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a b s t r a c t 

Tractography enables identifying and evaluating the healthy and diseased brain’s white matter pathways from 

diffusion-weighted magnetic resonance imaging data. As previous evaluation studies have reported significant 
false-positive estimation biases, recent microstructure-informed tractography algorithms have been introduced 
to improve the trade-off between specificity and sensitivity. However, a major limitation for characterizing the 
performance of these techniques is the lack of ground truth brain data. In this study, we compared the per- 
formance of two relevant microstructure-informed tractography methods, SIFT2 and COMMIT , by assessing the 
subject specificity and reproducibility of their derived white matter pathways. Specifically, twenty healthy young 
subjects were scanned at eight different time points at two different sites. Subject specificity and reproducibil- 
ity were evaluated using the whole-brain connectomes and a subset of 29 white matter bundles. Our results 
indicate that although the raw tractograms are more vulnerable to the presence of false-positive connections, 
they are highly reproducible, suggesting that the estimation bias is subject-specific. This high reproducibility 
was preserved when microstructure-informed tractography algorithms were used to filter the raw tractograms. 
Moreover, the resulting track-density images depicted a more uniform coverage of streamlines throughout the 
white matter, suggesting that these techniques could increase the biological meaning of the estimated fascicles. 
Notably, we observed an increased subject specificity by employing connectivity pre-processing techniques to 

Abbreviations: 3D, 3-Dimensional; ANOVA, Analysis of Variance; B&S, Ball and Stick; DW-MRI, Diffusion-Weighted Magnetic Resonance Imaging; COMMIT, 
Convex Optimization for Microstructure Informed Tractography; FA, Fractional Anisotropy; ICC, Intraclass Correlation Coefficient; MD, Mean Diffusivity; MRI, 
Magnetic Resonance Imaging; ODF, Orientation Distribution Function; PCA, Principal Component Analysis; RM-ANOVA, Repeated Measures ANOVA; SEM, Standard 
Error of the Mean; SIFT, Spherical-Deconvolution Informed Filtering of Tractograms; SZB, Stick Zeppelin Ball; TDI, Track-Density Imaging; TE, Echo Time; TR, 
Repetition Time; wt, weights. 
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. Introduction 

Diffusion-weighted magnetic resonance imaging (DW-MRI) and trac-
ography algorithms enable the indirect in-vivo assessment of white
atter fascicles’ trajectories and properties in the human brain. This
as revolutionized neuroscience, allowing researchers to move away
rom post mortem analysis and perform their studies non-invasively
 Assaf et al., 2017 ). These techniques have become a fundamental part
f systems and translational neuroscience. From the measurements of
he displacement of water molecules for specific gradient directions,
t is possible to obtain the 3-dimensional (3D) reconstruction of white
atter fascicles’ trajectories and the description of whole-brain connec-

omes. Moreover, the local qualitative and quantitative examination of
icrostructure offers unique possibilities to address various questions

n clinics and research. For instance, the study of temporal changes of
hite matter structures allows the assessment of plastic changes and

actors like degeneration persistent in healthy and neurological dis-
ase ( Sagi et al., 2012 ). Longitudinal evaluations of the white matter
ereby reveal insights into, e.g., learning processes ( Scholz et al., 2009 )
r white matter reorganization after focal brain lesions, such as stroke
 Koch et al., 2021 ; for review: Koch and Hummel, 2017 ). Still, those
echniques encompass multiple steps vulnerable to noise, uncertainties,
nd approximations that affect the interpretation of findings. 

The main critical drawback of fibre tracking techniques is the recon-
truction of a significant number of invalid tracts, i.e., false positives. In-
erestingly, a recent international tractography challenge revealed that
 high percentage of false positives (e.g. 64% of the reconstructed bun-
les) could be obtained even when the ground truth fibre orientation
istribution functions (ODFs) are used ( Maier-Hein et al., 2017 ). Thus,
ew innovative methods to improve the trade-off between sensitivity
nd specificity are needed ( Schilling et al., 2019 ) by identifying and fil-
ering out the spurious streamlines. Another important limitation is that
he structural connectivity matrix estimated by commonly used trac-
ography algorithms remains qualitative, with an unknown biological
eaning, because the density of reconstructed connections does not re-
ect the underlying white matter fibre density ( Smith et al., 2015 ). To
ddress the limitations, microstructure-informed tractography methods
ere introduced, where each generated streamline is evaluated by its

onsistency in relation to the whole tractogram and the measured DW-
RI data. Two state-of-the-art methods are the spherical-deconvolution

nformed filtering of tractograms ( SIFT2; SIFT; Smith et al., 2015 , 2013a )
nd convex optimization modelling for microstructure-informed trac-
ography ( COMMIT ; Daducci et al., 2014b ). Both approaches differ on
ow the consistency of each streamline is measured. In SIFT2 , the op-
imal weighted set of streamlines is determined so that the resulting
eighted local orientation density of streamlines is as close as possible to

he fibre ODFs estimated using spherical deconvolution ( Tournier et al.,
007 ). The authors hypothesized that this postprocessing step permits
sing the sum of streamline weights as a biological marker of connection
ensity ( Smith et al., 2015b ). Similarly, COMMIT solves a global inverse
roblem to estimate a weight for each streamline by assuming a gener-
tive multi-compartment microstructure model for the measured data,
hich usually includes the intra- and extra-axonal spaces and free water.
he global optimization problem is solved by using constant microstruc-
ure properties throughout each streamline trajectory ( Barakovic et al.,
021a , 2021b , 2016 ; Daducci et al., 2014b , 2013 ; Ocampo-Pineda et al.,
021a ; Pestilli et al., 2014 ; Reisert et al., 2014 ; Schiavi et al., 2020a ;
herbondy et al., 2010 ; Smith et al., 2013b ; Smith et al., 2015 ). The
enerated signals are projected to the 3D voxel-space by considering
2 
 the data dimensionality (using principal component analysis), highlighting the
e studies. Finally, no strong bias from the scanner site or time between measure-
aindividual variance originated from the sole repetition of data measurements

he length of their segments crossing each voxel, which is assumed
o be proportional to the local volume fraction ( Daducci et al., 2013,
014b ). A linear regression model is then designed to decompose the
easured data as a linear combination of the generated signals. The es-

