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a b s t r a c t 

Both electroencephalography (EEG) and functional Magnetic Resonance Imaging (fMRI) are non-invasive methods that show complementary aspects of human brain 
activity. Despite measuring different proxies of brain activity, both the measured blood-oxygenation (fMRI) and neurophysiological recordings (EEG) are indirectly 
coupled. The electrophysiological and BOLD signal can map the underlying functional connectivity structure at the whole brain scale at different timescales. Previous 
work demonstrated a moderate but significant correlation between resting-state functional connectivity of both modalities, however there is a wide range of technical 
setups to measure simultaneous EEG-fMRI and the reliability of those measures between different setups remains unknown. This is true notably with respect to 
different magnetic field strengths (low and high field) and different spatial sampling of EEG (medium to high-density electrode coverage). Here, we investigated the 
reproducibility of the bimodal EEG-fMRI functional connectome in the most comprehensive resting-state simultaneous EEG-fMRI dataset compiled to date including 
a total of 72 subjects from four different imaging centers. Data was acquired from 1.5T, 3T and 7T scanners with simultaneously recorded EEG using 64 or 256 
electrodes. We demonstrate that the whole-brain monomodal connectivity reproducibly correlates across different datasets and that a moderate crossmodal correlation 
between EEG and fMRI connectivity of r ≈ 0.3 can be reproducibly extracted in low- and high-field scanners. The crossmodal correlation was strongest in the EEG- 𝛽
frequency band but exists across all frequency bands. Both homotopic and within intrinsic connectivity network (ICN) connections contributed the most to the 
crossmodal relationship. This study confirms, using a considerably diverse range of recording setups, that simultaneous EEG-fMRI offers a consistent estimate of 
multimodal functional connectomes in healthy subjects that are dominantly linked through a functional core of ICNs across spanning across the different timescales 
measured by EEG and fMRI. This opens new avenues for estimating the dynamics of brain function and provides a better understanding of interactions between EEG 

and fMRI measures. This observed level of reproducibility also defines a baseline for the study of alterations of this coupling in pathological conditions and their role 
as potential clinical markers. 
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bbreviations 
EC Amplitude envelope correlation 
MRI Diffusion Magnet Resonance Imaging 
CG Electrocardiogram 

C Functional connectivity 
CA Independent component analysis 
CN Intrinsic connectivity network 
Coh Imaginary part of the coherency 
/EEG Magneto/Electroencephalography 

C Structural connectivity 
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. Introduction 

The brain is a complex system of interacting neurons continuously
ommunicating with each other. This intrinsic brain functional con-
ectivity (FC) has been shown to be organized in macro-scale pat-
erns of interconnected regions, the so-called intrinsic connectivity net-
orks (ICNs) ( Biswal et al., 1995 ; Fox et al., 2005 ; Greicius et al.,
003 ). Though originally described for fMRI (FC fMRI ) data, those
CNs have also been found using Magnetoencephalography (MEG,
C MEG ) ( Brookes et al., 2011 ) and Electroencephalography (EEG, FC EEG )
ry 2021 
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 Abreu et al., 2020 ; de Pasquale et al., 2010 ; de Pasquale et al.,
012 ; Finger et al., 2016 ; Wirsich et al., 2017 ). Expanding this ini-
ially network-specific view, cross-modal studies showed that FC in both
lectrophysiological (M/EEG) and BOLD signals are related when us-
ng static measures (averaged over periods > 5 min) across the whole
rain scale of resting-state recordings ( Deligianni et al., 2014 ; Hipp and
iegel, 2015 ; Wirsich et al., 2017 ). Understanding the functional links
etween EEG- and fMRI-derived FC measures is a key question in
urrent neuroimaging research, as it could help clarifying the neu-
onal substrates of both modalities, and of resting-state activity itself
 Sadaghiani and Wirsich, 2020 ). 

The relation between FC fMRI and FC M/EEG , has also been shown to
e mediated by the underlying white matter structural connectivity de-
ived from diffusion MRI (SC dMRI ) ( Chu et al., 2015 ; Deligianni et al.,
019 , 2016 ; Honey et al., 2009 ; Meier et al., 2016 ; Wirsich et al.,
017 ). Beyond the static relationship of EEG and fMRI to structure,
e also observed crossmodal linked dynamics (1 min sliding window)
 Wirsich et al., 2020b ). While most work focused on crossmodal agree-
ent of FC, we have equally shown that the crossmodal connectivity

an be split up into a common and complimentary connectivity profile
cross different timescales ( Wirsich et al., 2020a ). A crucial open ques-
ion is whether crossmodal dissimilarities arise mainly from differences
n data quality and acquisition setup, or represent differences arising
rom measuring complementary multimodal aspects of brain functional
onnectivity ( Sadaghiani and Wirsich, 2020 ). In order to address this
ssue, data from independent research sites are needed. This would en-
ble us to characterize the baseline relationship between connectivity
erived from both modalities. 

From a monomodal point of view, the test-retest reliability of FC fMRI 
easures is well characterized ( Noble et al., 2019 ) with a low in-

ra class correlation (ICC = 0.29) for individual connections and repro-
ucible ICN estimations across sites ( Badhwar et al., 2020 ). While
ome of the variance stems from different scanner systems ( Han et al.,
006 ) or inter-individual differences ( Amico and Goñi, 2018 ; Finn et al.,
015 ), the chosen post-processing of data also introduces variability of
he results ( Botvinik-Nezer et al., 2020 ; Carp, 2012 ). Due to this con-
ectivity variability, it is important to estimate the reproducibility of
his measure, as a baseline for subsequent measures of alterations in
ifferent normal and pathological conditions ( De Vico Fallani et al.,
014 ). 

The reproducibility of FC M/EEG measures has been analyzed from
ifferent angles. Different measures of FC ( Colclough et al., 2016 ) have
hown highly correlated (topographically similar) connectomes while
oquelet et al. (2020) have shown that the crossmodal relationship of
EG and EEG connectivity is reproducible across different EEG forward
odels. Marquetand et al. (2019) observed good intersession test-retest

eliability (ICC > 0.67) for both modalities. From a frequency point of
iew, alpha has been shown to be the most reliable estimate across
ubjects ( Colclough et al., 2016 ; Marquetand et al., 2019 ). While the
ajority of FC fMRI work derives connectivity from correlating regional

imecourses of the BOLD signal, no consensus has been reached yet
or FC M/EEG , especially whether to use phase or amplitude coupling
 Colclough et al., 2016 ; Sadaghiani and Wirsich, 2020 ). Both phase cou-
ling using the imaginary part of the coherency (iCoh) ( Nolte et al.,
004 ; Wirsich et al., 2017 ) and amplitude coupling using amplitude
nvelope correlation (AEC) ( Brookes et al., 2011 ; de Pasquale et al.,
010 ; Deligianni et al., 2014 ; Hipp and Siegel, 2015 ) have been linked
o FC fMRI . It has been argued that phase coupling might be closer to the
nderlying SC dMRI and amplitude coupling is proposed to be more re-
ated to FC fMRI ( Engel et al., 2013 ). Nevertheless, most of the literature
uggests a rather similar connectivity pattern of intrinsic brain activity
n the whole brain scale when averaging over resting-state recordings
asting several minutes ( Colclough et al., 2016 ; Mostame and Sadaghi-
ni, 2020 ; Sadaghiani and Wirsich, 2020 ). Siems and Siegel (2020) ob-
erved highly correlated, but not identical connectivity between both
ypes of measures, and the neurobiological interpretation of those differ-
2 
nces have yet to be explored. Recently those changes have been linked
o task-specific connectivity ( Mostame and Sadaghiani, 2020 ), but ul-
imately the relevance of different connectivity measures for brain be-
avior and pathology is still an open question. 

Electrophysiological measures suffer from an ill-posed problem,
hen reconstructing sparsely sampled sensor signals on the scalp into

he three-dimensional brain space, resulting in source-activity leak-
ng into different regions which can distort connectivity measures
 Palva et al., 2018 ). The selection of an optimal brain parcellation can
educe the variability arising from regional crosstalk due to source leak-
ge of the inverse solution ( Farahibozorg et al., 2018 ). Given those limi-
ations of electrophysiological measures, less work has been done to ex-
ract electrophysiological connectomes ( Sadaghiani and Wirsich, 2020 ).
owever, no study has compared if the EEG or the fMRI connectome can
e measured more reliably across subjects, especially in a simultaneous
ecording. 

In the case of simultaneous EEG-fMRI, signal quality is diminished
y 1) artifacts on fMRI data induced by the EEG electrodes interact-
ng with the static magnetic field and the MR-pulses ( Mullinger et al.,
008b ) 2) gradient- and pulse-related EEG artifacts induced by the mag-
etic gradients on the EEG electrodes and cables ( Abreu et al., 2018 ;
llen et al., 2000 ). At 7T, EEG-fMRI can be affected by stronger record-

ng artifacts ( Abreu et al., 2016 ; Jorge et al., 2015b ; Mullinger et al.,
008a ; Neuner et al., 2013 ). Overcoming those limitations would en-
ourage analysis of the dynamic electrophysiological correlates of BOLD
ignal at much higher temporal and spatial resolutions ( Meyer et al.,
019 ; Scheeringa and Fries, 2017 ). Though it is well documented that
he data quality of EEG and fMRI depends on scanner field strength
 Debener et al., 2008 ; Mullinger et al., 2008b ), no data exists assessing
he impact on the data reliability at the level of functional connectiv-
ty. The possibility to compensate for the larger artifacts at higher field
 Jorge et al., 2015a ) might be sufficient to achieve reliable EEG-fMRI
onnectivity measures. 

