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A B S T R A C T

The study of brain dynamics enables us to characterize the time-varying functional connectivity among distinct
neural groups. However, current methods suffer from the absence of structural connectivity information. We
propose to integrate infra-slow neural oscillations and anatomical-connectivity maps, as derived from functional
and diffusion MRI, in a multilayer-graph framework that captures transient networks of spatio-temporal
connectivity. These networks group anatomically wired and temporary synchronized brain regions and encode
the propagation of functional activity on the structural connectome. In a group of 71 healthy subjects, we find
that these transient networks demonstrate power-law spatial and temporal size, globally organize into well-
known functional systems and describe wave-like trajectories of activation across anatomically connected
regions. Within the transient networks, activity propagates through polysynaptic paths that include selective
ensembles of structural connections and differ from the structural shortest paths. In the light of the
communication-through-coherence principle, the identified spatio-temporal networks could encode commu-
nication channels' selection and neural assemblies, which deserves further attention. This work contributes to
the understanding of brain structure-function relationships by considering the time-varying nature of resting-
state interactions on the axonal scaffold, and it offers a convenient framework to study large-scale
communication mechanisms and functional dynamics.

Introduction

In the human brain, a functional system refers to a set of
interconnected brain regions involved in the treatment of a specific
task, that can be perceptual, motoric, cognitive or emotional (Laird
et al., 2009). Functional systems show a large variety of brain activation
patterns (Park and Friston, 2013), adapt to different conditions
(Bassett et al., 2013; Braun et al., 2015; Spadone et al., 2015), interact
dynamically (Cocchi et al., 2013) and demonstrate coherent (Smith
et al., 2009) but non-stationary (Hutchison et al., 2013) behavior at
rest. Indeed, a key aspect of the brain is its ability to adapt to multiple
conditions through context-dependent interactions among neuronal
units. The functional response to external and internal demands
requires a flexible coupling of different brain units that are structurally
connected through a complex but fixed axonal network (Bullmore and
Sporns, 2012; De Pasquale et al., 2015; Deco et al., 2015). This process
necessarily involves an efficient and context-dependent selection of

structural communication channels among multiple possible structural
paths. It has been advocated that the specific architecture of the whole-
brain structural network (or connectome) is optimized for, and
supports efficient communication and flexible switching among dis-
crete functional states (Senden et al., 2014; Ponce-Alvarez et al., 2015;
Hellyer et al., 2015; Goñi et al., 2013; Honey et al., 2010). However
how functional interactions unfold through the structural connectome
has been only partially investigated, and our understanding of large-
scale brain communication processes remain limited. In this work we
introduce a new methodological framework based on multilayer-graph
formalism to follow the propagation of time-dependent functional
patterns through viable structural pathways for communication. The
multilayer graph combines structural connectivity information esti-
mated from diffusion magnetic resonance imaging (dMRI) and func-
tional dynamics derived from resting-state functional MRI (rs-fMRI).

The brain functional connectivity, i.e. the statistical dependency
between the oscillations of brain units, has been widely investigated by
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means of rs-fMRI studies that highlight the modular structure of the
brain architecture and decompose it into a set of reproducible resting
state networks (RSNs) (Damoiseaux et al., 2006; Fox et al., 2005; Yeo
et al., 2011). Although traditional approaches implicitly assume that
the resting-state activity is stationary over an fMRI recording, an
increasing effort has been devoted to the characterization of resting-
state dynamics (Hutchison et al., 2013; Calhoun et al., 2014). In this
regards two main methodological directions can be identified: temporal
sliding window approaches, or time-resolved investigation of short
functional events through point-process analysis (i.e., thresholding of
fMRI signals) or regularized deconvolution methods (Hutchison et al.,
2013; Preti et al., 2017). While sliding-window approaches are a
natural extension of more traditional functional connectivity analyses,
they posit methodological challenges in terms of balance between
window selection and temporal resolution of observed dynamics
(Leonardi and Van De Ville, 2015; Zalesky and Breakspear, 2015;
Telesford et al., 2016). On the other side, methods detecting short
functional events require a certain degree of parameter tuning and
relies on the conceptualization of resting-state dynamics as sparse
sequence of key functional activations (Petridou et al., 2013;
Tagliazucchi et al., 2016). Both approaches have delivered qualitatively
comparable findings (Preti et al., 2017), showing that at short temporal
scales functional patterns can significantly diverge from classical RSNs
(Allan et al., 2015; Hutchison et al., 2013). During a resting-state
period, the brain might explores a space of states (functional config-
urations persisting for a transient but sufficiently long periods of time
(Kitzbichler et al., 2009; Calhoun et al., 2014)) with cortical areas
engaging and disengaging in variable functional subnetworks (Liu and
Duyn, 2013; Zalesky et al., 2014; Betzel et al., 2016). These dynamics
give rise to complex (and possibly temporally and spatially over-
lapping) patterns of interaction (Karahanoğlu and Van De Ville,
2015), which have been related to behavioral variables (Chang et al.,
2016) and cognitive processes (Bassett et al., 2011; Chen et al., 2015).

Conceptually, the transient functional couplings observed in rest-
ing-state dynamics can be associated with time-dependent commu-
nication processes. At the mesoscopic scale it has been proposed that

transient patterns of temporal coherence, among the electrical oscilla-
tions of structurally wired neural groups, provide temporal windows for
effective communication and implement mechanisms of selective
information processing (Fries, 2005). This communication-through-
coherence (CTC) mechanism pertains to neural coupling in the gamma
and beta frequency bands (Fries, 2005, 2015), but might be reflected at
the coarser spatial and temporal scales accessible with magnetic
resonance imaging (MRI) (Deco and Kringelbach, 2016). Crucially,
the CTC hypothesis explicitly relates the transient functional coupling
between wired nervous regions with their inter-communication and
efficient information flow.