imated weights, thus, quantify the signal fraction of each streamline
n the measured data and assign a biological meaning to each connec-
ion as a surrogate of the axonal cross-sectional area ( Daducci et al.,
014b ). Those streamlines with trajectories not supported by the mea-
ured data have weights close to zero and thus are considered false pos-
tives. Like SIFT2, COMMIT can correct for overrepresented or under-
epresented streamlines (due to tractography biases) by adjusting their
eights ( Ocampo-Pineda et al., 2021a ; Schiavi et al., 2020a ). Although
revious studies found that these microstructure-informed tractography
lgorithms can significantly alter the estimated white matter network
opology ( Frigo et al., 2020 ; Smith et al., 2015b ), their stability, repro-
ucibility, and accuracy have not been compared. This is a crucial step
efore its use for answering neuroscientific and clinical questions. Thus,
his study evaluates the reproducibility, repeatability, and subject speci-
city of microstructure-informed tractography methods considering the
ite, session, and run effects. This was done by collecting DW-MRI data
rom 20 healthy participants in two scanners located at different sites
uring two consecutive scanning sessions and two distinct time points,
or a total of 160 datasets (eight per participant). 

In this regard, reproducibility defines consequent results in the re-
onstruction of white matter over multiple measurements of one subject,
egardless of the site, whereas repeatability defines the stability of the
esults in immediate repetition at the same scanner. This was estimated
ithin the given study by the intraindividual and interindividual Bray
urtis dissimilarity as well as the intraclass correlation coefficient (ICC).
he subject specificity was evaluated by the accuracy of identifying all
ight datasets belonging to one subject. 

. Material and methods 

.1. Participants 

Twenty healthy subjects (Age: 27 (24 – 33 years old, + /- 3 years
EM), nine female) were enrolled in the study. Magnetic resonance
maging (MRI) was performed at two sites (Geneva: G, Sion: S) at two
ifferent time points (sessions). At each session, two independent repe-
itions of the neuroimaging protocols were acquired (run), ending up in
 datasets per participant. Between the runs, subjects exited the scan-
er and were then repositioned, followed by a new shimming. For each
ession, a single 3D MPRAGE was acquired. The mean elapsed time be-
ween intra-site and inter-site repetitions was 16 days ( + /- 10 days) and
9 days ( + /- 17 days), respectively. All subjects were right-handed and
ad no neuropsychiatric diseases or contraindications for MRI. Writ-
en informed consent was obtained from each participant following the
eclaration of Helsinki. The ethical approval was obtained from the
antonal ethics committee Vaud, Switzerland (project number: 2018–
1355). 

.2. Magnetic resonance imaging data acquisition 

At both sites (G and S), structural T1-weighted and diffusion-
eighted MRI data were acquired at 3T (MAGNETOM Prisma scanner,
iemens Healthcare, Erlangen, Germany) and employed the same ac-
uisition protocol. DW-MRI data were acquired using a pulsed gradi-
nt spin echo sequence with the following parameters: TR = 5000 ms;
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E = 77 ms; slices = 84; field of view = 234 × 234 mm 

2 ; voxel resolu-
ion = 1.6 × 1.6 × 1.6 mm 

3 ; slice thickness of 1.6 mm; readout band-
idth = 1630 Hz/pixels; 64-channel head coil; GRAPPA acceleration

actor = 3. Seven T2-weighted images without diffusion weighting (b0;
 = 0 s/mm 

2 ) were acquired, including one in opposite phase encoding
irection. A total of 101 images with noncollinear diffusion gradient di-
ections distributed equidistantly over the half-sphere and covering 5
iffusion-weighting gradient strengths were obtained (b-values = [300,
00, 1000, 2000, 3000] s/mm 

2 ; shell-samples = [3, 7, 16, 29, 46]). In
ddition, T1-weighted images were acquired using a 3D MPRAGE se-
uence with the following acquisition parameters: TR = 2300 ms; In-
ersion Time = 7.1 ms; TE = 2.96 ms; flip angle = 9°; slices = 192; voxel
ize = 1 × 1 × 1 mm 

3 , field of view = 256 × 256 mm 

2 . 

.3. Image analysis 

The DW-MRI images were corrected for Gibbs ringing artefacts us-
ng MRtrix3 ( Kellner et al., 2016; Tournier et al., 2019 ) and for mo-
ion, field inhomogeneity, susceptibility-induced off-resonance field,
nd eddy currents using the FSL topup and eddy ( Andersson et al., 2003 ;
ndersson and Sotiropoulos, 2016 ; Smith et al., 2004 ). Subsequently,

he images were corrected for spatial intensity variations using FSL
AST ( Zhang et al., 2001 ). Multi-shell multi-tissue constrained spheri-
al deconvolution ( Jeurissen et al., 2014 ) was used to estimate the fibre
DF within each voxel. Whole-brain probabilistic tractography was per-

ormed using the second-order integration over fibre orientation distri-
ution (iFOD2; Tournier et al., 2019 ), initiating streamlines in all voxels
f the white matter. For each dataset, 5 million streamlines were gener-
ted, from which all streamlines with both endpoints in the individual
ortical or subcortical brain masks were selected using the DIPY software
ackage ( Garyfallidis et al., 2014 ). Moreover, the diffusion tensors and
orresponding Mean Diffusivity (MD) and Fractional Anisotropy (FA)
aps were estimated using MRtrix3 ( Tournier et al., 2019 ). Tissue par-

ial volume estimates were obtained from the T1-weighted image using
he FSL FAST ( Zhang et al., 2001 ) and BET ( Smith, 2002 ) methods. The
1-weighted image was registered to the average b0 image using FSL
LIRT ( Jenkinson et al., 2002 ) and FNIRT ( Andersson et al., 2010 ). 