To close the gap of unknown reproducibility of EEG-fMRI connec-
omes across experimental setups and to evaluate the suitability of a 7T
EG-fMRI setup for multimodal connectomics in this study we aim to: 

1) compare the monomodal topographical similarity of FC fMRI to FC EEG 
derived from simultaneous EEG-fMRI across different imaging cen-
ters 

2) characterize the reproducibility of crossmodal FC fMRI -FC EEG rela-
tionship across heterogeneous setups and, for the first time, at 7T 

3) characterize the robustness of the crossmodal relationship to
methodological choices regarding the chosen brain parcellation and
EEG connectivity measure 

4) characterize the stability of the crossmodal relationship with respect
to acquisition duration and number of subjects used for group aver-
ages 

5) characterize the spatial contributions of individual connections to
this crossmodal relationship and the topographical similarity of
these contribution across different datasets 

We will consider that the crossmodal relationship is reproducible
f the monomodal measures are correlated across datasets and if the
rossmodal relationship remains significant across all datasets. We fur-
her expect that the crossmodal relationship is robust to methodological
hoices. For example, we expect a robust crossmodal relationship to be
ignificant for a range of methodological choices while the magnitude
f the relationship might change. Our previous work suggest this cor-
elation to be moderate around r~0.3 ( Wirsich et al., 2020a , 2017 ).
he reproducibility of monomodal measures, the crossmodal relation-
hip and the robustness of the latter to methodological choices would
trongly support the generalizability of concurrently recorded EEG-fMRI
onnectomes. 

To do so, we combined simultaneous EEG-fMRI resting state acqui-
itions from 4 different centers totaling 72 subjects, and comprising
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ecordings using a 1.5T, 3T and 7T MR scanner in combination with
 64- or 256-electrode EEG system. 

. Methods 

.1. Subjects and acquisition setup 

We analyzed a total of 72 subjects divided up into 4 datasets: 16 sub-
ects using a 64-channel EEG setup in a 1.5T MR-scanner (64Ch-1.5T),
6 subjects using a 64-channel EEG setup in a 3T MR-scanner (64Ch-
T), 21 subjects using a 256-channel EEG setup in a 3T MR-scanner
256Ch-3T) and 9 subjects using a 64 channel EEG setup in a 7T MR-
canner (64Ch-7T). Main differences between study paradigm, hardware
nd software setup are summarized in SI Table 1. 

.2. Data set 1 (64Ch-1.5T) 

16 subjects (6 females, mean age: 32.87, range 22–53) with no his-
ory of neurological or psychiatric illness were recorded. Ethical ap-
roval was given by local Research Ethics Committee (UCL Research
thics committee, project ID: 4290/001) and informed consent was
btained from all subjects ( Deligianni et al., 2016 , 2014 ). In each
ubject one run of 10 min 48 s resting-state simultaneous EEG-fMRI
as acquired. Subjects were asked not to move, to remain awake
nd fixate on a white cross presented on a black background. MRI
as acquired using a 1.5 Tesla MR-scanner (Siemens Avanto). The

MRI scan comprised of the following parameters: GRE-EPI sequence,
R = 2160, TE = 30 ms, 30 slices, 210 × 210 mm Field of View, voxel size
.3 × 3.3 × 4.0mm 

3 (1 mm gap), flip angle 75°, total of 300 vol. The
ubjects’ head was immobilized using a vacuum cushion during scan-
ing. Additionally, an anatomical T1-weighted image was acquired (176
agittal slices, 1.0 × 1.0 × 1.0 mm, TA = 11 min). EEG was acquired us-
ng two 32-channel MR-compatible amplifiers (BrainAmp MR, sampling
ate 1 kHz), 63 electrodes (BrainCap MR, Gilching, Germany), refer-
nced to FCz, 1 ECG electrode. The scanner clock was time-locked with
he amplifier clock ( Mandelkow et al., 2006 ). The MR-compatible am-
lifier was positioned behind outside the bore behind the head of the
ubject. 

.3. Data set 2 (64Ch-3T) 

26 healthy subjects (8 females, mean age 24.39, age range 18–31)
ith no history of neurological or psychiatric illness were recorded.
thical approval was given by local Research Ethics Committee (CPP
le-de France III) and informed consent was obtained from all sub-
ects ( Sadaghiani et al., 2010 ). In each subject, 3 runs of 10 min (to-
al 30 mins) resting-state simultaneous EEG-fMRI were acquired. Sub-
ects were asked not to move and to remain awake and keep their eyes
losed during the resting-state scan. For three subjects, one out of the
hree rest sessions was excluded due to insufficient EEG quality. The
esting-state sessions were part of a study with two additional natu-
alistic film stimuli of 10 min not analyzed in the current study, and
cquired after resting runs 1 and 2 of the resting state as described
n Morillon et al. ( Morillon et al., 2010 ). MRI was acquired using a 3
esla MR-scanner (Siemens Tim-Trio). The fMRI scan comprised of the
ollowing parameters: GRE-EPI sequence, TR = 2000 ms, TE = 50 ms, 40
lices, 192 × 192 mm Field of View, voxel size 3 × 3 × 3mm 

3 , flip an-
le 78°, total of 150 vol (total all sessions 450 vol). An anatomical T1-
eighted image was acquired (176 sagittal slices, 1.0 × 1.0 × 1.0 mm,
A = 7 min). EEG was acquired using two 32-channel MR-compatible am-
lifiers (BrainAmp MR, sampling rate 5 kHz), 62 electrodes (Easycap,
errsching, Germany), referenced to FCz, 1 ECG electrode, and 1 EOG
lectrode. The scanner clock was time-locked with the amplifier clock
 Mandelkow et al., 2006 ). The MR-compatible amplifier was positioned
ehind outside the bore behind the head of the subject. 
3 
.4. Data set 3 (256Ch-3T) 

21 healthy subjects (7 females, 32.13, age range 24–47) with no
istory of neurological or psychiatric illness were recorded. Ethical ap-
roval was given by local Research Ethics Committee (Ethics committee
f Geneva) and informed consent was obtained from all subjects. A sub-
roup of this cohort has been already analyzed by ( Iannotti et al., 2015 ).
n each subject one run of 4 min 58.5 s resting-state simultaneous EEG-
MRI were acquired. Five subjects had a longer recording of 19 min 52 s
nd one subject had a recording of 9 min 56 s, in all those cases the
otal run was analyzed. Subjects were asked not to move and to remain
wake and keep their eyes closed during the resting-sate scan. MRI was
cquired using a 3 Tesla MR-scanner (Siemens Magnetom Trio, Siemens
risma for 19 min 52 s sessions). The fMRI scan comprised the follow-
ng parameters: GRE-EPI sequence, TR = 1990 ms, TE = 30 ms, 32 slices,
92 × 192 mm Field of View, voxel size 3 × 3 × 3.75mm 

3 , flip angle
0°, total of 150 vol. Additionally, an anatomical T1-weighted image
as acquired (176 sagittal slices, 1.0 × 1.0 × 1.0 mm, TA = 7 min). EEG
as acquired using a 258-channel MR-compatible amplifier (Electrical
eodesic Inc., Eugene, OR, USA, sampling rate 1 kHz), 256 electrodes

Geodesic Sensor Net 256), referenced to Cz, 2 ECG electrodes. The scan-
er clock was time-locked with the amplifier clock ( Mandelkow et al.,
006 ). An elastic bandage was pulled over the subjects’ head and EEG
ap to assure the contact of electrodes on the scalp. The MR-compatible
mplifier was positioned to the left of the subject and EEG and ECG
ables were passed through the front end of the bore. 

.5. Data set 4 (64Ch-7T) 

9 healthy subjects (4 females, mean age 23.56, age range 22–26) with
o history of neurological or psychiatric illness were recorded. Ethical
pproval was given by the local Research Ethics Committee (CER-VD)
nd informed consent was obtained from all subjects ( Jorge et al., 2019 ).
n each subject 1 run of 8 min resting-state simultaneous EEG-fMRI was
cquired. Subjects were asked not to move in the MR scanner and to
eep their eyes open during the resting-state scan, fixating on a small
ed cross presented on a gray background, to minimize head and eye
ovements. Padding was also used to further restrict motion. MRI was

cquired using a 7 Tesla head MR-scanner (Siemens Magnetom). The
MRI scan was performed using a simultaneous multi-slice (SMS) GRE-
PI sequence (3 × SMS and 2 × in-plane GRAPPA accelerations), with
R = 1000 ms, TE = 25 ms, 69 slices, 220 × 220 mm Field of View, voxel
ize 2.2 × 2.2 × 2.2 mm, flip angle 54°, and a total of 480 vol. A short
PI acquisition (5 vol) with reversed phase encoding direction was also
erformed, for image distortion correction. Additionally, an anatomical
1-weighted image was acquired (160 sagittal slices, 1.0 × 1.0 × 1.0 mm,
A = 10 min). EEG was acquired using two 32-channel MR-compatible
mplifiers (BrainAmp MR, sampling rate 5 kHz), and a 63-electrode
EasyCap, Herrsching, Germany), referenced to FCz, 1 ECG electrode,
onnected via 12-cm bundled cables to reduce artifact contributions
 Jorge et al., 2015b ). Four of the 64 electrodes (T7, T8, F5 and F6)
ere customized to serve as motion artifact sensors ( Jorge et al., 2015a ).
 total of 59 electrodes therefore remained dedicated to EEG record-

ng. The scanner clock was time-synchronized with the amplifier clock
 Mandelkow et al., 2006 )). The MR-compatible amplifier was positioned
nside the bore behind the head of the subject. 

