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ARTICLE INFO ABSTRACT

Keywords: Although having a relatively homogeneous cytoarchitectonic organization, the cerebellar cortex is a heteroge-

Cerebellum neous region characterized by different amounts of myelin, iron and protein expression profiles. In this study, we

Ultra-high field used quantitative T; and To* mapping at ultra-high field (7T) MRI to investigate the tissue characteristics of the

$1* cerebellar gray matter surface and its layers. Detailed subject-specific surfaces were generated at three different
2

Surface
Tissue content

cortical depths and averaged across subjects to create averaged T;- and Ty*-maps on the cerebellar surface. Ty
surfaces showed an alternation of lower and higher T; values when going from the median to the lateral part of

the cerebellar hemispheres. In addition, longer T; values were observed in the more superficial gray matter layers.
Ty*-maps showed a similar longitudinal pattern, but no change related to the cortical depths. These patterns are
possibly due to variations in the level of myelination, iron and zebrin protein expression.

Introduction

The cerebellar cortex is characterized by a relatively homogenous
structure - in contrast to the cytoarchitectonic heterogeneity of the
neocortex - which consists of three cellular layers named granular, Pur-
kinje and molecular layer (Cajal, 1911). Nevertheless, a number of ani-
mal studies showed that the cerebellar cortex is parcelled into distinct
“zones” (Apps and Hawkes, 2009; Cerminara et al., 2015; Voogd, 2011).
Longitudinal zones were observed based on the spatial distribution of
cerebellar connectivity (i.e. climbing and mossy fibers; Groenewegen and
Voogd, 1977; Pijpers et al., 2005, 2006; Ruigrok, 2011; Sugihara, 2004;
Fujita et al., 2010; Fujita and Sugihara, 2013) and parasagittal stripes
were distinguished based on protein expression patterns, i.e. zebrin II, in

a subset of Purkinje cells (PCs; Brochu et al., 1990; Marzban and Hawkes,
2011). Parasagittal stripes and longitudinal zones represents functional
units with distinct synchronous neuronal spiking activities which may,
for instance, play a role in the parallel processing of sensory information
(Apps and Hawkes, 2009; Tsutsumi et al., 2015; Witter and De Zeeuw,
2015). Moreover, non-longitudinal variations have been observed in the
cerebellar cortex, due to variations in myelination at different cortical
depths (Wyatt et al., 2005) as well as cell densities, sizes and distribution
across lobes, phylogenetic areas or cortex concavities (Armstrong &
Schild, 1970; Lange, 1982; Miiller and Heinsen, 1983).

The above studies have been performed in animals using microscale
techniques such as electrophysiology and immunochemistry. Whether
microscale structural patterns can be seen at the submillimeter range in
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the human cerebellar cortex is still unknown.

In recent years, software and hardware developments in ultra-high
field magnetic resonance imaging (UHF MRI) have provided images
with adequate spatial resolution as well as sufficient contrast- and signal-
to-noise ratios to perform quantitative investigations of the human ce-
rebral cortex at a laminar level (Dinse et al., 2015; Duyn, 2012; van der
Zwaag et al., 2015). Thanks to these developments, our group also ach-
ieved the visualization of the granular and molecular layers in the cere-
bellum in humans in vivo (Marques et al., 2010b). Studies on the cerebral
cortex showed that, combining the advantages of UHF MRI with quan-
titative MR acquisitions, it is possible to obverse macroscopic patterns of
quantitative MR contrasts on the cortical surface and within its layers,
which derive from the underlying tissue composition. Quantitative T,
(qT1) and Ty* (qT2*) maps at 7T reflect the distribution in myelin and/or
iron concentrations (Bonnier et al., 2014; Cohen-Adad, 2014; Helms,
2013; Hwang et al., 2010), as confirmed by histology studies (Fukunaga
et al., 2010; Stiiber et al., 2014). These contrasts have been used to map
changes in healthy subjects (Cohen-Adad et al., 2012; Dinse et al., 2015;
Sereno et al., 2013) and in multiple sclerosis (MS) patients (Bonnier et
al., 2015, 2014; Mainero et al., 2015). Quantitative T;- and To*-maps of
the cerebellar cortical surface may help to understand the physiopa-
thology of a number neurological and psychiatric diseases affecting the
cerebellar cortex (i.e. MS (Fartaria et al., 2016; Kutzelnigg et al., 2007),
cerebellar ataxia (Schniepp et al., 2017), cortico-basal degeneration
(Piao et al., 2002), progressive supranuclear palsy (Piao et al., 2002),
post-traumatic stress disorder (Meabon et al., 2016)).