In the present study we develop a framework that captures resting-
state interactions among anatomically connected brain regions in the
form of transient network of spatio-temporal connectivity. Specifically,
we define a spatio-temporal connectome as a multilayer graph (Kivelä
et al., 2014) that specifies node proximity both in the temporal and in
the spatial domains. On one hand, proximity in time is expressed by
time-resolved co-activation of brain regions at neighboring time points,
as detected through a point-process analysis of rs-fMRI time series. On
the other hand, anatomical proximity is expressed by brain regions'
adjacency in the structural connectome, as estimated from dMRI
tractography. The weakly connected components of the resulting
multilayer graph conveniently represent time-dependent events of
synchronous activation among anatomically wired regions, a possible
expression of brain communication processes. After the methodological
description of the spatio-temporal connectome framework, we explore
its feasibility through synthetic data and we introduce different
measures for the characterization of the connected components of
the multilayer graph. These connected components reveal time-varying
pathways of activity propagation and, by being clustered, identify
reproducible patterns of spatio-temporal connectivity across fMRI
recordings and across multiple subjects. We report on the organization
of these patterns, and we investigate their internal dynamics. We
discuss the relevance of considering functional dynamics in combina-
tion with the underlying structural wiring to study large-scale brain
communication mechanisms and activity propagation routing.

Fig. 1. Construction of a spatio-temporal connectome. (I) The cortical brain volume is segmented into N regions of interest according to a given atlas. Each brain region is associated
with an average functional time series of length T time points derived from fMRI data. (II) Regional fMRI time series are z-scored and represented in the figure as a matrix S i t( , )z of size

NxT ( N∈[1, . . . , ] , t T∈[1, . . . , ]). (III) The z-scored fMRI time series are reduced to binary point-processes by applying a threshold τ. The elements of the resulting matrix P(i,t)

represent the active or quiescent status of the brain region i at time point t. A multilayer graph G∼is then constructed by merging the point-processes and the anatomical connectivity
information derived from dMRI tractography (IV). (V) Each node ofG∼ represents a specific brain region at a given time point; two nodes are connected inG∼ if (i) they are co-active at the
same or neighboring time points AND (ii) they are linked by a white matter tract. In panel (V) the nodes of G∼ are pictured in orange and the edges in grey; disconnected nodes and edge
directionality are not shown. The weakly connected components (CCs) of the multilayer graph extend spatially (across different brain regions) and temporally (over multiple time points)
and represent transient networks of spatio-temporal connectivity. Panel (VI) show a zoom of some representative CCs of G∼ .
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Materials and methods

Materials and Methods are organized as follows. In Section 2.1 we
describe in details the methodological steps for the construction of a
spatio-temporal connectome from resting-state fMRI and dMRI data.
Related Python code is publicly available at https://github.com/
agriffa/STConn. A spatio-temporal connectome is a multilayer graph
embedding transient networks of spatio-temporal connectivity. In
Section 2.2 we discuss the general assumptions underlying the
proposed spatio-temporal framework and describe relevant tests on
surrogate data. In Section 2.3 we introduce relevant measures to
characterize the spatial topology and temporal evolution of the
transient networks of spatio-temporal connectivity. The methodology
and the measures of spatio-temporal connectivity are summarized in
Figs. 1 and 2. Finally, in Section 2.4 we provide details on the
experimental data considered in this study including MRI data
acquisition, processing pipelines and spatio-temporal connectome
analysis.

Spatio-temporal connectomics

We propose to represent brain functional dynamics and structural
connectivity information in the form of a particular multilayer graph
(Benzi et al., 2016; Kivelä et al., 2014), named spatio-temporal
connectome. Intuitively, a spatio-temporal connectome is made of
layers of nodes bound together by intra- and inter-layer edges
representing instantaneous functional relationships between anatomi-
cally connected brain regions. Each layer of the graph corresponds to a
single time point of a functional neuroimaging experiment and its

nodes represent distinct brain regions at a specific time point. Two
nodes are connected in the multilayer graph if the corresponding brain
regions are (1) anatomically wired and (2) functionally co-active at the
same time point (intra-layer edges) or at two following time points
(inter-layer edges) (Fig. 1).

Structural connectivity
The overall set of white matter tracts connecting cortical region

pairs can be represented as a single-layer, structural connectivity graph
G(V,E). V is the set of vertices of G, with |V|=N number of cortical
regions. E={(i,j)|i,jЄV} is the set of undirected edges. The structural
graph G is estimated by combining dMRI tractography and a suitable
parcellation of the cortical volume (Bullmore and Sporns, 2009;
Hagmann et al., 2008). Note that in the general case G can be weighted
but in the present work we model structural connectivity as a binary
graph only.

Time-resolved functional connectivity and point-process analysis
FMRI measures blood oxygenation level dependent (BOLD) signals

related to neuronal and vascular changes. Under the assumption of
linearity the BOLD signal is understood as the convolution of a series of
local neural events with a hemodynamic response function (HRF)
(Lindquist, 2008). Different methods have been proposed to retrieve
temporal sequences of spontaneous activations from fMRI data,
including high-amplitude event analysis (or point-process analysis)
and spatio-temporally regularized deconvolution of BOLD signals
(Tagliazucchi et al., 2012; Karahanoğlu et al., 2013). In this work we
use a point-process analysis to reduce regional BOLD signals to binary
processes describing whether a cortical region is active or quiescent at a
particular time point. Accordingly, the BOLD signals are z-scored and a
threshold is applied to identify the binary sequences of high-amplitude
events. Formally, we denote by Sz the matrix collecting the z-scored
fMRI time series associated with N cortical regions (Fig. 1, panels I and
II). S i t( , )z is the z-scored fMRI value at region i ( i N∈[1, …, ] ) and time
point t ( t T∈[1, …, ] ), with T number of time points of the fMRI
recording. The point-process matrix P is given by applying to Sz a
positive threshold τ: P i t ifS i t τ;P i t otherwise( , )=1 ( , )⩾ ( , )=0z (Fig. 1, panel
III). P has dimensions NxT and P(i,t) represents the functional status
(active or quiescent) of region i at time point t.