.6. Analysis 

As data acquisition already has a considerable number of varying
arameters that might affect the final FC estimation, we stress here that
lso for the analysis we did not strictly control every processing step.
he rationale of this was that independent of setup and postprocess-

ng, the different datasets should generalize across a family of analyses
 Botvinik-Nezer et al., 2020 ) and result in reproducible monomodal and
rossmodal measures. Applied to this study, the crossmodal relationship
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an be considered reproducible if it is robust to different hardware se-
ups and preprocessing approaches. The different starting points across
atasets given by the different EEG and fMRI equipment described above
ake it hard to acquire perfectly unbiased recordings across datasets.

n consequence, our approach here was to optimize the analysis of each
ataset to obtain the best possible signal quality (E.g. varying with
eld strength, several fMRI parameters are affected: e.g. optimal TE
nd thereby the time available to execute the EPI readout; techniques
ike GRAPPA and SMS-EPI - like used in the 7T data - become more or
ess effective, the spatial resolution vs. physiological noise relationship
hanges etc.). Regarding EEG side, as pointed out later, the channel ge-
metry ( Iannotti et al., 2015 ) or presence of additional artifact sensors
 Jorge et al., 2015a ) present opportunities for denoising that should be
aken advantage of wherever available. 

.7. Brain parcellation 

We used the Freesurfer toolbox to process the T1-weighted im-
ges (recon-all, v6.0.0 http://surfer.nmr.mgh.harvard.edu/ ) in order
o perform non-uniformity and intensity correction, skull stripping
nd gray/white matter segmentation. The cortex was parcellated into
48 regions according to the Destrieux atlas (Destrieux et al., 2010;
ischl et al., 2004) and into 68 regions according to the Desikan(-
illiany) atlas ( Desikan et al., 2006 ). According to the results of
arahibozorg et al. (2018) , showing that the optimal size of parcella-
ion to capture independent EEG signals contains around 70 regions we
ecided to use the Desikan atlas as reference. 

Specific strategy for 64Ch-7T: Due to local signal drops in the T1-
eighted images near the EEG lead convergence points ( Jorge et al.,
015b ) we were not able to run the Freesurfer individual segmentation
recon-all) for all subjects. In order to not lose any of the subjects and to
eep consistency within the data set we coregistered all fMRI images to
he MNI template. We used Freesurfer to extract the surfaces of the MNI
emplate. In order to account for subject specific variances, we dilated
he atlas images by 3 voxels (using https://github.com/mattcieslak/
asy _ lausanne ). The transformation of the segmented MNI template to
MRI was calculated by coregistering the fMRI images to the T1 image
sing FSL-FLIRT (6.0.2) ( Jenkinson et al., 2002 ) with boundary-based
egistration using white matter masks obtained by segmentation with
NTS (version 2.2.0) ( Avants et al., 2011 ). The T1 was coregistered to

he MNI template using FSL-FNIRT (6.0.2) ( Jenkinson and Smith, 2001 ).

.7.1. fMRI processing 
Slice timing correction was applied to the fMRI timeseries

for the Ch64–3T and Ch256–3T datasets only). This was fol-
owed by spatial realignment using the SPM12 toolbox (Ch64–
.5T/Ch64–3T: revision 6906; Ch256–3T/Ch64–7T revision 7475;
ttp://www.fil.ion.ucl.ac.uk/spm/software/spm12 ). The T1 images of
ach subject and the Desikan/Destrieux atlas (already in subject space,
s described above) were coregistered to the fMRI images (FSL-FLIRT
.0.2). We extracted signals of no interest such as the average sig-
als of cerebrospinal fluid (CSF) and white matter from manually de-
ned regions of interest (ROI, 5 mm sphere, Marsbar Toolbox 0.44,
ttp://marsbar.sourceforge.net ) and regressed out of the BOLD time-
eries along with 6 rotation, translation motion parameters and global
ray matter signal ( Wirsich et al., 2017 ). Then we bandpass-filtered the
imeseries at 0.009–0.08 Hz (Power et al., 2014). Like in Wirsich et al.
2020a , 2017 ), we scrubbed the data using frame wise displacement
threshold 0.5 mm, by excluding the super-threshold timeframes) as de-
ned by Power et al. (2012) . 

Specific strategy for 64Ch-7T: Data was also B0-unwarped before
patial alignment, using FSL-TOPUP (6.0.2) ( Andersson et al., 2003 ),
ased on the reverse-encoding reference acquisition, to mitigate the
ore accentuated image distortions present at 7T ( Jorge et al., 2018 ).
iven the short TR of 1 s no slice timing correction was carried out
 Smith et al., 2013 ). 
4 
Specific strategy for 64Ch-1.5T: In order to stick to the original pro-
essing of ( Deligianni et al., 2014 ) no slice timing correction was carried
ut. We note that as shown by Wu et al. (2011) and Shirer et al. (2015) ,
lice timing correction has minimal to no effect on brain connectivity
in terms of test-retest reliability, signal to noise ratio and group sepa-
ability). 

.8. fMRI connectivity measures 

Average timeseries of each region was then used to calculate FC fMRI 
y taking the pairwise Pearson correlation of each regions’ cleaned time-
ourse (see schema Fig 1 ). The final connectivity matrix was constructed
y the unthresholded values of the Pearson correlation. 

.9. EEG processing 

EEG data was preprocessed individually for the different setups: 
64Ch-1.5T : EEG was corrected for the scanner gradient artifact us-

ng template subtraction, adaptive noise cancelation and downsampling
o 250 Hz ( Allen et al., 2000 ) followed by pulse-related artifact template
ubtraction ( Allen et al., 1998 ). Then ICA-based denoising (for removal
f gradient and pulse artifact residuals, eye-blinks, muscle artifacts) us-
ng the Brain Vision Analyzer 2 software (Brain Products, Gilching, Ger-
any) was carried out. 

64Ch-3T: EEG was corrected for the scanner gradient artifact us-
ng template subtraction, adaptive noise cancelation followed by low-
ass filtering at 75 Hz, downsampling to 250 Hz ( Allen et al., 2000 ).
hen pulse-related artifact template subtraction ( Allen et al., 1998 ) us-

ng EEGlab v.7 ( http://sccn.ucsd.edu/eeglab ) and the FMRIB plug-in
 https://fsl.fmrib.ox.ac.uk/eeglab/fmribplugin/ ) was carried out. 

256Ch-3T : EEG was corrected for the scanner gradient artifact us-
ng template subtraction with optimal basis set and adaptive noise can-
elation ( Allen et al., 2000 ; Niazy et al., 2005 ), followed by pulse-
elated artifact template subtraction ( Allen et al., 1998 ) using in-house
ode Matlab code for ballistocardiogram peak detection as described
n ( Iannotti et al., 2015 ). Electrodes placed on the cheeks and in the
ace were excluded form data analysis resulting in final 204 used elec-
rodes. This was followed by manual ICA-based denoising (for removal
f gradient and pulse artifact residuals, eye-blinks, muscle artifacts, info-
ax, runICA-function EEGLab revision 1.29 ( Bell and Sejnowski, 1995 ;
elorme and Makeig, 2004 )) 

64Ch-7T: EEG data pre-processing included the following steps: gra-
ient artifact correction using template substraction (as described in
 Jorge et al., 2015a )), bad channel interpolation (1–4 channels per
ubject), temporal band-pass filtering (1–70 Hz), pulse-related arti-
act correction (using a k-means clustering-based approach validated in
 Jorge et al., 2019 ) in line with ( Gonçalves et al., 2007 )), downsampling
o 500 Hz, motion artifact correction (offline multi-channel recursive
east-squares regression, using the motion sensor signals, as described
n ( Jorge et al., 2015a )), and manual ICA-based denoising (for removal
f e.g. gradient and pulse artifact residuals, eye-blinks, muscle artifacts,
n-house ICA extended Infomax algorithm). 

All datasets: Cleaned EEG data was analyzed with Brain-
torm software ( Tadel et al., 2011 ), which is documented
nd freely available under the GNU general public license
 http://neuroimage.usc.edu/brainstorm , 64Ch-1.5T and 64Ch-3T
ata set: version 10th August 2017 as according to ( Wirsich et al.,
020b ), 256Ch-3T and 64Ch-3T data set: version 15th January 2019).
ata was bandpass-filtered at 0.3–70 Hz (64Ch-1.5T at 0.5–70 Hz,
4Ch-7T at 1–70 Hz). Data was segmented according to one TR or as
 multiple TRs of the fMRI acquisition (64Ch-1.5: 2160 ms, 64Ch-3T:
000 ms, 256Ch-3T: 1990 ms, 64Ch-7T: sliding window of 4000 ms
ith 1000 ms (1TR) steps). 