.4. Whole-brain connectome estimation 

For the cortical parcellation, the Destrieux atlas (74 areas per
emisphere) was used, available in FreeSurfer ( Destrieux et al., 2010 ;
ischl et al., 2004 , 2002 ; Iglesias et al., 2015 ). Additionally, subcortical
reas (thalamus, caudate, putamen. hippocampus, amygdala), the cere-
ellum, and a subdivision of the brainstem (midbrain, pons, medulla)
ere added, yielding 163 cortical and subcortical areas. Estimated

treamlines by the whole-brain tractography were used to analyse struc-
ural connectivity between those 163 areas, i.e. the structural connec-
ome. This resulted in a structural connectivity analysis of 13,203 pairs
f areas. Connectomes were generated in five different fashions. First,
e estimated the fraction of streamlines connecting two regions of in-

erest (i.e., the number of streamlines between all pairs of regions di-
ided by the total number of streamlines). Second, tractograms were fil-
ered based on the underlying white matter fibre densities using SIFT2
 Smith et al., 2015 ), implemented in MRtrix3 ( Kellner et al., 2016;
ournier et al., 2019 ). Third and forth, each streamline was weighted by
sing COMMIT ( Daducci et al., 2014b ) using two diffusion models: the
all and stick ( COMMIT B&S ) and Stick-Zeppelin-Ball ( COMMIT SZB ).
he stick compartment models the intra-axonal water with parallel dif-
usivity fixed to 1.7 μm 

2 /ms and no perpendicular diffusivity. The Ball
ompartment accounts for the isotropic extra-axonal water having a dif-
usivity of 1.7 μm 

2 /ms and the free water with diffusivity of 3.0 μm 

2 /ms
 Alexander, 2008 ; Scholz et al., 2009 ). The Zeppelin compartment mod-
ls the anisotropic extra-axonal water with parallel and perpendicular
iffusivities fixed to 1.7 μm 

2 /ms and 0.51 μm 

2 /ms ( Alexander, 2008 ),
espectively. Fifth, tractograms were filtered using the COMMIT method
3 
ith bundle sparsity constraints ( COMMIT2 ; Schiavi et al., 2020a ). This
ethod aims at solving the optimization problem using prior knowl-

dge of the white matter anatomy. As such, streamlines are grouped
n bundles based on their endpoints connectivity, and COMMIT2 opti-
ized the streamline weights such that they both explain the data while

lso minimizing the number of bundles (e.i. maximizing the number of
eros in the connectome). COMMIT2 was parametrised to use the vol-
me fraction model ( Schiavi et al., 2020a ). The intra-cellular volume
raction map was obtained using the Spherical Mean Technique method
 Kaden et al., 2015 ) available at https://github.com/ekaden/smt ( fitm-
micro command). Streamlines were grouped in bundles using the 163
ortical and subcortical areas obtained from the Destrieux atlas de-
cribed above ( Destrieux et al., 2010 ). The COMMIT2 group sparsity
egularisation parameter was set to 0.5 × 10 − 10 , reducing the average
onnectome density (non-zero connections) from 70.2% to 43.6% (the
aw tractogram connectomes have an average density of 89.4%). 

.5. Principal component analysis of whole-brain connectomes 

The 13,203 connections in each dataset compromise further statis-
ical analyses by redundancy and collinearity. This is why we have in-
roduced a further step of connectome reconstruction. Principal Com-
onent Analysis (PCA) was employed to extract eigenvectors explain-
ng variance in the data with 160 samples x 13.203 connections. The
igenvectors and eigenvalues were chosen to account for 10% - 100%
f the variance explained. This was performed for the five connectome
onstructions (i.e., raw and filtered tractograms using SIFT2, COMMIT
&S/SZB and COMMIT2 ). Afterwards, for each step of variance ex-
lained (10–90%), the respective number of principal components were
pplied to reconstruct the connectomes in the original space. These anal-
ses were performed to keep the individual connectomes in the native
pace while reducing their intrinsic dimensionality, diminishing redun-
ant and colinear entries of the connectome by means of PCA eigen-
ectors. These newly arrived PCA reduced connectomes were fed into
urther analysis of reproducibility. 

.6. Bundle connectivity vector estimation 

Twenty-nine white matter fascicles of the human brain were
utomatically segmented using a white matter query language
 Wassermann et al., 2016 ). See the supplementary material for more
etails about the selected white matter fascicle definition (queries). The
reas used for the anatomical definition of the white matter bundles
 wmparc image) were obtained from FreeSurfer ( Fischl et al., 2002 ) and
oregistered to the diffusion space using FSL FLIRT ( Jenkinson et al.,
002 ) and FNIRT ( Andersson et al., 2010 ). 

The following white matter fascicles were reconstructed: right and
eft Arcuate Fasciculus (frontotemporal, frontoparietal, parietotempo-
al), right and left Cingulum, right and left Fornix, right and left Inferior
ronto-Occipital Fasciculus, right and left Optic Radiation, right and left
yramidal Tract, right and left Superior Longitudinal Fasciculus (I, II, II),
ight and left Uncinate Fasciculus, Corpus Callosum (anterior, mid an-
erior, central, mid posterior, posterior). The structural connectivity of
ach white matter fascicle was estimated in five different ways, similar
o the whole brain connectomes being the fraction of streamlines, fil-
ered streamlines using SIFT2 and weighted streamlines using the three
OMMIT method variants. This created five vectors of 29 values, termed
undle connectivity vector. 

.7. Diffusion tensor imaging 

The white matter parcellation of every individual dataset was ob-
ained using FreeSurfer ( Fischl et al., 2002 ), creating 148 parcellated
egions within the white matter. For each parcellated region, the mean
alues of the orientationally invariant scalar maps (MD and FA) were es-
imated for every individual dataset, resulting in two vectors with 148

https://github.com/ekaden/smt
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alues representing the areas of white matter parcellation, one for FA
nd one for MD values. 

.8. Tract-density imaging maps 

Track-density imaging (TDI; Calamante et al., 2010 ) maps were cre-
ted using MRtrix3 ( Tournier et al., 2019 ) for the five evaluated trac-
ograms (raw and filtered tractograms). TDI maps are built by counting
he number of streamlines intersecting each voxel. For microstructure-
nformed tractography methods, the maps were created by summing
he weights of the streamlines intersecting each voxel. All individual
atasets were registered to the MNI standard space using FSL FLIRT
 Jenkinson et al., 2002 ) and FNIRT ( Andersson et al., 2010 ). Subse-
uently, the individual datasets were voxelwise transformed to z-scores
ith positive values indicating voxels with high tract density compared

o the whole brain and the average map of all individual datasets was
stimated. 