To date, however, microstructural studies of the cerebellar cortex in
humans in vivo are lacking, mainly due to the small size of the cerebellar
cortex and its convoluted structure. In this work, we performed a surface-
based investigation of microstructural properties of cerebellar human
cortex in vivo by leveraging the high-spatial resolution and the qT; and
qT2* contrasts at ultra-high field MRI.

Methods

Participants

Nine healthy participants (2 females, age =21-43, right-handed)
were enrolled in this experiment. All participants provided written
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informed consent and the studies were approved by the local ethics
committee. All participants had no history of neurological, psychiatric or
systemic diseases. These participants were the healthy controls of a larger
study involving multiple sclerosis patients (Boillat et al., 2016).

Acquisition

Data were acquired on a head-only 7T scanner (Siemens, Germany)
using a 32 channel head coil (Nova Medical USA). A whole-brain Ty
image was acquired using the MP2RAGE sequence (Marques et al.,
2010a; repetition time TR =6000ms, echo time TE=2.84ms, first
inversion time TI; = 750 ms, second inversion time TI, = 2350 ms, first
flip angle =4°, second flip angle =5°, matrix size 300 x 320 x 160,
voxel size 0.75 x 0.75 x 0.9 mm®). MP2RAGE is a sequence combining
two images generated at different inversion times (INV; and INV,
sampled at TI; and TI, respectively) to create a synthetic Ti-weighted
image free of To* and proton density contrast, reception bias field and
transmit field inhomogeneity (first order). A map of the transmit B, field
was acquired with a SA2RAGE sequence (Eggenschwiler et al., 2012;
TR=2400ms, TE=0.72ms, matrix 116 x 128 x 64, voxel size
2.3 x 2.3 x 4mm®, same transmit voltage as MP2RAGE). The T5-maps
were generated from a 3D multi gradient echo, MGE, dataset with nine
echo times (TR =45ms, TE1 =4.59ms, TE9 = 41.3 ms, with an echo
spacing, ATE, of 4.59ms, matrix size 300 x 320 x 160, voxel size
0.75 x 0.75 x 0.9 mm>). Three dielectric pads were placed around the
upper neck to improve the inversion efficiency over the cerebellum and
whole brain B; homogeneity (Teeuwisse et al., 2012).

Data processing

For every dataset, a mono-exponential fit to the MGE data was used to
obtain the S (signal at t = 0) and T*-maps (Van der Weerd et al., 2000).
Sp was registered with a rigid body transformation to the INV, image
from the MP2RAGE using Elastix (Klein et al., 2010) and the obtained
transformation was subsequently applied to the To*-map. The parameters
of this MP2RAGE protocol were carefully chosen to limit B;-sensitivity
over the range of Bj-values expected in the cerebellum (Fig. S1). In
addition, the MP2RAGE T;-maps were corrected for residual Bj-in-
homogeneities using the SA2RAGE B;-map, following the procedure

Fig. 1. Example of a raw T;-map (voxel size
of 0.75 x 0.75 x 0.9 mm®). A) A whole brain
sagittal slice with a zoomed-in region on the
folia (yellow square). B) Coronal, C) sagittal
and D) axial slices through the cerebellum.
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Fig. 2. A) Single-subject surfaces of two participants (P1 and P2) mapped with T; and Ty* values. B) Sagittal cuts of P2 at four different positions from the medial
to the more lateral part of the right hemisphere, indicated with a white dotted line on the outer T, surface. The segmentation results are shown overlaid on the T;-
map for the inner (green), middle (blue) and outer (red) cortical depths. The yellow arrow indicates an underestimated part of the cerebellar cortex at the level of
the vermis of the anterior lobe. The purple arrow indicates a similar region in the bottom part of the posterior lobe. No additional smoothing was applied to

these surfaces.