In order to minimize effect of head motion EEG epochs containing
otion were semi-automatically detected if the signal in any channel

xceeded the mean channel timecourse by 4 standard deviations. Then

http://surfer.nmr.mgh.harvard.edu/
https://github.com/mattcieslak/easy_lausanne
http://www.fil.ion.ucl.ac.uk/spm/software/spm12
http://marsbar.sourceforge.net
http://sccn.ucsd.edu/eeglab
https://fsl.fmrib.ox.ac.uk/eeglab/fmribplugin/
http://neuroimage.usc.edu/brainstorm
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Fig 1. Overview on the construction of EEG and fMRI connectomes. EEG and fMRI data were parcellated into the 148 cortical regions of the Destrieux atlas (and 
68 regions of the Desikan atlas, coregistered to each subject’s individual T1) as follows: For fMRI, the BOLD signal timecourse was averaged over the voxels in each 
region for each subject. The Pearson correlation of the region averaged fMRI-BOLD timecourse was calculated to build a function connectivity matrix /connectome 
(FC fMRI ). For the EEG, the signal of each sensor was source reconstructed to the cortical surface (15,000 solution points) using the Tikhonov-regularized minimum 

norm. Then, the timecourses of the solution points were averaged per cortical region. The imaginary part of the coherency (iCoh) or envelope amplitudes correlation 
(AEC, orthogonalized and non-orthogonalized) of averaged EEG source signals were used to calculate FC EEG for each subject (Figure adapted from ( Wirsich et al., 
2020a )). Please refer to the methods for a detailed description of each step. 
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he whole timecourse was also visually inspected to exclude all motion
egments from further analysis ( Wirsich et al., 2020a , 2017 ). Electrode
ositions and T1 were coregistered by manually aligning the electrode
ositions onto the electrode artifacts visible in the T1 image. A forward
odel of the skull was calculated based on the individual T1 image of

ach subject using the OpenMEEG BEM model, ( Gramfort et al., 2010 ;
ybic et al., 2005 ). The EEG signal was projected into source space
15,000 solution points on the cortical surface) using the Tikhonov-
egularized minimum norm ( Baillet et al., 2001 ) with the Tikhonov pa-
ameter set to 10% (Ch64–1.5T/Ch64–3T brainstorm 2016 implemen-
ation and Ch256–3T/Ch64–7T brainstorm 2018 implementation, with
efault parameters: assumed SNR ratio 3.0, using current density maps,
onstrained sources normal to cortex with signs flipped into one direc-
ion, depth weighting 0.5/max amount 10). Finally, the source activity
f each solution point was averaged in each cortical region of the De-
ikan and the Destrieux atlas. 

.10. EEG connectivity measures 

For each epoch the imaginary part of the coherency (iCoh,
 Nolte et al., 2004 )) of the source activity was calculated between each
egion pair (cortical regions only: Desikan atlas - 68 regions or De-
trieux atlas - 148 regions) using bins of 2 Hz frequency resolution
 Wirsich et al., 2020a , 2017 ) (Brainstorm implementation, version 27–
1–2019; imaginary part was corrected by the real part of the coherence

oh: 𝑖𝐶𝑜ℎ = 

𝐼𝑚 ( 𝑐𝑜ℎ ) 2 

1− 𝑅𝑒 ( 𝑐𝑜ℎ ) 2 
( Ewald et al., 2012 ), significance of each value

as determined according to ( Schelter et al., 2006 ), connections with
 < 0.05 were set to 0). The 2 Hz bins were averaged for 5 canonical
requency bands: delta ( 𝛿 0.5–4 Hz, 64Ch-7T: at 1–4 Hz), theta ( 𝜃 4–
 Hz), alpha ( 𝛼 8–12 Hz), beta ( 𝛽 12–30 Hz), gamma ( 𝛾 30–60 Hz). The
egments were then averaged for each subject to one FC EEG matrix. 

We calculated the amplitude envelope correlation (AEC) of the sig-
al by taking the Hilbert envelope of the concatenated epochs of each
ubject filtered into the canonical frequency bands both for the De-
trieux and Desikan atlas. We calculated the correlation of the fil-
ered data both without ( Deligianni et al., 2014 ; Glomb et al., 2020 )
nd with ( Brookes et al., 2012 ; Hipp et al., 2012 ) a subsequent pair-
ise orthogonalization approach to attenuate crosstalk between signals

AEC non-orthogonalized /AEC orthogonalized , Brainstorm implementation; ver-
ion 27–01–2019 implementation of ( Hipp et al., 2012 )). 
5 
.11. Monomodal reproducibility 

We assessed the modality-specific reproducibility by determining
he topographical similarity of the average connectivity matrix through
alculating the monomodal inter-dataset correlation between averaged
C fMRI (of each dataset across all runs and subjects). The same anal-
sis was performed for FC EEG (in each frequency band). Intra-dataset
onomodal reproducibility was assessed by splitting up each dataset

nto two halves and calculating the correlation of the average connec-
ome between both halves. 

.12. Statistical analyses 

To analyze the impact of group averages, we used a permutation
pproach that randomizes the labels of the variable of interest in order
o define a p-value (5000 random permutations). In the case of statistical
ssessment of the 64ch-7T dataset with size of 9 subjects only label 512
ermutations exist, in which case we tested for all 512 permutations
o define a p-value. We report all raw p-values alongside an explicit
onferroni threshold in case of multiple comparisons. 

.13. The crossmodal correlation between EEG and fMRI 

We then assessed the crossmodal correlation between FC fMRI and
C EEG for each EEG frequency band across different configurations
brain atlas, EEG connectivity measure). Effects on the crossmodal
C EEG -FC fMRI correlation due to EEG frequency bands ( 𝛿, 𝜃, 𝛼, 𝛽, 𝛾),
tlas choice (Desikan vs. Destrieux), EEG connectivity measure (iCoh,
EC non-orthogonalized , AEC orthogonalized ) were assessed on the average con-
ectome of each dataset (permutation test with 5000 iterations or, 512
ermutations for the 64Ch-7T dataset, testing the effects against aver-
ge connectomes with switched labels at the individual level, in or-
er to be able to compare the 2278 connections of the Desikan atlas
o the 11,026 connections of the Destrieux atlas we randomly drew
278 out of the 11,026 Destrieux connections for each iteration. We
ested if this random sampling introduces a bias to the measured cross-
odal correlation by comparing 5000 (or 512 permutations for the
4Ch-7T dataset) draws of 2278 connection to the crossmodal corre-
ation of all connections. We observed that the absolute difference was
 diff-sampling < |0.0004|. We considered this value negligible in order to
est for significant atlas differences of the order r diff-atlas ~0.01). 
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Table 1 

Inter- and intra-dataset correlation of FC fMRI .; The first row 

shows the intra-dataset correlation of the dataset’s split-half 
averaged fMRI connectome. The orange cells show the inter- 
dataset correlation of dataset average fMRI connectome (De- 
sikan atlas) between the different datasets. 

64Ch-1.5T 64Ch-3T 256Ch-3T 64Ch-7T 

Split-half 0.82 0.95 0.88 0.78 

64Ch-1.5T 0.81 0.78 0.69 

64Ch-3T 0.90 0.69 

256Ch-3T 0.64 

Table 2 

Inter- and intra-dataset correlation of FC EEG . The first row 

shows of each frequency-band the intra-dataset correlation of 
the dataset’s split-half averaged EEG connectome. The orange 
cells show the inter-dataset correlation of dataset averaged EEG 

connectome (Desikan atlas, imaginary part of the coherency) be- 
tween the different datasets. 

64Ch-1.5T 64Ch-3T 256Ch-3T 64Ch-7T 

Delta 

Split-half 0.79 0.82 0.76 0.78 

64Ch-1.5T 0.81 0.68 0.66 

64Ch-3T 0.75 0.71 

256Ch-3T 0.68 

Theta 

Split-half 0.76 0.88 0.79 0.80 

64Ch-1.5T 0.83 0.68 0.66 

64Ch-3T 0.77 0.71 

256Ch-3T 0.72 

Alpha 

Split-half 0.70 0.85 0.75 0.77 

64Ch-1.5T 0.63 0.76 0.71 

64Ch-3T 0.57 0.51 

256Ch-3T 0.73 

Beta 

Split-half 0.85 0.90 0.81 0.79 

64Ch-1.5T 0.84 0.85 0.73 

64Ch-3T 0.79 0.64 

256Ch-3T 0.69 

Gamma 

Split-half 0.77 0.82 0.47 0.64 

64Ch-1.5T 0.69 0.43 0.68 

64Ch-3T 0.57 0.57 

256Ch-3T 0.47 
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To assess the effect of small sample sizes and short recording length,
e cut all datasets to a recording length of the first 4min58.5 s (accord-

ng to the recording length in dataset 256Ch-3T). Significance was tested
y randomly switching labels between 4min58.5 s and full-length data
5000 iterations, or 512 permutations for the 64Ch-7T dataset). Then we
ook only the first nine subjects of each dataset to calculate the connec-
ome average of EEG and fMRI (according to the number of subjects in
ataset 64Ch-7T). Significance was defined by comparing the average
rossmodal correlation of all subjects against the average 9 randomly
ampled subjects from the group (5000 iterations). 