.9. Connectome reproducibility and subject-specificity 

.9.1. Dissimilarity measure 
To compare connectomes, bundle connectivity vectors and tensor

ap vectors, we used the Bray–Curtis dissimilarity index ( Bray and Cur-
is, 1957 ), defined as: 

Σ||
|
𝐶 1 𝑖𝑗 − 𝐶 2 𝑖𝑗 

|
|
|

Σ||
|
𝐶 1 𝑖𝑗 + 𝐶 2 𝑖𝑗 

|
|
|

, 

here C1 and C2 are two non-zero connectomes or bundle connectivity
ectors, i and j are the line and column index, respectively. The Bray-
urtis dissimilarity index value ranges between 0 and 1. 

.9.2. Seven-nearest-neighbour clustering 
There are eight datasets for each of the 20 participants of the study.

or each dataset and connectivity metric (connectomes, bundle connec-
ivity vectors, tensor map vectors), the seven datasets with the lowest
ray-Curtis dissimilarity to this dataset were selected. amongst them,
e identified how many datasets match that participant, producing a

core between 0 and 7. This was repeated for all 160 datasets, result-
ng in a clustering score between 0 and 1120 for each connectivity
ethod. A good performing algorithm should separate participants (pro-
ucing high inter-individual Bray-Curtis dissimilarity values) and be re-
roducible for datasets acquired from the same participant (with low
ntraindividual Bray-Curtis dissimilarity values). 

.9.3. Intraclass correlation coefficients 
As a further measurement of data reproducibility, we have used

he intraclass correlation coefficient (ICC) implemented in R-studio
 Smith, 1957 ). For the raw tractograms as well as the filtered connec-
omes and their respective PCA reduced connectomes, the ICC was cal-
ulated for every entry in the connectome individually. Afterwards, the
ercentage of entries > 0.75 and > 0.9 representing very good and excel-
ent reproducibility were reported. Connectome entries with non-zero
n all 160 datasets were considered for this analysis. Thus, the number
f total entries varies between methods, and PCA reduced connectomes.

.9.4. Distribution of fascicle connectivity 
For every dataset and each of the 29 white mater fascicles, the distri-

ution of structural connectivity estimates within the 20 subjects was es-
imated and analysed with the Shapiro-Wilk test for evaluating whether
he estimates deviate from the normal distribution. This was performed
or the raw and filtered tractograms. The percentage of datasets follow-
ng a normal distribution was compared. 
4 
.10. Repeated measure ANOVA 

For all individual dataset the average dissimilarity to all other
atasets was calculated. For each connectome reconstruction (Raw trac-
ogram, SIFT2 , COMMIT B&S/SZB , COMMIT2 ) one separate RM-ANOVA
as conducted comparing values of mean dissimilarity between sites,

essions and runs with factors being: SION, GENEVA; Session1, Session2,
un1, Run2. 

.11. Data availability statement 

Data can be made available upon reasonable request. 

. Results 

.1. Dissimilarity between connectomes and connectivity vectors 

We have acquired 8 datasets of 20 individuals over a short pe-
iod using the same acquisition parameters (160 datasets). The struc-
ural connectivity estimated from these datasets for one individual
hould show strong similarity as no major changes should have taken
lace amongst scans. Moreover, the structural connectivity should show
ubject-specificity and thus an increased dissimilarity amongst subjects.
ig. 1 shows the Bray-Curtis dissimilarity index between all pairs of con-
ectomes and bundle connectivity vectors. The Bray-Curtis dissimilarity
ndex for the diffusion tensor map is shown in the supplementary ma-
erial. The structural connectivity values were computed from the raw
ractogram (first column), SIFT2 wt (second column), COMMIT B&S/SZB
t (third and forth columns), and COMMIT2 wt (fifth column). Datasets
re ordered by subjects, sites (site G, then site S), sessions, and runs.
he colours codify the Bray-Curtis dissimilarity amongst all datasets and
ethods. The 8 × 8 squares visible around the diagonal (blue) show the

ntraindividual dissimilarities, and the off-diagonal values show the in-
erindividual dissimilarities. 

Table 1 reports the corresponding interindividual to intraindividual
issimilarity ratio (mean of the inter-subject dissimilarity over the mean
f the intraindividual dissimilarity) and the seven-nearest-neighbour
lustering performances of each method. The intraindividual dissimi-
arity ratio is equal for the whole-brain connectome using the raw trac-
ogram or the filtered one with SIFT2 at 2.32 and decreases to 1.92
nd 1.96 for the COMMIT B&S and COMMIT SZB methods, respectively.
he COMMIT2 method showed the lowest results with 1.91. Their cor-
esponding clustering performances are almost perfect for all methods.
he microstructure-informed tractography methods have an increased

ntraindividual dissimilarity ratio compared to the raw tractogram when
sing the bundle connectivity vectors. Although the clustering perfor-
ance decreases, it remains high, ranging from 79% ( COMMIT B&S ) to
6% (raw tractogram). The tensor map vectors show a lower intraindi-
idual dissimilarity ratio of 2.05 and 1.84 when using the FA and MD,
espectively. The clustering performance remains high when utilizing
he tensor map vectors with a clustering performance of 95%. 

Fig. 2 shows the whole-brain connectome interindividual to intrain-
ividual dissimilarity (left) and clustering performances (right), decreas-
ng the variance explained by the data after PCA filtering. The raw trac-
ograms and SIFT2 -filtered ones show similar results with an increase in
atio when decreasing the percent of variance explained. The maximum
issimilarity ratio is obtained using 80% of the variance and decreases
s the percentage decreases further. The COMMIT method shows a dif-
erent profile with a rapid increase at 80% of the variance, then a fur-
her increase as the percentage of the variance is reduced. Although the
OMMIT method has a lower maximum ratio, the ratio is higher than
hat obtained for the raw tractogram and SIFT2 method when using a
0% to 10% of the variance. The whole-brain connectome clustering
erformance is systematically higher for the raw tractogram, except for
he COMMIT method when using 10% of variance explained by the data.
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Fig. 1. Bray-Curtis dissimilarities between connectomes (first row) and bundle connectivity vectors (second row) computed from the raw tractograms (first column), 
and tractograms filtered by SIFT2 (second column), and COMMIT (third, forth, fifth columns). Each subject has eight MRI datasets (two sites, two sessions per site, 
and two runs per session). The colours indicate the Bray-Curtis dissimilarity between all datasets and methods. The 8 × 8 blue squares around the main diagonal 
show the intraindividual dissimilarities, and other values depict the inter-subject dissimilarities. 