described in Marques and Gruetter (2013). For the subsequent analysis
steps the CBS tools toolbox (Bazin et al., 2013) was used. All images were
skull-stripped using SPECTRE (Carass et al., 2011). The Tj-weighted
image was brought into the MNI space using a global linear registration
algorithm based on FLIRT (Jenkinson and Smith, 2001) and the resulting
transformation map was applied to the T;- and To*-maps. The segmen-
tation was performed with the T; image (thresholded at 4000 ms) as

input along with filters for dura matter, CSF and arteries (see Bazin et al.,
2014), using the multi-geometric deformable model segmentation algo-
rithm (MGDM; Bogovic et al., 2013). The MGDM algorithm segmented
the brain in 30 different structures, including the cerebellum white (WM)
and (GM) matter regions. The merging of WM and GM resulted in a
cerebellar mask which was manually corrected to remove
extra-cerebellar tissues (such as remaining small parts of the occipital
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Fig. 3. T; mapping on the cerebellar surfaces. A) Mapping of the mean (left) and standard deviation (right) of T; values at the three cortical depths on their
respective averaged folded surfaces brought into the CHROMA space. B) T; values mapped on the inflated surface of the CHROMA atlas T;-map at the middle
cortical depth. The white dashed lines indicate the borders of zones with lower and higher T; values. A Gaussian function of 2mm FWHM was applied

for smoothing.

cortex or brainstem) with ITK-SNAP (Yushkevich et al., 2006). The
masked T;-maps were then segmented using FANTASM (Pham, 2001)
which provided a fine delineation of GM, WM and cerebrospinal fluid
(CSF) borders. The WM-GM border and GM-CSF border level sets were
extracted with an adaptation of the CRUISE algorithm (Han et al., 2004),
a topology-preserving technique, ensuring spherical topology (Euler
number of 2). Using the level sets, a continuous layering of the cerebellar
cortex was built at three different cortical depths following a
volume-preserving model of cortical folding where the volume fraction of
a segment taken across the GM is constant across the whole cortical
depth: the curvature is compensated by a change of the thickness of the
cortical depth (Waehnert et al., 2014). On average, each layer represents
one third of the total cortical thickness. While the complexity of the
cerebellar folia cannot fully be captured at this spatial resolution each
layer provides a different bias towards the deep, middle or superficial

A B
2000 45-
1800 40

m w

£ 1600- £ 35

= o
1400+ 304
1200 ' ' . 25

layers of the cerebellar cortex (inner, middle and outer layer, respec-
tively). A diffeomorphic image registration algorithm (ANTSs; Avants et
al., 2008) was used to realign the T;-maps to a high-resolution template
(CHROMA atlas, a group-wise average of a T1-map acquired at 0.7 mm
isotropic resolution) from the CBS Tools. The transformation map ob-
tained from the previous procedure was applied to the inner, middle and
outer surfaces to realign them. The aligned level set representations of
the surfaces are then averaged across subjects for each separate surface,
and the final group average surface is extracted as their zero-level set.
Averaged T; and T»* values were then mapped onto the inner, middle
and outer averaged surfaces as well as their standard deviation. Inflated
surfaces generated from the CHROMA atlas T;-map were overlaid with
the mean T; and Ty* values from this group of subjects. For a better
visualization, averaged surface values were smoothed along the cortex
with a Gaussian function of 2 mm FWHM.

Fig. 4. Average T; (A) and T»* (B) values of
the inner, middle and outer cortical depths.
Values were averaged across spatial location
and subjects. The error bars represent the
standard deviation of the subject means.
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Fig. 5. Violin plots representing A) T; and B) T,* values extracted from seven
different parasagittal regions of the anterior lobe (including lobule VI) of the
averaged cerebellar surfaces for the three cortical depths. The seven regions
are the ones indicated by different colours on the small cerebellar surface in
the top right corner.

Results
Layer segmentation and single-subject surfaces

The main parts of the arbor vitae and folia of the cerebellum were
distinguishable at the present resolution (Fig. 1), however the finer
branching inside a single folium were difficult to distinguish due to
partial volume effects (see Fig. S2 in the supplementary material for more
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examples of single subject T;). The cerebellar gray matter of all partici-
pants could be segmented into inner, middle and outer cortical depths.
Although a clear delineation of the different lobules and the general
shape of the arbor vitae was achieved, many individual folia were not
completely resolved. Hence, these cortical depths refer predominantly,
but not exclusively, to the expected tissue types in the cerebellar cortex
(Fig. 2B). However, some parts such as the anterior vermis and the bot-
tom region of the posterior lobe were underestimated (yellow and purple
arrow in Fig. 2, respectively). The surfaces of each single participant
showed a consistent preservation of the anatomy, in which the different
lobules could be observed (Fig. 2A). Single-subject mapping of T; and To*
revealed consistent patterns as can be judged from the surfaces of P1 and
P2 shown in Fig. 2.