.14. Spatial characterization of the crossmodal correlation 

Focusing on the multimodal connectomes in the Desikan atlas av-
raged over all datasets, we assessed the relative contribution of each
onnection to the correlation between FC EEG and FC fMRI according to
olclough et al. (2016) . The relative contribution c of each connec-

ion i is given by: 𝑐 𝑖 = 

𝑧 𝑥 
𝑖 
𝑧 
𝑦 

𝑖 ∑
𝑖 𝑧 

𝑥 
𝑖 
𝑧 
𝑦 

𝑖 

= 

𝑧 𝑥 
𝑖 
𝑧 
𝑦 

𝑖 

𝑟 
with 𝑧 𝑥 

𝑖 
= 

𝑥 𝑖 − ⟨𝑥 ⟩√∑
𝑖 ( 𝑥 𝑖 − ⟨𝑥 ⟩) 2 

and 𝑧 𝑦 
𝑖 
=

𝑦 𝑖 − ⟨𝑦 ⟩√∑
𝑖 ( 𝑦 𝑖 − ⟨𝑦 ⟩) 2 

given the Pearson correlation coefficient of two vectors x

nd y: 𝑟 = 

∑
𝑖 ( 𝑥 𝑖 − ⟨𝑥 ⟩)( 𝑦 𝑖 − ⟨𝑦 ⟩ ) √∑

𝑖 ( 𝑥 𝑖 − ⟨𝑥 ⟩) 2 
√∑

𝑖 ( 𝑦 𝑖 − ⟨𝑦 ⟩) 2 
= 

∑
𝑖 

𝑧 𝑥 
𝑖 
𝑧 
𝑦 

𝑖 
. The resulting spatial con-

ribution matrix was then correlated across the different datasets to
ssess the reproducibly of this spatial contribution to the crossmodal
elationship. To classify the results we mapped the 68 regions of the
esikan atlas to 7 canonical ICNs (VIS: Visual, SM: Somatomotor, DA:
orsal Attention, VA: Ventral Attention, L: Limbic, FP: Fronto-Parietal,
MN: Default Mode Network) ( Amico et al., 2017 ; Yeo et al., 2011 ) and
e subdivided the connections into homotopic, intrahemispheric and

nterhemispheric connections. We tested if the spatial contribution to
he crossmodal correlation was more prominent for each ICN, for ho-
otopic connections and for interhemispheric connections (one-sided

test). Finally, we tested if the magnitude of the crossmodal correlation
as increased for each ICN, for homotopic connections and for intra-
emispheric connections (one-sided ttest). 

.15. Reproducibility of the crossmodal correlation from single subject to 
he average connectome 

Besides taking the average multimodal connectome of each dataset
e also calculated the correlation between EEG and fMRI connectomes

n each subject. Using a two-way ANOVA we tested if the crossmodal
orrelation differs in terms of the dataset and EEG frequency band
r the interaction between dataset and frequency band (Matlab func-
ion ANOVAN, p < 0.05). To identify any possible effects of a specific
ataset or frequency band on the crossmodal correlation, we used a
ukey Posthoc test (Matlab function multcompare, p < 0.05 Bonferroni
orrected). In order to exclude a large effect of motion on the cross-
odal relationship we correlated the average framewise displacement

f each subject to the individual crossmodal relationship (see SI section
mpact of movement). Additionally, to limiting the group average to 9
ubjects, in order to better understand the relationship between single
ubject and dataset averaged estimates we aimed to define the number
f subjects needed for a reliable averaged connectome. To do so now and
andomly selected 1,2,…,n subjects (5000 iterations each step) and av-
raged the EEG and fMRI connectomes of the selected subjects. Then we
alculated the correlation between FC EEG and FC fMRI for each of the sub-
ect steps. We repeated this approach for the combined dataset sampling
n average correlation between the averaged EEG and fMRI connectome
rom n randomly drawn subjects. To determine how many subjects are
eeded for a stable average connectome we took the average crossmodal
orrelation over all subjects of each frequency band as reference corre-
ation. We then compared the value of 1% of reference correlation to
he change rate when adding one random subject (5000 iterations). The
rossmodal correlation was considered stable when the change rate did
ot differ more than 1% of the total crossmodal reference correlation. 
6 
. Results 

.1. Monomodal reproducibility between datasets 

We measured monomodal reproducibility (topographical similar-
ty) by taking correlations of connectivities of each modality. Between
atasets, monomodal connectivity matrices were all correlated for both
odalities ( Table 1 , Table 2 ). 7T fMRI data correlated less with the

ther datasets ( Table 1 ), EEG correlations were lower than correlations
etween fMRI ( Table 1 , Table 2 ). In terms of inter-dataset connectome
orrelation, delta, theta and beta band connectomes were the most cor-
elated across datasets ( r > 0.65, see Table 2 ). Unlike otherwise stated,
he results of this section are all derived from the group averaged con-
ectomes of each dataset. 

.2. Crossmodal correlation of group averaged EEG and fMRI connectomes

Correlations between EEG and fMRI were highest for the beta band,
hile gamma and delta band were the most variable across datasets.
 grand average across all datasets (72 subjects) resulted in the high-
st correlation between EEG and fMRI for all bands ( Fig 2 a). While the
rand average FC fMRI -FC EEG- 𝛽 correlation was significantly higher than
ll the other bands ( p < 0.0002, 5000 permutations, see 3), the group-
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Fig 2. a) Crossmodal correlation dataset av- 
eraged EEG and fMRI connectomes using the 
Desikan atlas (FC EEG measure: imaginary part 
of the coherency); b) Crossmodal correlation 
dataset averaged EEG and fMRI connectomes 
using the Destrieux atlas (FC EEG measure: imag- 
inary part of the coherency). 
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veraged FC fMRI -FC EEG- 𝛼 correlation was significantly increased only
hen compared to FC fMRI -FC EEG- 𝛾 (only for 64Ch-3T dataset: p = 0.0002
nd 256–3T dataset: p = 0.0004, 5000 permutations, see SI Table 3). 

.3. Crossmodal correlation of group averaged EEG and fMRI connectomes
sing an alternative atlas and alternative EEG connectivity measures 

In this section we compared the above used atlas (Desikan) and
EG connectivity measures (iCoh) to alternatives. Taking an atlas with
igher resolution resulted in a reduction of crossmodal FC fMRI -FC EEG 
orrelation grand average over all datasets ( Fig 2 b, p < 0.0002 for all
requency bands, 5000 permutations, see SI Table 4, a subset of the De-
trieux connections were randomly chosen for each iteration to match
he number of connections of the Desikan atlas: see methods). When
sing AEC non-orthogonal as FC EEG connectivity measure crossmodal corre-
ation increased as compared to taking iCoh ( Fig 3 b, for FC EEG- 𝛾 only,
 < 0.0002, 5000 permutations, SI Table 5), the orthogonalization ap-
roach (AEC orthogonal ) resulted in lower correlation compared to the
Coh ( Fig 3 b, all EEG frequency bands, p < 0.0002, 5000 permutations,
ee SI Table 5). We did not find any significant correlation between
C fMRI and FC EEG- 𝛾 in the 256Ch-3T dataset. 

.4. Effect of number of subjects and length of resting-state recording on 
he crossmodal correlation 

Next connectomes were cut down to the session length of the short-
st dataset (4min58.5 s, Fig 4 a) and subject averages were calculated
7 
sing the same number of subjects (9 subjects, Fig 4 b). The crossmodal
orrelation averaged over all datasets is not significantly different when
he sessions are cut down to the first 4min58.5 s ( p > 0.07 for all fre-
uency bands, 5000 permutations, SI Table 6). Note that though we did
ot find any significant differences for group averaged connectomes, we
bserved significant differences individual crossmodal correlation when
imiting the 30 min of the 64Ch-3T dataset to 4min58.5 s (one-sided
test, significant for FC fMRI -FC EEG- 𝛿 , FC fMRI -FC EEG- 𝜃 and FC fMRI -FC EEG- 𝛼 ,
 < 0.0003, SI Table 7). When taking the average connectivity of only the
rst 9 subjects the crossmodal correlation between FC fMRI and FC EEG- 𝛾
ecreases significantly ( p = 0.0006, 5000 permutations, SI Table 6). 

.5. Spatial characterization of differences and ICN crossmodal correlation

We defined the connections that contribute most to the FC fMRI -
C EEG correlation using the connectomes averaged over all datasets
 Colclough et al., 2016 ). Table 3 shows that the topography this spatial
ontribution is correlated between all datasets. The visual network con-
ributes the most to the crossmodal correlation as well as the homotopic
onnections ( Fig 5 ). Connections of the visual network contributed sig-
ificantly more to the crossmodal FC fMRI -FC EEG correlation as compared
o inter-ICN connections for all frequency bands ( t -test spatial contribu-
ion Visual > interICN: FC fMRI -FC EEG- 𝛿/FC EEG- 𝜃/FC EEG- 𝛼/FC EEG- 𝛽/FC EEG- 𝛾 ;
 = 3.2 × 10 − 47 /1.8 × 10 − 34 / p = 5.1 × 10 − 69 / p = 4.1 × 10 − 53 /1.5 × 10 − 81

onferroni correction threshold for 5 frequencies and 7 ICNs is defined
t p = 0.05/35 = 0.0014). Connections of the limbic network contributed
ignificantly more to the FC fMRI -FC EEG correlation as compared to inter-
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Fig 3. Crossmodal correlation dataset aver- 
aged EEG and fMRI connectomes using Am- 
plitude envelope correlation (AEC) to derive 
FC EEG a) non-orthogonalized AEC and b) or- 
thogonalized AEC (results for Desikan atlas). 
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CN connections for all frequency bands except EEG- 𝛾 ( t -test spatial con-
ribution Limbic > inter-ICN: FC fMRI -FC EEG- 𝛿/FC EEG- 𝜃/FC EEG- 𝛼/FC EEG- 𝛽 ;
 = 5.4 × 10 − 06 /4.3 × 10 − 06 /4.6 × 10 − 05 /3.2 × 10 − 05 

, Bonferroni
orrection threshold for 5 frequencies and 7 ICNs is defined at
 = 0.05/35 = 0.0014). 