Table 1 

The ratio of interindividual to intraindividual dissimilarities measured by Bray-Curtis dissimilarity index and classification performances on the 
connectome, the bundle connectivity vectors, and the tensor map vectors. The dissimilarity index (between 0 and 1) represents how different 
two connectivity estimates are from each other. The clustering performance of 1120 indicates that each connectome or vector seventh-nearest- 
neighbours are from the same subject, i.e., any subject can identify the seven other datasets matching that subject. 

Method Interindividual to 
intraindividual 
dissimilarity ratio 

Interindividual 
dissimilarity 

Intraindividual 
dissimilarity 

Clustering performance 
(max. 1120) 

Whole-brain 

Connectome 

Raw Tractograms 2.32 0.2024 0.0871 1120 (100%) 
SIFT2 2.32 0.1990 0.0858 1120 (100%) 
COMMIT B&S 1.92 0.1875 0.0976 1120 (100%) 
COMMIT SZB 1.96 0.1873 0.0956 1119 (99.9%) 
COMMIT2 1.91 0.2119 0.1110 1120 (100%) 

Bundle 

Connectivity 

Vector 

Raw Tractogram 2.32 0.1323 0.0570 964 (86.1%) 
SIFT2 2.45 0.1332 0.0543 948 (84.6%) 
COMMIT B&S 2.35 0.1542 0.0654 887 (79.2%) 
COMMIT SZB 2.44 0.1506 0.0618 922 (82.3%) 
COMMIT2 2.43 0.1532 0.0543 914 (81.6%) 

Diffusion Tensor 

Map 

Average FA 2.05 0.0456 0.0222 1067 (95.3%) 
Average MD 1.84 0.0343 0.0186 1066 (95.2%) 
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In Fig. 3 , the percentage of connectome entries with ICC > 0.75 and
 0.9 are reported for all connectomes as well as the PCA reduced con-
ectomes. The results show an excellent level of reproducibility for most
f the PCA filtered connectomes using COMMIT wt with on average
 60% of entries with an ICC score of > 0.9. Using the raw tractogram as
ell as the SIFT2 wt, there is a constant increase of entries with ICC > 0.9
ith a maximum at 80% variance explained with ca. 90% of entries.
or all filtering methods, the ICC > 0.9 decreased with 90% variance ex-
lained connectome, whilst remaining good reproducibility levels. With-
ut any PCA applied, the ICC shows good reproducibility in ca. 45% of
ntries for the raw tractogram and the SIFT2 weightedwt, 30% of entries
n the COMMIT2 weightedwt and 16 and 18% in the COMMIT weighted
 B&S, SZB ) connectomes. 

Table 2 shows the results of the repeated measure ANOVA analy-
is comparing the mean intraindividual and interindividual dissimilar-
ties between sites, sessions, and runs for the five studied whole-brain
onnectome methods separately. The comparison reveals no significant
5 
ifferences between sites, sessions and runs in the raw tractograms as
ell as the COMMIT weights; 7.1%, 1,8%, 2.9% and 3.2% of the data
ariance were explained by the factors site, session and run for the raw
ractogram, the COMMIT ( B&S, SZB ) and COMMIT2 wt, respectively. Us-
ng the SIFT2 wt, the repeated measure ANOVA reveals a significant dif-
erence with 11.3% of variance explained. However, post hoc analysis
howed no significant differences between the dissimilarities comparing
ites, session and run individually, after correction for multiple compar-
sons. 

Table 3 presents the average Bray-Curtis dissimilarity indices be-
ween datasets of the same individuals (intra-subject). Moreover, the
verage dissimilarity indices between datasets of the same individual,
cquired at different sites (inter-site), or acquired at the same site but
uring different sessions (inter-session), or acquired at the same site and
ession but during different runs (inter-run) are reported. It is impor-
ant to note that the inter-session dissimilarity also includes the dissim-
larity inter-run. Similarly, the inter-site dissimilarity also includes the
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Fig. 2. Subject specificity in PCA reduced connectomes for the raw tractogram, the SIFT2 and COMMIT methods. Percentage of success rate in seventh-nearest- 
neighbours clustering (left) as well as the interindividual to intraindividual dissimilarity ratio of whole-brain connectomes (middle) are shown accounting for various 
levels of explained variance by the principal Component Analysis (PCA). Using PCA the complex dataset of whole brain connectomes was reduced in dimensionality 
to a certain amount of eigenvectors explaining variance of the data ranging from 10 to 90% (right). Please note, that for 100% of variance, no PCA was performed, 
but the raw connectome and filtered connectomes are shown (same data as in e.g. Fig. 1 , table 1 ). 

Fig. 3. The intraclass correlation coefficient (ICC) was generated for each entry of the connectome, considering only those entries without zero connectivity. This 
was done for the raw tractogram, the SIFT2 filtered, the COMMIT ( B&S, SZB ) and COMMIT2 filtered connectomes as well as the respective PCA-reduced connectomes 
(explained variance reaching from 10 to 90%). Of all considered entries, the proportion of those with ICC > 0.75 and ICC > 0.9 are shown, representing good and 
excellent reproducibility, respectively. Please note, that for 100% of the variance, no PCA was performed, but results for the raw tractograms and filtered tractograms 
are shown. 
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nter-session dissimilarity. For the whole-brain connectomes, the raw
ractogram method depicts higher average interindividual dissimilarity
nd lower average intraindividual dissimilarity, compared to SIFT2 and
OMMIT (see Table.Fig. 2 . The raw tractogram and the SIFT2 -filtered
ne showed similar results regarding the bundle connectivity vectors,
hile COMMIT shows higher values. The average inter-run dissimilar-

ty corresponds to 71.7% of the average inter-site dissimilarity. On the
6 
ther hand, the increase in the dissimilarity for the inter-session dataset
orresponds to 19.8% of the average inter-site dissimilarity. Finally,
he mean increase in the dissimilarity for the inter-site dataset corre-
ponds to 8.5% of the total dissimilarity when comparing datasets of the
ame subject. Overall, the inter-run dissimilarity (same subject, scan-
er, and session) shows the highest percentage of dissimilarity when
omparing the repeatability of all methods. This result is confirmed
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Table 2 

Repeated measure ANOVAs comparing mean intra and interindividual dissimilarities between site, session and run 
for the five evaluated whole-brain reconstruction methods separately. 