Multilayer graph construction
We build a multilayer graph G∼, named spatio-temporal connec-

tome, by merging the anatomical connectivity information (G) and the
local activity processes (P) (Fig. 1). The multilayer graphG∼ is made of T
layers {L L L, ,. . . , T1 2 } representing single time points of the fMRI
experiment. Each layer contains N nodes corresponding to distinct
cortical regions, for a total of NxT nodes. Note that the N nodes
contained in each layer of G∼ are as well vertices of the single-layer
structural graph G. We denote by it the node of layer Lt associated with
the cortical region i (vertex i on G). Two nodes i j,t t belonging to the

same layer Lt of G∼ are connected if (1) i j E( , )∈ (regions i and j are
adjacent in G) and (2) P(i,t) = P(j,t) = 1 (regions i and j are both active
at time point t). Two nodes i j,t t+1 belonging to two following layers

L L,t t+1 of G∼ are connected if (1) i j E( , )∈ (regions i and j are adjacent in
G) and (2) P(i,t) = P(j,t+1) = 1 (regions i and j are active at two
following time points t, t+1). Indeed, one can also view this multilayer
graph as a particular type of temporal graph, which naturally adds
information about time of interactions (Holme and Saramaki, 2012).
We note that intra-layer edges i j( , )t t are bi-directed, as it is not possible
to establish the sequentiality of functional events occurring in a time
window shorter than the temporal resolution of the fMRI recording.
Inter-layer edges i j( , )t t+1 are uni-directed, and the edges' directionality
is implied by the temporal ordering of the layers. The resulting
multilayer graph is highly sparse and counts a series of distinct weakly
connected components (CCs). Fig. 1, panel V represents the multilayer

Fig. 2. Connected components (CCs) characterization. Each panel of the figure
represents a CC toy example. The nodes of the CC are pictured in orange; each node
represents a cortical brain region (A, B, C or D) at a particular time point (layer L1, L2 or
L3 of a multilayer graph). (a) Schematic representation of the CC' s temporal span and
spatial spread. A time-respecting shortest path of length 2, from node (C,1) to node (A,3),
is represented in green. (b) A CC is reduced to a feature vector of length N (N total
number of brain regions) by integration along the temporal axis and normalization by the
vector's l2-norm. (c) Spatio-temporal behavior of the CCs. The CC's temporal envelop
represents the normalized number of brain regions active at each time point. The CC's
activity-propagation map represents the average normalized time point at which each
brain region is active within the CC: blue regions are active before yellow regions.
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graph of a single example subject; Fig. 1, panel VI provides a zoom of
two examples of connected components in the same multilayer graph.

Framework hypotheses and validation

The proposed multilayer framework explicitly links functional co-
activations of anatomically connected brain regions allowing to follow-
ing the propagation of brain dynamics on the structural connectome.
As such, the framework relies on two implicit hypotheses. The first
hypothesis is that the synchronization of high-amplitude fMRI events
represents transient functional interactions (or time-resolved func-
tional connectivity) between distinct brain regions. The second hypoth-
esis is that the most significant functional interactions taking place at
the temporal scale of seconds (which is the typical fMRI temporal
resolution) occur between anatomically connected brain regions. In
this section we provide dedicated analyses on surrogate data in support
of these hypotheses.

Synchronization of high-amplitude fMRI events
In this work we assume that the synchronization of high-amplitude

fMRI events (or functional co-activations) represents transient func-
tional interactions between distinct brain regions.

As a first sanity check, we questioned whether the number of
functional co-activations detected in resting-state fMRI data is higher
than what would be expected by chance. To this end we generated a set
of surrogate time series by independently phase-randomizing the
regional fMRI signals, similarly to Handwerker et al. (2012),
Karahanoğlu and Van De Ville (2015). This method consists in
randomly shuffling the Fourier phases of the N fMRI time series and
generates uncorrelated data with preserved autocorrelation properties
(Theiler et al., 1992).

Furthermore, we questioned whether the functional co-activations
detected in resting-state fMRI data are completely explained by the
linear relationship between region pairs, or if they can be partly
ascribed to time-varying relationships between region pairs. To this
end we compared the number of functional co-activation in the original
data with the number of co-activations in surrogate data with preserved
static functional connectivity. We generated surrogate time series by
uniformly phase-randomizing the regional fMRI time series, similarly
to Allen et al. (2012), Hindriks et al. (2016). This method consists of
adding the same random phase sequence to the Fourier phases of all
the N fMRI time series, thus preserving the autocorrelation and cross-
correlation properties of the multivariate process (Prichard, 1994). As
an alternative test, we also evaluated the contribution of time-varying
fMRI relationships on co-activation patterns by signals orthogonaliza-
tion. The orthogonalization of one signal with respect to a second one
removes the contribution of their linear correlation (static functional
connectivity) on the co-activation patterns. For a given fMRI dataset,
we considered each pair of regional time series, orthogonalized the two
using the Gram-Schmidt process and computed the number of co-
activations between the orthogonalized signals. We repeated this
procedure for all the NxN fMRI signal pairs.

An example of experimental fMRI, surrogate (independent and
uniform phase-randomization) and orthogonalized time series is
shown in Fig. 3. Inline Supplementary Figure S1 shows the cross-
correlation matrices for the same data. To test experimental data
against surrogate and orthogonalized null-models we compared the
total number of co-activations among the different cases, for all pairs of
brain regions.