Homotopic connections contributed significantly more to the
C fMRI -FC EEG correlation as compared to the rest of the connec-
ome for all bands ( t -test spatial contribution homotopic > other
onnections: FC fMRI -FC EEG- 𝛿/FC EEG- 𝜃/FC EEG- 𝛼/FC EEG- 𝛽/FC EEG- 𝛾 :
 = 2.1 × 10 − 52 /8.710 ×10 − 50 /4.3 × 10 − 52 / p = 1.2 × 10 − 55 /9.6 × 10 − 56 

, 
onferroni correction threshold for 5 frequencies is de-
ned at p = 0.05/5 = 0.01). Additionally, intrahemi-
pheric connections contributed significantly more than in-
erhemispheric connections to the crossmodal relationship ( t -
est spatial contribution intrahemispheric > interhemispheric:
C fMRI -FC EEG- 𝛿/FC EEG- 𝜃/FC EEG- 𝛼/FC EEG- 𝛽/FC EEG- 𝛾 : 
 = 1.1 × 10 − 13 /1.3 × 10 − 14 /1.6 × 10 − 16 /9.3 × 10 − 23 /5.9 × 10 − 28 ,
onferroni correction threshold for 5 frequencies is defined at
 = 0.05/5 = 0.01) 

To follow up we explored at the crossmodal correlation of FC fMRI -
C EEG while only selecting connections inside one ICN. When com-
aring the crossmodal correlation inside the different canonical ICNs
o the crossmodal correlation of random in-between network connec-
ions of the same network size (randomly sampled, 5000 iterations), we
bserve a higher correlation in the Visual network (r fMRI , EEG- 𝛼 = 0.61
 r > r random 

: p = 0.028), r fMR,EEG- 𝛾= 0.63 ( r > r random 

: p = 0.007), the Lim-
ic network (r fMRI , EEG- 𝛿= 0.56, ( r > r random 

: p = 0.03), r fMRI,EEG- 𝛽= 0.59
 t  

8 
 r > r random 

: p = 0.022), r fMRI,EEG- 𝛾= 0.60 ( r > r random 

: p = 0.0034)) and the
MN (r fMRI,EEG- 𝛾= 0.52 ( r > r random 

: p < 0.0002), all significant at uncor-
ected threshold p < 0.05, Bonferroni correction threshold is defined at
 = 0.05/35 = 0.0014). 

.6. Reproducibility of crossmodal correlation in individual connectomes 

We generally observed the same distribution of FC EEG -FC fMRI correla-
ion in individual as compared to the dataset average such as high cross-
odal correlation for FC EEG- 𝛽 and low crossmodal correlation for FC EEG- 𝛾

 Table 4 ). Lowest correlation was observed in the 256Ch-3T dataset. 
A 2-way ANOVA of the individual subject crossmodal correla-

ion revealed a significant main effect of datasets F(3, 71) = 36.61,
 = 1.6 × 10 − 20 ; and a significant main Effect of EEG Frequency bands
(4, 71) = 6.85, p = 2.6 × 10 − 5 . The interaction term dataset ∗ band
as not significant (F(12, 71) = 1.32, p = 0.21, significance threshold
 < 0.05). Tukey Posthoc t-tests on the main effect of the datasets estab-
ished the following order of correlation magnitude: 64Ch-3T > 64Ch-
T > 64Ch-1.5T > 256Ch-3T (64Ch-3T > 64Ch-1.5T ( p < 0.0001), 64Ch-
T > 64Ch-7T ( p = 0.0031), 64Ch-3T > 256Ch-3T ( p < 0.0001); 64Ch-
T > 256Ch-3T ( p = 0.003)). Tukey Posthoc t-tests on the main effect of
EG frequency bands revealed that FC fMRI -FC EEG- 𝛾 correlation was sig-
ificantly smaller than FC fMRI -FC EEG- 𝛽 ( p < 0.0001) and FC fMRI -FC EEG- 𝜃
orrelation ( p = 0.027). 

FC EEG- 𝛽 correlates the best with FC fMRI for all datasets ( Fig 6 , Fig 7 ).
n the contrary FC EEG- 𝛾 -FC fMRI was dependent on the data set showing

he 2nd strongest correlation for the 64Ch-1.5T dataset and being by far
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Fig 4. Crossmodal correlation between dataset 
averaged EEG and fMRI connectomes limit- 
ing all datasets to: a) the first 4min58.5 s of 
each subject’s session (according to the session 
length of the 256Ch-3T dataset) and b) the first 
9 subjects of each dataset (according to the 
number of subjects of the 64Ch-7T dataset). 

Fig 5. Relative spatial contribution (see methods) of each connection to the crossmodal correlation between FC EEG- 𝛽 and FC fMRI based on the average over all 72 
subjects. (a) Spatial contribution is ordered according to the 7 canonical ICNs (Yeo et al. 2010). The Visual Network and the Limibic Network contributed the 
most to the crossmodal relationship. (b) Spatial contribution is ordered according to the two hemispheres. Off-diagonals highlight the homotopic connections that 
contributed the most to the crossmodal correlation. Abbreviations: VIS: Visual, SM: somatomotor, DA: dorsal attention, VA: ventral attention, L: Limbic, FP: Fronto 
parietal, DMN: default mode network. 

9 
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Table 3 

Inter- and intra-dataset correlation of spatial region-specific contributions 
to the averaged FC fMRI -FC EEG crossmodal correlation. The first row of each 
frequency-band shows the intra-dataset correlation of the dataset’s split 
half averaged EEG-fMRI connectomes. The orange cells show the inter- 
dataset correlation of the dataset averaged EEG-fMRI connectome (De- 
sikan atlas, imaginary part of the coherency). 

Spatial contribution 64Ch-1.5T 64Ch-3T 256Ch-3T 64Ch-7T 

Delta 

Split-half 0.72 0.85 0.76 0.79 

64Ch-1.5T 0.76 0.62 0.64 

64Ch-3T 0.76 0.64 

256Ch-3T 0.61 

Theta 

Split-half 0.69 0.87 0.81 0.80 

64Ch-1.5T 0.76 0.65 0.61 

64Ch-3T 0.78 0.62 

256Ch-3T 0.64 

Alpha 

Split-half 0.72 0.84 0.80 0.79 

64Ch-1.5T 0.56 0.75 0.76 

64Ch-3T 0.62 0.50 

256Ch-3T 0.69 

Beta 

Split-half 0.82 0.88 0.86 0.81 

64Ch-1.5T 0.81 0.80 0.74 

64Ch-3T 0.84 0.65 

256Ch-3T 0.66 

Gamma 

Split-half 0.80 0.86 0.65 0.75 

64Ch-1.5T 0.79 0.66 0.70 

64Ch-3T 0.71 0.66 

256Ch-3T 0.61 

Fig 6. Subjects were randomly sampled from all datasets taking 1…n subjects 
(5000 iterations) then the crossmodal correlation between the EEG and fMRI 
connectome of each frequency band was calculated, the crossmodal correlation 
does not change more than 1% of the maximum value after averaging around 
7–12 subjects (see SI Table 2). For maximum correlation see also Fig 2 (all 
datasets). 
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Table 4 

Average crossmodal correlation between EEG
across each dataset and frequency band (standa

64Ch-1.5T 64Ch-3T 

FC fMRI -FC EEG- 𝛿 0.13 (0.05) 0.20 (0.05) 

FC fMRI -FC EEG- 𝜃 0.12 (0.04) 0.19 (0.06) 

FC fMRI -FC EEG- 𝛼 0.12 (0.05) 0.18 (0.06) 

FC fMRI -FC EEG- 𝛽 0.16 (0.04) 0.22 (0.06) 

FC fMRI -FC EEG- 𝛾 0.14 (0.05) 0.14 (0.06) 

10 
he lowest correlation for the 64Ch-3T and 256Ch-3T dataset ( Fig 7 ). In-
ependent of the magnitude of the crossmodal correlation of each EEG
requency band, the crossmodal correlation was observed to be stable
or each dataset when averaging 7–12 subjects (stable = adding 1 sub-
ect did not change the correlation more than 1% of the total crossmodal
orrelation when averaging connectomes over 72 subjects, Error! Ref-

rence source not found. ). Combining all dataset to one average con-
ectome maximized the crossmodal relationship for between FC fMRI and
C EEG- 𝛿 , FC EEG- 𝜃 , FC EEG- 𝛼 and FC EEG- 𝛽 but not for FC EEG- 𝛾 . The 64Ch-
.5T dataset has an exceptionally high crossmodal correlation between
C EEG- 𝛾 and FC fMRI . Consequently the correlation is not increased by
aking the average of all 72 subjects (and effect clearly observed for all
ther bands Fig 2 a: 64Ch-1.5T dataset: r(FC EEG- 𝛾 , FC fMRI ) = 0.38 vs. all
atasets: r(FC EEG- 𝛾 , FC fMRI ) = 0.39). 