Method F-value Uncorrected p-value Partial eta-square effect size Greenhouse-Geisser epsilon factor 

Raw Tractogram 1.462263 0.209474 0.071461 0.329294 
SIFT2 2.440955 0.039749 0.113845 0.385287 
COMMIT B&S 0.35161 0.88006 0.01817 0.37194 
COMMIT SZB 0.562517 0.728459 0.028755 0.385971 
COMMIT2 0.63016 0.67715 0.03210 0.40486 
Average FA 0.03341 0.99941 0.00176 0.45108 
Average MD 0.13643 0.98349 0.00713 0.46065 

Table 3 

Average Bray-Curtis dissimilarity index comparing intraindividual dissimi- 
larities between sites, sessions and runs for whole-brain connectomes and 
bundle connectivity vectors using the raw tractograms, SIFT2 , COMMIT 
(Ball and Stick, and Stick, Zeppelin, Ball models) and COMMIT2 . The dis- 
similarity index of the mean fractional anisotropy (FA) and mean diffusivity 
(MD) is also reported. Please note that the inter-session dissimilarity also in- 
cludes the inter-run dissimilarity. Similarly, the inter-site dissimilarity also 
includes the inter-session dissimilarity. 

Method 
Average Bray-Curtis dissimilarity index 

Inter-site Inter-session Inter-run 

Whole-brain 

Connectome 

Raw Tractogram 0.0927 0.0856 0.0677 
SIFT2 0.0916 0.0845 0.0651 
COMMIT B&S 0.1022 0.0977 0.0788 
COMMIT SZB 0.1003 0.0954 0.0770 
COMMIT2 0.1161 0.1102 0.0922 

Bundle 

Connectivity 

Vector 

Raw Tractogram 0.0618 0.0540 0.0438 
SIFT2 0.0576 0.0545 0.0410 
COMMIT B&S 0.0716 0.0617 0.0482 
COMMIT SZB 0.0679 0.0577 0.0457 
COMMIT2 0.0576 0.0545 0.0410 

Diffusion 

Tensor 

Average FA 0.0242 0.0216 0.0159 
Average MD 0.0198 0.0186 0.0136 
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hen considering only the raw diffusion signal, represented as tensor
FA, MD). 

.2. Track-density imaging 

Fig. 4 A depicts the z-score map computed from the mean weighted
rack-density imaging (TDI) map. The distribution of the z-score for the
hite matter volume is shown in Fig. 4 B. High positive z-score values

red) indicate regions of over-representation of the white matter trajec-
ories, and increased negative z-score values (blue) indicate regions of
nderrepresentation. Voxel of white matter tissue should ideally show
imilar values. The raw tractogram and the SIFT2 weighting methods
how high z-scores values in the deep white matter. SIFT2 shows a slight
eduction in high z-score values compared to the raw tractogram. COM-
IT methods showed a further decrease in high z-score voxels in the

eep white matter. However, higher z-score values are noticeable in re-
ions of single fibre populations (e.g., intern capsule, corpus callosum).
nterestingly, filtering methods showed an increased z-score in the cere-
ellum ( Fig. 4 A bottom row), suggesting an underrepresentation in this
egion by the raw tractogram. Moreover, the z-scores produced by the
OMMIT methods are more equally distributed in this region, which is
ot the case for other methods, particularly the raw tractogram. Fig. 4 B
lso shows an increase in high negative z-scores for the COMMIT meth-
ds. These values are located at the grey matter and white matter bound-
ries, likely in voxels with partial volume contamination. The raw trac-
ogram and SIFT2 also estimated high negative z-score values in those
oxels. Please see Supplementary Figure 2 for averaged TDI maps of
he whole group for each reconstruction method without applying z-
ransformation. Further, the averaged TDI map of one single subject,
nd for one site, session and run was computed. Finally, the difference
7 
etween one individuum and the group average, as well as the differ-
nce between one run and one individuum, is represented. 

.3. Normal distribution of weights 

For every white matter fascicle weight estimated at every repeti-
ion, the distribution of the structural connectivity estimates was evalu-
ted within the studied cohort using the Shapiro Wilk test ( Shapiro and
ilk, 1965 ). The percentage of normal distribution of the 29 fascicle
eights is 10.2%, 55.6%, 45.4%, 50.0% and 47.2% for the raw trac-

ogram, SIFT2, COMMIT ( B&S, SZB ) and COMMIT2 , respectively. This
uggests that microstructure-informed tractography reduces connectiv-
ty weights biases and provides more fascicles with normally distributed
eights across the population. 

. Discussion 

Microstructure-informed tractography methods have been intro-
uced to address the specificity-sensitivity trade-off in tractography
y reducing false-positive connections and adding biological meaning
o reconstructed streamlines. Analyses in synthetic models of white-
atter fascicles have proven high accuracy for SIFT2 and COMMIT