Functional interactions and anatomical connectivity
In a spatio-temporal connectome two brain regions are connected if

they are functionally co-active and anatomically wired, allowing to
following the propagation of functional dynamics on the structural
connectome. This double constraint discards from further analyses
time-resolved co-activations between disconnected brain regions. It

relates to the implicit hypothesis that the most significant time-
resolved activity (inferred from fMRI recordings) propagates through
structural pathways. To question this hypothesis we compared the
reproducibility of time-resolved functional co-activations between
anatomically connected and unconnected region pairs, over time and
across independent fMRI acquisitions. We expect that the most
significant functional interactions will be consistently detected in
multiple fMRI data and subjects.

Given a set of spatio-temporal connectomes from multiple subjects,
we first counted the recurrence of functional co-activations between
each pair of structurally connected cortical regions (edges of the spatio-
temporal connectomes). Second, we counted the recurrence of co-
activations taking place outside the CCs of the spatio-temporal
connectomes. This information can be summarized in two non-sym-
metric matrix of size NxN. We evaluated and compared the distribu-
tions of the pairwise co-activations between connected and uncon-
nected regions pairs.

Transient networks of spatio-temporal connectivity

A spatio-temporal connectome constructed according to the above-
described methods is a multilayer graph, which is sparse both in time
and space. The weakly connected components of the multilayer graph
(Kivelä et al., 2014) can be interpreted as transient networks of spatio-
temporal connectivity. They encode the spreading of functional events
among anatomically connected brain regions, at specific time instant
and across successive frames. We introduce a set of measures for the
characterization of the CCs and the associated brain dynamics, in
relation to the following dimensions: duration, spatial extension and
structural pathways within the CCs; spatial maps of activation; spatio-
temporal propagation of functional activity.

Connected components characterization and time-respecting paths
The temporal span and the spatial spread of the CCs provide the

basic spatio-temporal characteristics of the transient spatio-temporal
events (Fig. 2a). We define the temporal span of a CC as the length of
the temporal window over which the component is active. The spatial
spread of a CC is the number of brain regions that are active within the
component. Each CC includes several time-respecting paths between
active brain regions, which represent viable structural pathways of
functional activity propagation. The concept of time-respecting paths is
related to temporal network theory (Holme and Saramaki, 2012).
When considering a source node itand a destination node jt k+ (k⩾0) of
G∼, the time-respecting path from it to jt k+ is an ordered sequence of
connected nodes with non-decreasing time indexes. In our framework,
the length of a time-respecting path is defined as the number of distinct
brain regions visited along the path (or number of hops between the
source and destination brain regions) (see Inline supplementary
Methods, Spatio-temporal connectomics and temporal graphs)
(Fig. 2a). The time-respecting distance d i j( , )tr t t k+ between nodes it
and jt k+ is the length of the time-respecting shortest-path connecting it
to jt k+ in G∼. Two brain regions can have different time-respecting
distances when active within distinct CCs. Note that the time-respect-
ing distance dtrof two brain regions that participate in the same CC is
lower-bounded by the static distance ds of the two regions, i.e., by the
length of the shortest path connecting the two regions in the static
structural graph G.

Defining a feature space for connected components and clustering
Each CC of G∼ collects the functional activation of distinct brain

regions, which can be represented as a spatial activation map.
Particularly, we define a spatial activation map as a vector x of length
N, with N number of brain regions. Each entry xi of x x x x= [ .. . , ]N1, 2, is
the number of time points region i is active within the component,

normalized by the vector l2-norm x x= ∑ ²i
N

i=1 (Fig. 2b). We can
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study characteristic spatial maps of activation, by clustering the
activation maps associated with multiple CCs. The normalization of
the feature vectors by their l2-norm helps clustering together CCs with
similar spatial activation maps but different temporal spans.

Motifs of functional activity propagation
In order to characterize the spatio-temporal behavior of the

connected components, we introduce the concepts of temporal envel-
ope and activity-propagation map (Fig. 2c).

We define the temporal envelope of a connected component of G∼ as
a curve that represents the number of brain regions active within each
layer of the CC, normalized by the total number of brain regions
enrolled in the CC. The temporal envelope of a CC quantifies the extent
of its spatial recruitment over time. Temporal envelopes representing
CCs with the same temporal span can be easily compared.

We define the activity-propagation map of a connected component
of G∼ as a vector y of length N, with N number of brain regions. Each
entry yi of the vector y y y y= [ .. . , ]N1, 2, represents the average over the set
of normalized time points at which region i has been active within the
CC. The normalized time is computed by re-scaling the temporal axis of
the individual CCs to a continuous interval [0,1], where 0 corresponds
to the first time point of the CC and 1 corresponds to the last time point
of the CC. The temporal normalization allows comparing the activity-
propagation maps of connected components with different temporal
spans.

Experimental data

Subject cohort and MRI acquisitions
We investigated the brain structural connectivity and functional

dynamics of 71 healthy subjects (aged 28.8 ± 9.1 yo, 43 males). Each
subject underwent an MRI session on a 3 T scanner (Magnetom
TrioTim, Magnetom Prisma, Siemens Medical Solutions), equipped
with a 32-channel head coil. The MRI session included (1) a magne-
tization-prepared rapid acquisition gradient echo (MPRAGE) sequence
(1x1×1.2 mm resolution; 240x257×160 voxels; TR, TE, TI = 2300,
2.98, 900 ms); (2) a diffusion spectrum imaging (DSI) sequence
(2.2×2.2×3 mm resolution; 96x96×34 voxels; TR, TE = 6100,
144 ms; q4half acquisition scheme with maximum b-value 8000 s/
mm2, one b0 volume); (3) a 9-min gradient echo planar imaging (EPI)
sequence sensitive to blood-oxygen-level dependent BOLD contrast
(3.3×3.3×3.3 mm resolution; 64x58×32 voxels; 280 time points; TR,
TE = 1920, 3 ms). During the fMRI acquisitions, subjects were lying in
the scanner with eyes open, resting but awake and cognitively alert.
Additional details on the MRI acquisitions are reported in the Inline
supplementary Methods, MRI acquisition reporting. The b-table for
the DSI acquisition is reported in the Inline supplementary Table S2.
Informed written consent in accordance with our institutional guide-
lines (protocol approved by the Ethic Committee of Clinical Research of
the Faculty of Biology and Medicine, University of Lausanne,
Switzerland) was obtained for all the subjects.