. Discussion 

This study showed that the crossmodal correlation between EEG
nd fMRI connectivity can be simultaneously recorded with high re-
roducibility from a variety of experimental setups and designs, no-
ably different MR magnetic fields and EEG electrode configurations
monomodal connectivity correlation for EEG and fMRI r~0.5–0.9 be-
ween all datasets and crossmodal connectivity correlation r~0.3–0.4
cross all datasets). Of special note, we demonstrated for the first time
hat concurrent EEG and fMRI connectomes derived from 7T show the
ame monomodal and crossmodal correlations as compared to data from
.5T and 3T. From an EEG-frequency point of view the crossmodal corre-
ation was highest for FC fMRI -FC EEG- 𝛽 , while from a spatial point of view
he visual network and homotopic connections contributed the most to
he crossmodal correlation. When averaging subjects across all datasets,
he correlation reaches a stable value from 7–12 subjects (see Fig 6 ,
I Table 2). From a single-subject point of view, crossmodal correla-
ion was weak (r~0.12–0.2). When comparing the correlation to the
ore established crossmodal relationships between FC fMRI and SC dMRI 
e note that our correlations between EEG and fMRI have the same or-
er of magnitude for both group averaged connectomes (e.g. r = 0.36
 Honey et al., 2009 ), r = 0.34 ( Goñi et al., 2014 )) and single-subject
onnectomes (e.g. r = 0.18 ( Skudlarski et al., 2008 ), r = 0.19 ( van den
euvel MP et al., 2013 )). 

.1. Frequency specific contributions 

When combining all datasets, FC EEG- 𝛼 and FC EEG- 𝛽 correlated
est with FC fMRI (r fMRI-EEG- 𝛼= 0.41 and r fMRI-EEG- 𝛽= 0.43, average over
ll datasets, see Fig 2 a). The weaker crossmodal correlation be-
ween FC EEG- 𝛾/FC EEG- 𝛿 and FC fMRI is in line with previous findings
 Tewarie et al., 2016 ; Wirsich et al., 2017 ). These results suggest that,
esides band-specific SNR observed in our monomodal inter- and intra-
ataset topographical similarity (which would predict the strongest
rossmodal coupling between FC fMRI and FC EEG- 𝛼 instead of FC -EEG- 𝛽
 Colclough et al., 2016 ; Marquetand et al., 2019 )), frequency spe-
ific FC fMRI -FC EEG correlation can advance the functional understanding
f large-scale connectivity. Specifically, the particularly strong tie be-
ween FC EEG- 𝛼 / FC EEG- 𝛽 and FC fMRI may suggest that phase synchrony
 and fMRI connectomes of individuals 
rd deviation in brackets). 

256Ch-3T 64Ch-7T All datasets 

0.12 (0.04) 0.15 (0.04) 0.15 (0.06) 

0.13 (0.05) 0.16 (0.06) 0.15 (0.06) 

0.13 (0.05) 0.16 (0.05) 0.15 (0.06) 

0.14 (0.04) 0.17 (0.04) 0.17 (0.06) 

0.08 (0.05) 0.13 (0.04) 0.12 (0.06) 
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Fig 7. Subjects were randomly sampled for each dataset separately taking 1…n subjects (5000 iterations) then the crossmodal correlation between FC fMRI and the 
FC EEG of each frequency band was calculated, correlation does not change more than 1% of the maximum value after averaging around 7–12 subjects (SI Table 2). 
a) 64Ch-1.5T b) 64Ch-3T c) 256Ch-3T d) 64Ch-7T. While the crossmodal correlation is maximum for FC fMRI -FC EEG- 𝛽 FC fMRI -FC EEG- 𝛾 is lowest for all datasets except 
the 64Ch-1.5 dataset (a). For the average crossmodal correlation across each dataset see also Fig 2 . 
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n 𝛼- and 𝛽-band contribute particularly strongly to the intrinsic net-
ork organization of the brain first characterized in FC fMRI , parallel-

ng conclusions of prior MEG studies ( Brookes et al., 2011 ; Hipp et al.,
012 ). 

This conclusion may come as a surprise, since neurophysiological in-
estigations using intracranial studies (human or animal) have demon-
trated highest correlation between local BOLD amplitudes and 𝛾 power
 Logothetis et al., 2001 ; Nir et al., 2007 ). In this context, it is impor-
ant keep in mind the difference between local signal amplitudes and
hole-brain FC organization. Further, we note that beyond FC EEG- 𝛼/ 𝛽 we

ound weaker but significant correlations between FC fMRI and FC EEG- 𝛾
as well as FC EEG- 𝛿) for all connectivity measures with the exception of
C fMRI -FC EEG- 𝛾 correlation in the 256Ch-3T dataset when using orthog-
nalized amplitude envelope correlations (AEC) (see also section Low
NR of gamma ). Additionally, in our previous work we have shown
hat local (visual) FC EEG- 𝛾 as well as distributed FC EEG- 𝛿 provide addi-
ional information (beyond FC EEG- 𝛼 and FC EEG- 𝛽) to explain structural
onnectivity derived from dMRI ( Wirsich et al., 2017 ). Further, we re-
ently demonstrated that FC EEG- 𝛾 provides spatially independent infor-
ation to the FC fMRI -FC EEG relationship ( Wirsich et al., 2020a ). A fre-

uency specific crossmodal relationship is further to be expected from
he laminar organization of the brain linking EEG- 𝛾 activity to local
aminar connectivity while lower frequencies support long range projec-
ions ( Scheeringa et al., 2016 ; Scheeringa and Fries, 2017 ). To conclude,
C EEG- 𝛾 meaningfully and uniquely relates to FC fMRI albeit at a weaker

ffect size. f  

11 
.2. Spatial contributions and ICN organization across timescales 

We observed that ICNs in general and particularly the connections
f the visual and the limbic network consistently contributed more than
nter-ICN connections to the static crossmodal correlation across all
requency bands. Intra-ICN connections do not only have the highest
onnectivity but were also previously found to have the least dynamic
onnections in the brain ( Zalesky et al., 2014 ). Together with our re-
ults, this suggests the existence of a crossmodal static core component
resent in both EEG and fMRI ( Sadaghiani and Wirsich, 2020 ), poten-
ially mediated by the structural core of the brain ( van den Heuvel and
porns, 2011 ; Wirsich et al., 2017 ). This idea of a crossmodal core is
urther strengthened by the observation of a dominance of homotopic
onnections to the relationship, in line with ( Shen et al., 2015 ) show-
ng that homotopic regions are among the least dynamic connections of
C fMRI . In the current study we extend these results of ( Shen et al., 2015 ;
irsich et al., 2020a ; Zalesky et al., 2014 ) by showing that visual, lim-

ic (temporo-orbitofrontal) and homotopic connections are the largest
ontributors to the static crossmodal FC fMRI -FC EEG relationship. If this
roperty would be only driven by SNR of the EEG signal, we would
xpect that FC EEG- 𝛽 performs equally well when comparing our results
o the dynamic crossmodal relationship. As we demonstrated recently
 Wirsich et al., 2020b ) this is not the case: the dynamic crossmodal
elationship is dominated by long-range intra-ICN FC EEG- 𝛿 , suggesting
ifferent frequency-specific crossmodal relationships between EEG and
MRI. Taken together, this suggests a static FC core dominated by
fMRI 
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orrelation to FC EEG- 𝛽 while the results of Wirsich et al. (2020b) suggest
 tight link of long-range dynamic FC EEG- 𝛿 linked to dynamic FC fMRI . 

.3. The relationship between FC fMRI and FC EEG derived by imaginary part 
f coherency and amplitude envelope correlation 

We confirmed that correlation of amplitude envelope correlations
AEC) are related to fMRI ( Deligianni et al., 2014 ) and provide
onsistent estimates of connectivity ( Colclough et al., 2016 ). While
EC non-orthogonalized correlated the most to FC fMRI , it has been noted that

his cross-measure consistency might stem from source leakage. It has
een proposed that source leakage can be solved by orthogonalization
f the signal pairs before calculating the AEC ( Colclough et al., 2016 ).
olclough et al. (2016) observed a poorer (inter- and intrasubject) topo-
raphical similarity of coherence-based measures as compared to AEC.
xploring the FC EEG -FC fMRI correlation across datasets, we observed that
he imaginary part of the coherency (iCoh) had a higher crossmodal cor-
elation than AEC orthogonalized but lower crossmodal correlation when
ompared to AEC non-orthogonalized . As we observed higher correlation of
EC-based FC EEG with FC fMRI when orthogonalization was not applied,

t might be the case that the orthogonalization eliminates true FC EEG cor-
elated to FC fMRI . Instead of orthogonalization, Glomb et al. (2020) pro-
osed to filter the FC EEG using structural connectivity derived by dMRI.
n that sense, it could be argued that AEC non-orthogonalized provides the
est estimation of neural connectivity as it has been shown to be both
he most reliable measure of FC EEG ( Colclough et al., 2016 ) and to have
 higher crossmodal correlation to FC fMRI as compared to iCoh and
EC orthognalized ( Fig 3 ). Further work is needed to better understand the
ontribution of veridic neuronal connectivity at zero lag ( Engel et al.,
991 ) that is suppressed by either using orthogonalization or iCoh.
s the magnitude of the crossmodal correlation of iCoh lies between

he values for orthogonalized and non-orthognalized AEC, we conclude
hat our results provide further evidence for the overall concordance
f amplitude-based and phase-based static connectivity during resting-
tate ( Mostame and Sadaghiani, 2020 ; Sadaghiani and Wirsich, 2020 ).
eyond the measurement of undirected connectivity, EEG has been
hown to be able to extract the directional connectivity of ICN organi-
ation ( Coito et al., 2019 ). Ultimately a multimodal approach holds the
romise to better estimate directional connectivity ( Wei et al., 2020 ). 