 Daducci et al., 2014b ; Smith et al., 2015 ). Although, the validation
s the bottleneck of tractography-based connectivity estimation algo-
ithms. Previous studies used simplified phantoms with connectivity
atterns much simpler than those observed in human brains. As an al-
ernative validation approach, some studies focused on studying the
eproducibility and repeatability of the estimated connectivity matri-
es. For example, the reproducibility of white matter reconstruction has
een investigated comparing the acquisition and local diffusion mod-
ls ( Dayan et al., 2015 ; Gigandet et al., 2013 ; Pr čkovska et al., 2016 ;
oine et al., 2019 ; Schumacher et al., 2018 ; Zhao et al., 2015 ), dif-

erent tractography methods ( Bonilha et al., 2015 ; Girard et al., 2020 ;
homas et al., 2014 ), thresholding approaches ( Colon-Perez et al., 2016 ;
onopleva et al., 2020 ; Roine et al., 2019 ) weighting of white matter
athways ( Smith et al., 2015b ), and differences in cortical and subcor-
ical brain parcellations ( Besson et al., 2014 ; Zhang et al., 2019 ). With
he lack of ground truth data, the biological accuracy of estimated struc-
ural connectivity must be evaluated differently. Firstly, a robust trac-
ography reconstruction must be reproducible. As such, the connectivity
f large white matter bundles of a healthy population is expected to fol-
ow a normal distribution. Secondly, it must be biologically meaningful,
.e., representing key aspects of human brain anatomy. Thirdly, a valid
econstruction needs to be sensitive to individual differences, i.e., es-
imates need subject specificity. Finally, there is a need to investigate
he influences on white matter reconstruction caused by differences be-
ween runs, sessions, and scanners to characterize the stability of the
easurements and analyses. This is especially important when studying

tructural connectivity alterations in clinical applications, like in longi-
udinal studies with repetitive measurements, as findings can only be
etected (and interpreted) when exceeding the intrinsic variability of
he measurement itself, and large multi-centre studies are optimal if the
mployed methods do not show scanner and location bias. 
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Fig. 4. Comparison of group mean weighted TDI maps of microstructure-informed tractography methods. A: TDI-maps were created using the raw tractogram and 
considering the weighting by the microstructure-informed tractography methods. All values were z-transformed, indicating the variance of structural connectivity 
over the whole-brain. An average map was created over all 160 datasets and presented on MNI standard brain (z-indices of horizontal slices given). B: The density 
plot shows the frequency of certain z-values. 
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In neuroimaging, reducing and quantifying variability is a necessity
or translational research and for applying potential findings in clinical
ettings, especially in the view that longitudinal changes are crucially
mportant in the understanding, monitoring and predicting of neurolog-
cal disorders such as, e.g., stroke ( Guggisberg et al., 2019 ; Koch et al.,
021 ; Koch and Hummel, 2017 ). Further, being sensitive to individual
tructural connectivity differences reflects the accuracy of white matter
stimates. Evaluating the different impacts on reproducibility by site,
ime or run offers the possibility to pinpoint the greatest influence to
uide further investigations. Finally, the quantification of the degree of
ncertainties allows the translation to neuroscientific and clinical ques-
ions, expecting a significantly higher effect size than the noise level
8 
ound in pure intraindividual and interindividual variability. Thus, in
his study, we evaluate the reproducibility and repeatability of white
atter reconstruction and microstructure-informed tractography meth-

ds considering the effects of site, time and run. We evaluated those dif-
erences within the whole-brain connectomes and 29 large white matter
undles. 

.1. Subject-specificity and reproducibility for whole-brain structural 
onnectivity 

The whole-brain connectomes constructed by using the raw stream-
ines were highly subject-specific. High interindividual and low intrain-
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ividual dissimilarities and maximal scores in seven-nearest-neighbours
lustering were obtained (see Fig. 1 , Table 1 ). This surprising result indi-
ates that already the reconstruction of the raw connectome, despite its
otentially high incidence of false-positive connections and biases, rep-
esents a highly specific individual profile. Tractography is known to be
usceptible to false-positive and spurious streamlines, but those stream-
ines seem to capture subject specificity. In other words, this suggests
hat the false-positive streamlines are not random trajectories but de-
endant on the subjects’ anatomy. When using microstructure-informed
ractography methods, the subject specificity of connectomes remains
igh, as indicated by a high ratio of inter-subject and intraindividual
issimilarity as well as a high score in seven-nearest-neighbours cluster-
ng (see Fig. 1 , Table 1 ). 

The reproducibility of the connectome reconstruction was evaluated
urther by means of ICC (see Fig. 3 ). Here, the raw tractogram, SIFT2
nd COMMIT2 weighted reveal reasonable levels of good reproducibil-
ty, whereas COMMIT modelling seems to be inferior. Still, when apply-
ng PCA to the connectome reconstruction, the reproducibility increases
ignificantly, showing good to excellent reproducibility in all methods of
econstruction. Interestingly, especially COMMIT filtering shows excel-
ent reproducibility even with low levels of variance explained. In this
ontext, the PCA seems to filter the connectome reconstruction further,
hat individual connectome profiles gain stability while enhancing the
eparation of the individual reconstructions. These results support the
sage of methods to reduce redundancy and collinearity for connectome
econstruction. 

.2. Bundle connectivity vectors 

Considering the reconstruction of the 29 bundles, the application
f microstructure-informed tractography methods is superior to results
rom the raw streamline with respect to inter-subject and intra-subject
issimilarity. This implies that adding microstructure information to
he estimation of structural connectivity shows high subject specificity
hile remaining biologically meaningful connectivity estimates. Al-

hough, it was not possible to successfully identify every subject using
he connectivity of the white matter bundles. 

Investigating the structural connectivity within these bundles in the
tudied cohort suggested a substantial deviation from a normal distribu-
ion for most of the fascicles when considering the raw tractogram (10%,
ormally distributed). After applying microstructure-informed tractog-
aphy, the connectivity distribution at the group level normalizes up to
0–55%. Even though there is no ground truth data, imaging studies and
eveloping studies suggest a normal distribution of white matter fasci-
les ( Lebel et al., 2019 ). The observed shift of distribution in the recon-
tructed white matter bundles is most likely by putting high weights on
alid trajectories and low weights on invalid or redundant trajectories
y the studied filtering methods. This might indicate a higher biolog-
cal meaning. Future studies are needed to investigate the distribution
f white matter fascicles in the human brain. This becomes especially
mportant when investigating individual deviation of structural connec-
ivity in neurological and psychiatric diseases. 