MRI data processing
The MPRAGE volume of each subject was segmented into white

matter, grey matter and cerebrospinal fluid compartments using
FreeSurfer software (Dale et al., 1999), version 5.0.0. The cortical
volumes were segmented into N=448 regions of interest as defined in
Cammoun et al. (2012) (Inline supplementary Fig S3). Subcortical
structures and the brain stem were excluded from further analyses. DSI
data were reconstructed according to Wedeen and colleagues (Wedeen
et al., 2005), thus estimating an orientation distribution function
(ODF) in each voxel. Up to three main fiber orientations were identified
in each voxel as the largest maxima of the ODF (DiffusionToolkit
software, http://www.trackvis.org/dtk). Deterministic streamline
tractography (Jones, 2008) was performed initiating 32 streamline

propagations per white matter voxel and per fiber orientation. The
MPRAGE and the brain parcellation were linearly registered to the
subject diffusion space (b0) using a boundary-based cost function
(FreeSurfer software, Greve and Fischl, 2009). Morphological and
diffusion data were used to construct subject-wise structural
connectivity graphs. Thereafter, a group-representative structural
graph G=(V,E) was estimated by combining the structural graphs of
the 71 subjects. Two regions i, j were connected in G if at least one
streamline connected regions i and j, in at least 50% of the subjects (see
Inline supplementary Fig. S4). The resulting group-representative
graph had density equal to 3.3% and diameter equal to 7 hops.

fMRI data were processed as follows. For each subject, the first four
fMRI volumes were discarded to allow signal stabilization. The
remaining T=276 volumes were motion-corrected by applying a rigid
body co-registration using FSL software (Jenkinson et al., 2002).
Scrubbing parameters were computed on co-registered volumes and
before further processing steps according to Power et al. (2012), Power
et al. (2014). The FD and DV time series of the 71 subjects are reported
in Inline supplementary Fig. S5. Three out of 71 subjects were excluded
from further analyses because presenting more than 10% time points
with extreme FD or DV values (FD > 0.5 mm, DV > 20, Power et al.,
2014). Voxel-wise signals were linearly detrended and corrected for
physiological confounds and artifacts by regressing the average white
matter and cerebrospinal fluid signals and the six motion signals (three
translations and three rotations). Finally, the fMRI volumes were
spatially denoised using total variation regularization, which promotes
piece-wise spatial smoothness (Michel et al., 2011), and band-pass
filtered (0.01–0.1 Hz) using a Hamming windowed sinc FIR filter. The
MPRAGE and the brain parcellation were linearly registered to the
subject mean fMRI volume (FSL software, Jenkinson et al., 2012) in
order to extract representative ROI-wise time series. The average fMRI
time series associated with each cortical region were z-scored and
collected in the matrices Ss

z, with s∈[1,2, . . . , 68] subject index. All the
MRI processing steps were performed in subject native space using the
Connectome Mapper Toolkit (Daducci et al., 2012) and dedicated
Matlab and Python code.

Spatio-temporal connectomics
The z-score normalized time series Ss

z were converted to binary
point-processes Ps by applying a thresholding with τ=2 standard
deviations. We have chosen the threshold value by analyzing the
average properties of the Ps matrices and of the resulting multilayer
graphs over different threshold values (see Inline supplementary
Methods, Parameter Selection and Inline supplementary Fig S6). A
spatio-temporal connectome was constructed for each subject by
merging functional (Ps) and structural (G) information in a single
multilayer graph G͠s. Each spatio-temporal connectome counted T=276
layers corresponding to as many fMRI time points; each layer counted
N=448 nodes corresponding to as many cortical regions, for a total of
123'648 nodes.

Transient networks of spatio-temporal connectivity
The weakly connected components of the subject-level spatio-

temporal connectomes were extracted and further characterized. The
CC spatial activation maps were clustered using a k-means algorithm,
with number of clusters k=12. We chose an unsupervised clustering
algorithm as spatial activation groups are not known a priori. We set
the value of k by considering metrics of clustering quality and
consistency across the 68 subjects (see Inline supplementary
Methods, Parameter Selection and Inline supplementary Fig S7). The
k-means clustering was repeated 100 times with random initialization,
and the solution with the minimum inertia was selected. The cluster
centroids represent average spatial patterns of activation between
anatomically connected brain regions and were dubbed 'structure-
function activation templates' (sfATs). The sfATs were compared with
publicly available resting-state and task-based functional connectivity
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networks (Laird et al., 2011; Yeo et al., 2011) by means of the Dice
coefficient (see Inline supplementary Methods, Structure-function
activation templates and reference networks). The temporal envelopes
and the activity-propagation maps of the CCs were as well investigated.
Average activity-propagation maps were computed for all the con-
nected components classified in each k-means cluster to highlight
waves of activity propagation characteristic of different brain functional
systems.

