclusion

In this work, we introduced LSSL, a model for multi-domain image-
to-image translation applied to the task of face image synthesis. We
present attribute guided face image generation to transform a given
image to various target domains controlled by desired attributes. We
argue that learning image-to-image translation between image domains
requires a proper modeling the shared latent representation across im-
age domains. Additionally, we proposed face parsing loss and identity
loss to preserve much detail of face characteristics (e.g. identity). More
importantly, we seek to add realism to the synthetic images while
preserving the face pose angle. We also demonstrate that the synthetic
images generated by our method can be used for data augmentation to
enhance facial expression classifier’s performance. We reported promis-
ing results on the task of domain adaptation by adding the realism to
the simulated faces. We showed that by leveraging the synthetic face
images as a form of data augmentation, we can achieve significantly
higher average accuracy compared with the state-of-the-art result.
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