.3. PCA-reduced connectomes 

Reducing the dimensionality of the whole-brain connectomes in-
reases the inter-subject to intraindividual dissimilarity ratio with an
ptimum at 80% of the explained variance with approximatively 15
igenvectors (raw tractogram: 16, SIFT2 : 15, COMMIT B&S : 16, COM-
IT SZB : 15, COMMIT2 : 15) while maintaining a 100% success rate of

even-nearest-neighbour clustering (see Fig. 2 ). Further, the ICC gains
xcellent reproducibility after the application of PCA (se Fig. 3 ). This
mplies that not all elements of the whole-brain connectome are needed
o identify individuals. Another explanation might be that PCA de-
oises the connectome elevating the biological meaning. This result
9 
ithholds novel and exciting possibilities for future connectome anal-
ses. With 15 eigenvectors more complex statistical analyses are pos-
ible without losing too many degrees of freedom, while maintaining
 high subject specificity. Surprisingly, when reducing the amount of
ariance explained by the used eigenvectors even further the COMMIT
ltered connectomes maintain a high interindividual to intraindivid-
al dissimilarity ratio. In contrast, the ratio decreases for the raw trac-
ogram and the SIFT2 method. This implies that even subcomponents
f the connectome obtained using COMMIT methods show high subject
pecificity. 

.4. Estimation of white matter density 

The standardized mean TDI maps (see Fig. 4 ) show the distribu-
ion of estimated streamlines density throughout the white matter and
eflect key pitfalls in the reconstruction. High positive z-scores in the
ealthy white matter represent an oversampled density bias estimated
rom tractography. Areas of convergence of multiple fibre populations
re vulnerable to those types of errors, being, e.g., the internal capsule
nd the corpus callosum. Microstructure-informed tractography meth-
ds reduced the overestimation especially prominent in the deep white
atter (upper row), the internal capsule (middle row). Negative z-scores

epresent two aspects. On the one hand, voxels containing grey matter
re expected to have lower white matter volume and thereby stream-
ine density. On the other hand, low z-values within deep white mat-
er voxels represent an underestimation of streamline density. Areas of
igh complex fibre architecture including crossing and kissing config-
rations are vulnerable to these types of errors, i.e., the pons and pro-
ection fibres with the cerebellum. The qualitative inspection of filtered
ractograms TDI maps within the pons and the cerebellar white matter
learly shows a dense distribution of white matter fibers. In contrast,
here is a bias on the trajectory of the corticospinal pathways and the
erebellar peduncle and a low density within the pons and the cere-
ellar white matter in the map obtained from the raw tractogram. Us-
ng microstructure-informed tractography, most voxels with negative
-scores seem to be on the white matter and grey matter boundary, as
xpected. 

.5. Source of structural connectivity variability 

The impact of location, timepoint and run was evaluated. It was hy-
othesized that the intraindividual dissimilarity between datasets is the
ost sensitive to potential influences and variability of the acquisition

nd reconstruction. The repeated measure ANOVA revealed no differ-
nces in the dissimilarity scores between the data acquisitions; 7.1%,
1%, 1,8%, 2.9% and 3.2% of the total variance were attributed to
he factor site, session and run when considering the raw tractogram,
IFT2, COMMIT ( B&S, SZB ) and COMMIT2, respectively (see Table 2 ).
he maximum intraindividual dissimilarity was 0.1161 for the whole-
rain connectomes and 0.0716 for the bundle connectivity vectors (see
able 3 ). Most of the intraindividual dissimilarity is associated to the

nter-run dissimilarity (72,5% on average) rather than to the inter-
ite dissimilarity (8.8% on average) or the inter-session (18.7% on av-
rage) dissimilarity. This surprising result underpins the great repro-
ucibility of structural connectivity, especially when considering time
nd site. Still, this raised the question of the source of the run vari-
bility. Repeating the analysis not using the reconstructed streamlines,
ut the mean of FA and MD maps derived from the diffusion ten-
or model confirms that the greatest source of dissimilarity is between
uns (69.2% on average, see Table 3 ). This emphasizes that the acqui-
ition of the DW-MRI data (used by the diffusion tensor model) is a
igh source of dissimilarity between runs. The processing algorithms
ike tractography or microstructure-informed tractography do not add
uch to the dissimilarity. Deviations from this natural variability thus
ark a true biological difference, highlighting its meaning for systems
euroscience. 
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.6. The structural connectivity fingerprint 

Using the whole-brain connectome, seven-nearest-neighbour suc-
essfully clustered all datasets belonging to the same subject, i.e., the
hole-brain connectivity profile is unique and reliable to identify an in-
ividual subject, such as a fingerprint. This was already shown for func-
ional connectivity ( Amico and Goñi, 2018 ; Finn et al., 2015 ; Van De
ille et al., 2021 ), particularly in the frontoparietal network. More-
ver, the structural connectome is highly subject-specific ( Yeh et al.,
016 ), with 100% subject classification performances using an alterna-
ive structural connectivity pipeline. 

.7. Limitations 

Several aspects have to be mentioned limiting the conclusions of the
iven analyses. A generalisation of the results on the reproducibility is
imited by the assessment in only two sites using the same scanner and
cquisition protocol. Showing reproducibility in total independence of
he scanner is needed ( Kurokawa et al., 2021 ). In addition, the algo-
ithm for tractography nor the set of streamlines or the cortical parcel-
ation was altered, which can impact the reconstruction of connectomes
nd white matter bundles. Also, lower quality data, such as single shell
ocal reconstruction like e.g. diffusion tensor imaging, was not consid-
red in this study and is still often used for clinical research questions.
hus, future work is needed to explore its reproducibility. Finally, all
esults were based on the multi-tissue constrained spherical deconvo-
ution method, and other alternative techniques are available (e.g., see
 Canales-Rodríguez et al., 2019 , 2015 ; Daducci et al., 2014a )). 

. Conclusion 

Surprisingly, the raw tractogram shows high subject specificity at
he connectome level, though its biological interpretation is limited.
icrostructure-informed tractography shows high subject specificity as
ell as group reproducibility on connectome level and bundle connec-

ivity vectors. By reducing high fibre density selectively in areas of fi-
re convergence architecture, microstructure-informed tractography in-
reases the biological meaning of white matter reconstructions. More-
ver, reducing the dimensionality of the data through PCA increases
he subject specificity and represents a promising analysis step to be in-
luded when dealing with whole-brain connectomes. Finally, the largest
mount of intraindividual variance arrives from inter-run comparison,
ost likely by the diffusion signal itself and not by the connectivity

nalysis. Time and site have a small influence on the variability. These
esults are fundamentally important considering the design and results
f translational neuroscience and patient work and supporting cross-
entre clinical data analyses. Findings exceeding the natural intrinsic
ariability may mark true biological meaning. 
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