Results

Functional co-activations and framework hypotheses

Synchronization of high-amplitude fMRI events
We investigated the functional dynamics of 68 healthy subjects (3

out of 71 subjects were discarded because of fMRI motion). For a
point-process threshold τ=2 standard deviations, the total number of
high-amplitude events for a single subject was 3'171 ± 228 (average
and standard deviation values from 68 subjects) over a recording time
of 276 time points (approximately 9 min). Therefore single brain
regions were active 7 ± 3 time points on average, corresponding to
2.5 ± 1% of the overall recording time. These results are consistent with
other point-process analyses of resting-state recordings (Liu and Duyn,
2013; Tagliazucchi et al., 2016). The regions with the longest activation
time were concentrated over the primary sensory cortices, including
somatosensory, visual and auditory areas (Fig. 5a). Somehow consis-
tently, previous literature shows that these regions demonstrate highly
stable functional connectivity over long resting-state recordings
(Gonzalez-Castillo et al., 2014; Shen et al., 2015).

When considering functional co-activations between pairs of brain
regions, the total number of co-activations for a single subject was
54'016 ± 11'871. The overall number of co-activations was significantly
higher than what expected by chance (independently phase-rando-

mized time series, 13'581 ± 50 co-activations, two-sided Wilcoxon rank
sum test p < 10–12) (Fig. 3c). Moreover, the number of co-activations
was significantly higher than what expected for a multivariate process
with preserved autocorrelation and cross-correlation properties (uni-
formly phase-randomized time series, 41'194 ± 7'490 co-activations, p
< 10−6) (Fig. 3c). The number of co-activations between pairwise
orthogonalized fMRI times series was 19'986 ± 8'000, significantly
higher than what expected by chance (independently phase-rando-
mized time series, p < 10−9) (Fig. 3c). These results indicates that the
co-activation patterns inferred from a fMRI point-process analysis and
included in the spatio-temporal connectomes are functionally mean-
ingful and cannot be explained by time-average bivariate relationships
only.

Functional interactions and anatomical connectivity
Previous studies have shown that a significant time-average func-

tional correlation can exist between brain regions with no direct
structural connection (Goñi et al., 2014; Honey et al., 2009). In the
present study we connected two nodes in the multilayer graphs only if a
direct anatomical tract connects them. We now ask if reproducible
time-resolved functional relationships exist between brain regions with
no direct structural connection. We found that co-activations of
anatomically connected regions occur, on average, twelve times more
often than co-activations of non-connected regions (151.1 ± 96.4
against 12.8 ± 11.7 times over the 68 subjects; Wilcoxon rank sum test
p < 10−10) (Fig. 4). This strong unbalance suggests that, on the
temporal scale of seconds, the large majority of reproducible functional
interactions involves brain regions with a direct structural connection.
At this short temporal-scale, interactions between brain regions with
no direct structural connection are mostly non-reproducible and
possibly related to noise.

The recurrence of pairwise interactions between anatomically
connected regions can be represented in the form of an asymmetric

Fig. 3. Spatio-temporal framework hypotheses and surrogate data. (a) z-score fMRI time series and relative surrogate data (independently phase-randomized time series and uniformly
phase-randomized time series) for an example subject. The time series matrices have size 448 brain regions X 276 time points. (b) Examples of pairwise randomized time series for the
same subject. The orange lines represent the orthogonal component of a first time series (blue lines) with respect to a second time series (black lines). (c) Number of functional co-
activations detected in a complete 9-min fMRI recording ('fMRI' boxplot) and in relative surrogate data ('surr1': independently phase-randomized time series; 'surr2': uniformly phase-
randomized time series; 'ortho': pairwise orthogonalized time series). Each circle in the boxplot represents the number of co-activations detected in a single subject. The average number
of co-activations over 100 repetitions is reported for datasets 'surr1' and 'surr2'. Asterisks indicate statistically significant differences. 37 subjects were considered for this analysis.
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Fig. 4. Reproducibility of functional co-activations between anatomically connected and unconnected region pairs. The two matrices represent the recurrences (over the 68-subject
recordings) of functional co-activations between pairs of brain regions (a) connected and (b) non-connected by a direct anatomical link. The first and forth matrix quadrants refer to the
intra-hemispheric functional relationships; the second and third quadrants to the inter-hemispheric ones. The histograms of the non-zero entries of the recurrence matrices are
represented in gray. The red circles in (b) highlight the functional relationship between the bilateral auditory cortices, and the lateral postcentral gyri.

Fig. 5. Local activations and connected components' characterization. (a) Brain surface map representing the average duration of local activations extracted from fMRI data and point-
process analysis (9-minute recordings with 276 time points; average over 68 subjects). Areas of longest activation cover the primary sensory cortices including somatosensory, visual and
auditory regions. (b) Connected components and temporal overlap. The colored plot outlines a typical CCs sequence (data from one example subject): the blocks represent the temporal
span of the single CCs and are color-coded according to their classification into low- and high-level goal-oriented and self-oriented functional systems (see Fig. 6). The CCs partially
overlap in time: the grey-level plot shows the percentage of time each subject (y-axis, 1st to 68th subject) spends having multiple (up to 6, x-axis) co-active CCs. (c) Distributions of the
temporal span (seconds) and spatial spread (number of anatomical region of interests (ROIs)) of the 2'561 CCs extracted from our cohort. The dot-lines indicate the distributions' 90th-
percentile (19.2 s and 71 ROIs). Inset plots: representation in log-log scale of the two distributions. The dashed line in the spatial spread log-log plot represents the least-squares power-
law fit with slope α=−1.8. (d) Distribution of the time-respecting distances and static distances. The histogram of the time-respecting distances is heavy tailed and was fitted with a
gamma distribution (k=2.70, θ=1.91); the vertical line represents the diameter of the static structural graph (7 hops). The histogram of the static distances was fitted with a normal
distribution (μ=3.54, σ=1.10). Lower plot: Average time-respecting distances between pairs of brain regions and corresponding static distance. The black line represents the identity line;
the dashed curve links the median values of the time-respecting distances associated with each static distance.
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connectivity matrix (Fig. 4a), that has the same binary structure of the
graph G. The connection weights map the frequency of directed
anatomical tracts recruitment within the transient networks of spa-
tio-temporal connectivity (CCs). Similarly, the count of pairwise
interactions between regions with no direct structural link can be
represented in the form of a recurrence matrix (Fig. 4b) with globally
low values but non-random structure, indicating that some anatomi-
cally non-connected regions (e.g., the bilateral auditory cortices or the
lateral postcentral gyri, circled in red in Fig. 4b) are recurrently
engaged in distinct but temporally co-occurring CCs. On one hand,
these systems could be brought to temporal synchronization through
external stimuli, like a sound. On the other hand, the structural
connectivity graph could be deficient in fibers that are difficult to track,
such as the commissural fibers (Thomas et al., 2014). Furthermore
time-resolved functional connectivity may occur through multi-step
structural connections not included in the spatio-temporal connec-
tomes, which is possible given the limited sampling rate of the
investigated fMRI recordings and the intrinsic limitations of dMRI
tractography and structural connectome mapping. For instance the left
and right auditory cortices, that form two distinct sfATs, receive
common neural inputs from both hears via the pons and thalamus,
which are not included in our connectivity model.