T; mapping

Qualitative analysis of the T;-maps near the vermis showed highest
values for each of the three cortical depths (Fig. 3A), while the lowest
values were observed on the posterior lobe. On average, the T; values
increased by 8.3% going from the inner to the outer cortical depths (Fig.
4A). The hemispheres showed low T; values that increased when going
more laterally to decrease again in the very lateral regions. This pattern is
mainly observed on the inner and middle surfaces and remains visible on
the inflated surfaces (Fig. 3B with the dashed lines indicating the borders
between stripes of higher and lower T, values). These observations are
consistent with values extracted from the anterior lobe (Fig. 5A), where
the plots depicting the inner, middle and outer surfaces show alternating
mean T; values. The seven sagittal stripes of the violin plots were chosen
based on a data-driven approach as the actual spatial frequency of these
parasagittal stripes in humans is currently not known. Globally, T; values
were lower in the posterior lobe. The inter-subject variability was higher
in the vermis than in the cerebellar hemispheres. The latter was reduced
in the cerebellar hemispheres, especially in the lateral regions. Con-
firming the high quality of the segmentation, no systematic pattern was
observed between the apex of the lobules.

Fig. 6. Cerebellar surfaces mapped with Ty*
values. A) The averaged T»* values (left)
with their standard deviation (right) mapped
on averaged folded surfaces of the nine
participants brought in the CHROMA space
with the inner, middle and outer surfaces.
The white arrows indicate the change of
longitudinal patterns alternating between
lower (I and III) and higher (II) T* values.
B) Averaged T,* values mapped on the
middle inflated surface created from the
CHROMA atlas Tq-map. The yellow arrow
indicated the “concavity-related” pattern on
the folia's apex. A Gaussian function of 2 mm
FWHM was applied for smoothing. View
from left to right of the averaged surfaces:
right lateral, posterior, superior and left
lateral.

Superior
PN
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To* values showed a different pattern than the T; values. Mean Ty*
values did not vary much between the different cortical depths (Fig. 4B).
Lower Ty* values were found on the apex of the folia of the posterior
lobe, while the fissures showed higher values. Patches with high Ty*
values were found on the anterior lobe (Fig. 6). Similarly to the T; sur-
faces, the vermis had a high variability for To* values, especially the
anterior lobe. Again, the hemispheres showed much lower inter-subject
variability. The posterior lobe showed low Ty* values with a “concav-
ity-related” pattern (Fig. 6B, yellow arrow) especially on the posterior
region with lower values on the apex. These are likely driven by large-
scale field gradients that affect the posterior lobe, but not the anterior
lobe (see Fig. S2 in the supplementary material for examples of To*-maps
of the cerebellum with an evaluation of the goodness of fit of the nine
GRE echos). On the anterior lobe, although different from the T; pattern,
a medio-lateral pattern is also present (Fig. 6A, arrows I, II and III) with
higher To* values in the medial region to lower values in the lateral re-
gions of the cerebellar hemispheres. This pattern is more pronounced on
the outer surface, while being absent on the inner surface in the violin
plots (Fig. 5B).

Discussion

In this study, we performed a cortical surface analysis of T; and Ty*
relaxation times in the human cerebellar cortex in vivo.