.4. Crossmodal correlation of high-quality EEG-fMRI connectomes at 7T 

We demonstrated for the first time that simultaneous EEG-fMRI con-
ectivity estimation can be undertaken at 7T, providing reproducible
onomodal estimates of FC fMRI and FC EEG comparable to data at 3T

nd 1.5T. EEG connectomes remain generally reproducible at 64Ch-
T when compared to the other datasets (inter-dataset correlation of
C EEG : r > 0.51 vs. r > 0.43 for all other datasets, Table 2 ). This is de-
pite the increased interferences between the two modalities at 7T
 Debener et al., 2008 ; Jorge et al., 2015b ; Mullinger et al., 2008b ). We
ontrolled for EEG artifacts by using the artifact acquisition approach
f Jorge et al. (2015a) , recording 4 electrodes isolated from the scalp
o improve data quality. On the other hand, for fMRI, we measured a
ower correlation of FC fMRI between the 64Ch-7T dataset and the other
atasets ( r > 0.64 vs. r > 0.78 for non-7T datasets, Table 1 ). This is most
ikely due to artifacts induced on the fMRI by strong influence of the EEG
eads converging to the superior-parietal regions of the cap ( Jorge et al.,
015b ). This artifact can potentially be avoided by customizing the ca-
ling of the EEG cap ( Meyer et al., 2019 ). We note that this interpre-
ation remains speculative as we did not acquire a proper control for
his analysis (fMRI acquisition in the same subjects without EEG-cap in
he scanner). Other effects uncontrolled for like TR, scan duration and
yes-closed vs. eyes open might also have a significant effect on the dif-
erences between datasets. Future studies should investigate the effects
f such improvement on FC fMRI . 
12 
.5. Crossmodal relationship and the choice of the spatial resolution of the 
rain atlas 

We observed decreased crossmodal correlation when increasing the
umber of atlas regions for both the 64-channel EEG setup and the
56-channel setup. Nevertheless FC EEG- 𝛽 remains the strongest corre-
ation with FCfMRI. This suggests that, when taking an atlas with more
nd smaller regions, it might be difficult to determine significant dif-
erences between frequencies due to lower SNR. Nonetheless, overall,
his remains speculative as it also seems that those changes might be
riven by the datasets 64Ch1.5T and 256Ch3T, which qualitatively seem
o have disproportionally smaller correlations for the Destrieux atlas
SI Table 4). For source reconstruction, the optimal number of distin-
uishable regions (in terms of cross talk between source reconstructed
/EEG signals) was found to be around 70 regions ( Farahibozorg et al.,

018 ), both for MEG (204 planar gradiometers, 102 magnetometers)
nd EEG (70 channels). Previous work confirmed a limited improve-
ent in terms of the source reconstruction’s spatial resolution when
56 vs. 64 channels were used ( Lantz et al., 2003 ). Ultimately, our study
esign cannot formally compare a 64- or 256-channel EEG as the 256-
hannel cap comes with other setup differences that might also influ-
nce the signal(2 m cable from amplifier to cap potentially increasing
rtefacts ( Iannotti et al., 2015 )). It has been demonstrated that a longer
able length to the amplifier negatively affects the EEG data quality in-
ide the scanner (especially high frequencies such as the gamma band
 Jorge et al., 2015b )). Additionally, the electrode/sponge/amplifier sys-
em used in the 256-channel setup has generally higher impedances of
ndividual electrodes (e.g. ( Foged et al., 2017 ) used impedance limits
f < 20k Ω for a 64-electrode/gel system and < 50k Ω for the 256-channel
lectrode/sponge system). Future work should investigate FC EEG as a
unction of using 64 or 256 electrodes outside the MR-scanner room. 

.6. Low SNR of gamma and the impact of artifacts specific to EEG inside 
 scanner 

Due to the limitation of recording the electrophysiological signal on
he scalp, EEG high- 𝛾 frequencies ( > 60 Hz) were discarded for anal-
sis. Actually, even the low- 𝛾 range from 30–60 Hz has been shown
o be difficult to analyze in a simultaneous EEG-fMRI setup ( Uji et al.,
018 ). Due to its lower signal power, the EEG- 𝛾 band is most affected
y a range of different sources of scanner-related artifacts ( Jorge et al.,
015b ; Uji et al., 2018 ). As EEG artifacts increase as a function of field
trength ( Debener et al., 2008 ), the 64Ch-1.5T performed by far the
est in terms of FC fMRI -FC EEG- 𝛾 correlation (this is despite the drop in
OLD sensitivity, see Table 1 ). Additionally, the EEG- 𝛾 SNR seems to
e particularly decreased by long cables (EEG cap to EEG amplifiers)
 Jorge et al., 2015b ) and vibration artifacts due to the scanner’s helium
ump ( Jorge et al., 2015b ; Nierhaus et al., 2013 ; Rothlübbers et al.,
015 ). This is highlighted by our results combining the 256Ch-3T setup
ith longer cables and the helium pump turned on, which might have

aused the additional decrease of FC EEG- 𝛾 correlations. An alternative
or analyzing the gamma signal at higher field was recently proposed
ith the use of fast multiband sequences with a fast TR followed by a

silent’ period with no scanning to extract the gamma signal ( Uji et al.,
018 ). As another approach to further correct for EEG artifacts in the
canner, the use of electrodes as motion artifact sensors ( Jorge et al.,
015a ; Masterton et al., 2007 ) has been proposed to monitor all mag-
etic induction effects such as gradient, pulse-related (or cardioballis-
ic), vibration and spontaneous motion. Iannotti et al. (2015) proposed a
imilar approach using cheek electrodes (with less/no neuronal signal)
o better estimate the pulse artefact. We demonstrate in our 64Ch-7T
ata that the motion sensor approach can help to generate topograph-
cally reproducible FC EEG even in an artifact-sensitive ultra-high-field
canner setting. Our correction technique used in the 64Ch-7T dataset
ay have greatly contributed for FC EEG- 𝛾 being most correlated to the

ess artifactual FC EEG- 𝛾 recorded in the 1.5T scanner (as compared to the
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wo 3T datasets, Table 2 ) and FC fMRI -FC EEG- 𝛾 correlations being higher
han in the 64Ch-3T and 256Ch-3T datasets ( Fig 2 ). 

.7. Further methodological considerations and future work 

The goal of this study was not to perfectly control for all acquisi-
ion and preprocessing steps but to assess the generalizability and repro-
ucibility in a heterogeneous setting, representative of the variability of
enter specific protocols ( Botvinik-Nezer et al., 2020 ). The reproducible
esults of the moderate correlation between EEG and fMRI connectivity
onfirm the feasibility of using this approach in multicentric settings.
urther, the measured level of reproducibility of monomodal correla-
ion of connectomes across recording sites determines the potential up-
er limit of this measure when trying to differentiate (e.g. clinical) out-
omes across different datasets ( Noble et al., 2019 ). A measure that does
ot highly correlate across sites would not be suited for this purpose. 

Though brain-wide changes (largest effect size in visual areas) of
C fMRI have been reported between eyes-open and eyes-closed condi-
ions ( Agcaoglu et al., 2019 ). In prior fMRI work, from a test-retest
oint of view modest increases of reliability are observed for the eyes-
pen condition ( Noble et al., 2019 ). From a crossmodal point of view
ewarie et al. (2016) reproduced for both eyes-open and eyes-closed
ondition that MEG and MRI connectomes are correlated (strongest in
he beta band consistent with our results). In line with this observa-
ion, our crossmodal correlation of EEG and fMRI was comparable in
agnitude between eyes-open and eyes closed conditions (SI results).
yes-open vs. eyes-closed conditions can be interpreted as two separate
asks ( Buckner et al., 2013 ). From this point of view a general stabil-
ty of ICNs across conditions is also supported by the finding that ICNs
re not only observable during rest but also while performing a task
 Cole et al., 2014 ; Krienen et al., 2014 ). Future work may study this as-
ect more specifically by recording both eyes-open and eyes-closed data
n the same subjects with one specific EEG-fMRI setup. Equally, alert-
ess and wakefulness have been shown to further confound FC analy-
is ( Tagliazucchi and Laufs, 2014 ). The described conservative scrub-
ing of EEG and fMRI and the absence of significant correlation with
he crossmodal correlation and the framewise displacement (SI Table 8)
peak against head motion as primary contributor to the cross-modal
elationship. Nevertheless, there is a possibility that the 72 subjects in
ur study did not provide sufficient statistical power to measure the po-
ential moderate effect of motion on EEG-fMRI association for delta and
amma bands. 

Besides the variability induced by different hardware setups espe-
ially for EEG ( Pernet et al., 2019 ), source analysis ( Mahjoory et al.,
017 ) and connectivity estimation ( Colclough et al., 2016 ) provide more
eterogeneous analysis options than the more consolidated field of fMRI
rocessing. Better controlling the variable outcome of complex process-
ng pipelines is needed ( Botvinik-Nezer et al., 2020 ; Carp, 2012 ). Guide-
ines might recommend specific steps and strategies of best practice
o improve neurobiological relevance and reduce erroneous localiza-
ion/connections ( He et al., 2019 ). Openly available toolkits can further
elp to streamline this process ( Meunier et al., 2020 ; Schirner et al.,
015 ). 

. Conclusion 

In conclusion, we demonstrated the reproducibility of EEG-fMRI con-
ectomes across various acquisition setups and established for the first
ime the feasibility of extracting EEG-fMRI connectomes at 7T. From an
MRI perspective, the intrinsic connectivity organization of the brain has
een linked both to cognitive states and pathology. Reproducible esti-
ation of crossmodal network organization demonstrates the existence

f a multimodal functional core and adds a new dimension of how we
an assess the healthy and pathologic brain, by dissociating the neuro-
iological scenarios that may give rise to the observed similarity of FC
rganization across timescales and modalities. 
13 
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