Transient networks of spatio-temporal connectivity

We investigated the spatio-temporal connectomes of 68 healthy
subjects. The spatio-temporal connectomes could be described as dense
sequences of transient spatio-temporal networks (CCs) partially over-
lapping in time. The average number of CCs per subject was 38 ± 8, for
a total of 2'561 CCs. 126 CCs were excluded because overlapping time
points associated with motion (extreme FD or DV values, see Inline
supplementary Fig. S5) and are not considered here. The average
temporal span of the single CCs was 11.0 ± 6.3 s (90% of the CCs lasted
less than 19.2 s); the spatial spread of the CCs was 27 ± 35 regions
(90% of the CCs included less than 67 regions). The distributions of the
temporal and spatial CC' spreads were heavy-tailed (power-law fit with
exponent α=−1.8), with a minority of CCs presenting a broad spatio-
temporal extension (Fig. 5b). Despite the high temporal and spatial
sparsity of the structural and functional data (single brain regions were
active 2.5 ± 1% of the overall recording time; the density of the

structural graph was 3.3%), the CCs of the spatio-temporal connec-
tomes were active 293.4 ± 53.4 s per subject corresponding to 55.4% of
the overall recording time, thus indicating that the resting-state
dynamics are highly spatio-temporally organized. We note that rest-
ing-state activations co-occurring in time but involving brain regions
not directly connected through white-matter tracts were assigned to
distinct CCs (Inline supplementary Fig S2). The temporal overlap
between CCs was on average 33% of the overall CCs' activation time
(Fig. 5c).

The transient spatio-temporal networks select viable white matter
pathways of functional activity propagation (or functional paths). In
order to investigate the length distribution of these paths we evaluated
the time-respecting distances between all pairs of brain regions
participating in single CCs. The distribution of the functional paths
length was heavy tailed (gamma distribution fitting with k=2.70,
θ=1.91), with 19% of the values exceeding the diameter of the
structural graph G (median and maximum values 5 and 33 hops,
Fig. 5d). The relationship between functional paths length and static
shortest paths length (static distances computed on the structural
graph G) was monotonic but not linear (Fig. 5d). Functional paths were
on average 70 ± 35% longer than the static ones and their length
predicted static functional connectivity values with higher accuracy
than static shortest path length. Particularly, the linear correlation
between time-respecting distances and time-average functional corre-
lations (evaluated on an independent dataset) was r=−0.486 (p < 10–
15) and outmatched the predictive capacity of the static distances
(r=−0.311, p < 10–15) (see Inline supplementary Methods, Static func-
tional connectivity prediction and Inline supplementary Fig S8). This
result constitutes a good sanity check of our approach and is expected
since the time-respecting paths encode functional information which is
not encoded in the static shortest paths.

Taken together, these findings suggest that the propagation of
dynamic processes on the structural connectome could follow poly-
synaptic pathways significantly different from the static shortest paths.

Reproducible patterns of spatio-temporal connectivity

In order to retrieve reproducible patterns of spatio-temporal
connectivity, recurrent across fMRI recordings and multiple subjects,
we classified the overall 2'561 CCs into twelve clusters. The cluster