The spatial distribution of qT; evidenced a longitudinal pattern in the
parasagittal direction alternating higher and lower T values, which was
observed at the three different depths from the cerebellar surface.
Interestingly, a similar parasagittal pattern had been previously observed
in the cerebellum of other species such as the rat (Brochu et al., 1990),
cat (Sillitoe et al., 2003) and macaque (Sillitoe et al., 2000), which
consisted of alternating stripes of higher and lower specific marker pro-
tein levels in Purkinje cells, such as zebrin (Apps and Hawkes, 2009). The
stripes observed in these studies showed higher alternating frequencies
of zebrin levels, but it is so far unknown what spatial frequency charac-
terizes — if any — the human cerebellum. In alternative or in addition, the
observed spatial pattern in qT; may be due to differences in myelin
content (Lutti et al., 2014; Stiiber et al., 2014) which might be linked to
the zebrin expression. The observed decrease in mean T; values for the
outer to the inner layers parallels a pattern, which has been previously
reported in the cerebrum (Sereno et al., 2013; Waehnert et al., 2016) and
that has been related to an increase in myelination level in the deeper
layers of the cortex (Eickhoff et al., 2005; Walters et al., 2003). These
studies also reported a modulation of mean T; values related to the
concavity of the cerebral region (gyri or sulci), which we did not observe
within the cerebellar surface as it is most probably dependent on the
modelling of the cortical depth (Waehnert et al., 2014).

To* surfaces also exhibited longitudinal variations in the parasagittal
direction. As observed with qT;, spatial changes in the iron or myelin
content (Cohen-Adad, 2014; Cohen-Adad et al., 2012) may be the cause
of such changes. Interestingly, in contrast to the T;-maps, the To* values
did not change as a function of cortical depth, which could be due to the
lower sensitivity to myelination of the Ty* contrast compared to the T;
contrast. Additional quantitative susceptibility mapping analysis (Dei-
stung et al., 2011; Langkammer et al., 2012) might help to disentangle
the respective contributions of myelin and iron to the contrasts observed
here. The difference in Ty* between the vermis and hemispheres is un-
likely to be due to segmentation problems as those pointed out in Fig. 2,
because the To* varies little as a function of cortical depth.

Although high quality 7T data were acquired in this first study
attempting a quantitative surface analysis of cerebellar cortex in vivo in
humans, some limitations remain. These include the lack of spatial res-
olution to delineate the WM of the smallest embranchments of the arbor
vitae, which may have led to some partial volume effects; to fully resolve
the arbor vitae in fact, a spatial resolution of approximately 0.1 mm may
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be necessary (Marques et al., 2010b), which is currently a challenge in
human subjects in vivo. Therefore, a small systematic bias in the layer
generation may be present in these data. Also, it would be preferable if
surfaces were generated based on the phase contrast of a GRE image to
make a separation driven by the different cellular layers, as observed in
Marques et al. (2010b), rather than distance to the white matter. How-
ever, again, a spatial resolution of ~0.1 mm isotropic would be required
for such a cortical surface analysis and this would imply prohibitive scan
times in vivo. Consequently, the observed patterns of the present study
revealed medio-lateral variations at the macroscopic level only, similar to
the scale on which diffusion tractography is currently performed (Del-
I’Acqua et al., 2013). While for most of the cerebellar cortical surface
quantitative T; and Ty* could be obtained with high confidence, the
consistent low To* and T, values in the most frontal part of the posterior
lobe area are likely due to loss of SNR and corresponding poorer T; and
To* estimates. The cerebellum remains a challenging brain structure to
image, the larger subject induced magnetic inhomogeneity resulted
impaired To* mapping in the most posterior end of the posterior lobe.
The dependence of the cortical folding orientation with the By field
should also be considered as an additional source contributing to the
concavity-related pattern (Cohen-Adad et al., 2012). Moreover, incor-
porating local magnetic field information in the T* estimation might
help reducing these large-scale field effects (Sedlacik et al., 2014). In
addition, although the cortical geometry is more conserved across sub-
jects in the cerebellum than in the cerebrum, we observed relatively high
variability in the vermis, probably due to the underestimation of the
cerebellar gray matter in this region during the layer generation or to an
inappropriate registration algorithm for this region. Advanced cortical
surface registration methods (Robinson et al., 2014; Tardif et al., 2015)
may help further refine the T; and To* patterns and reduce the high
variability in the vermis. Despite these limitations, the parasagittal
pattern in the cerebellar hemispheres and the differences between
cortical depths are found in the T;- and not in the To*-maps in the same
subjects, strongly suggesting that these are indeed caused by myelin
concentration differences rather than methodological limitations.

In summary, we observed macroscopic patterns of cerebellar cortical
microstructure, which are possibly related to spatial variations in protein,
myelin and iron content. Future studies combining 7T quantitative MRI
with histological assessments should investigate and confirm the source
of global macroscopic patterns we have observed in the human cere-
bellum cortex.
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