Fig. 6. Structure-function activation templates (sfATs). (a) Brain-surface plots picturing the centroids of the 12 CC clusters (sfATs). The color coding represents the average, normalized
temporal duration of the local activations over the CCs classified in the same cluster. The percentages of the total 2'561 CCs classified in each cluster are reported. The sfATs are grouped
according to their qualitative classification into goal-oriented (green) and self-oriented (violet) systems, differentiating low-order (light colors) and high-order (dark colors) functions. (b)
Overlap between the 12 sfATs and the 17 Intrinsic Connectivity Networks -ICNs- (task-based functional networks) identified by Laird and colleagues (Laird et al., 2011). ICNs 14, 19 and
20 were not shown in this plot because they corresponds to cerebellar regions (not included in our investigation) or fMRI artifacts (Laird et al., 2011). (c) Overlap between the 12 sfATs
and the 7 RSNs identified by Yeo et al. (2011). 'VIS' visual, 'SN' sensorimotor, 'DA' dorsal attention, 'VA' ventral attention, 'LIM' limbic, 'FP' frontoparietal, 'DMN' default mode network.
The overlap between functional maps was evaluated with the Dice's coefficient.
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centroids are shown in Fig. 6a and are interpreted as structure-function
activation templates (sfAT) that represent the average spatial patterns
of transient functional synchronization among anatomically connected
brain regions. The sfATs can be grouped according to their concor-
dance with known functional systems, and are compared with publicly
available task-based (ICNs) and resting-state (RSNs) functional net-
works using the Dice's coefficient (Fig. 6b, c). The first 6 sfATs relate to
low-order sensorimotor tasks including visual and visuospatial tasks,
audition and speech (see the overlap with the visual and sensorimotor
RSNs, Fig. 6c). The sfAT 1 includes the primary and secondary visual
cortices, with sustained activation localized in the cuneus, pericalcarine
sulci and lingual gyri, and it extends toward the fusiform and the lateral
occipito-temporal junctions. The sfATs 2 and 3 encompass the
pericentral sensorimotor areas, covering the precentral and postcentral
gyri and the paracentral lobule (ICNs 8 and 9, Fig. 6b). The sfATs 4 and
5 are symmetric with respect to the brain medial line. They include the
lateral extremities of the pre- and post-central gyri and are associated
with task-based networks of sensorimotor functions for the mouth
(ICN 17). Taken together, the sfATs 2 to 5 encompass the sensorimotor
cortices of the superior limbs (sfAT 2), inferior limbs (sfAT 3) and face
(sfATs 4 and 5). The sfATs 6 and 7 contain, respectively, the left and
right auditory areas, localized mainly over the superior and transverse
temporal gyri and well overlapping task-based networks related to
audition and speech (ICN 16). On the right side, the sfAT 7 extends
toward the medial-temporal and limbic association cortices, related to
emotional and interoceptive processing (ICN 1). On the left side, the
auditory and limbic areas constitute two separate clusters (sfATs 6 and
8). Taken together, the sfATs 7 and 8 can be associated with low-order
emotional and self-oriented tasks. The sfAT 9 covers large part of the
dorsal attention network (see overlap with Yeo RSNs), including the
occipital, superior and inferior parietal areas. It is involved in top-down
attentional control (ICN 7) and visual association tasks (ICN 10). The
sfAT 10 covers bilateral fronto-parietal regions and corresponds to the
executive network (cognitive processing and working memory tasks,
ICNs 15 and 18, fronto-parietal RSN). Lastly, sfAT 11 and 12 relate to

high-order self-oriented processes. The sfAT 11 involves dorso-medial
and ventro-medial prefrontal cortices and extends to the anterior and
posterior cingulate. The sfAT 12 includes the most ventral parts of the
precuneus and posterior cingulate cortex, and extends towards the
lingual and parahippocampal gyri. Those regions are known to be
involved in emotional processing, social cognition and theory of mind
(overlap with ICN 2 and 13).

On one side we can observe that the sfATs are behaviorally
meaningful and relate to the brain's main functional systems, as
indicated by the overlap with task-based networks (note the sparsity
of the Dice's coefficient matrix in Fig. 6b) (Laird et al., 2011). On the
other side, the classical RSNs (Yeo et al., 2011; Damoiseaux et al.,
2006; Fox et al., 2005) appear to be split among multiple sfATs. For
example, the sensorimotor RSN and the default mode network (DMN)
are shared among multiple low-order and high-order sfATs (Fig. 6c),
confirming previous literature (Karahanoğlu and Van De Ville, 2015;
Betzel et al., 2016). Finally, it is worth noting that the CCs classified in
each cluster can significantly diverge from the centroid map (i.e., from
the sfAT). Indeed the CCs are characterized by highly variable temporal
and spatial span (Fig. 5c and Inline supplementary Table S1) and can
engage different sets of brain regions and anatomical connections (as
exemplified in the Inline supplementary Video S1).

Supplementary material related to this article can be found online
at http://dx.doi.org/%2010.1016/j.neuroimage.2017.04.015.

Split resting-state networks: Probing the DMN

The DMN is a well-characterized RSN (Raichle 2015), but it does
not appear as a distinct sfAT (Fig. 7) and deserves further attention. We
hypothesize that, in a spatio-temporal connectome analysis, the DMN
is split among different sfATs, and that its constituent regions interact
in a way that is not constant over time. In order to probe this
hypothesis, we first derived a DMN map by means of a time-average
seed-based correlation analysis from the bilateral precunei (Fig. 7a, see
Inline supplementary Methods, DMN Analysis). As quantified by a

Fig. 7. Dynamic behavior of the DMN. (a) Left hemisphere: DMN average correlation map from precuneus seed region (in gray). Right hemisphere: medial frontal (orange, F), posterior
cingulate / precuneus (red, PCC), inferior parietal (gold, P) and middle temporal (light yellow, T) DMN regions. (b) Similarity between the twelve sfATs and the DMN map, as quantified
by Pearson's linear correlation. The color-coding represents emotional and self-oriented (violet) vs external and goal-oriented functional templates (light colors: low-order, dark colors:
high-order system, as in Fig. 5). (c) Recurrence of different DMN regions' combinations in single CCs. The bar color indicates the number of DMN regions included in each combination
(from white to red: 1 to 4 DMN regions). The different DMN regions' combinations are not equiprobable.
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spatial correlation measure, the DMN overlaps mainly with high-order
( sfAT 11 and 12, related to theory of mind) and low-order (sfATs 8 and
9, related to emotions' processing) self-oriented circuits, whereas its
spatial pattern excludes goal-oriented activation templates (Fig. 7b).
We then considered the CCs of the spatio-temporal connectomes
including at least one DMN region. The DMN can be decomposed into
four bilateral regions (Fig. 7a): medial-frontal areas (F), posterior
cingulate cortices / precuneus (PCC), inferior parietal cortices (P) and
middle temporal cortices (T). The DMN regions were highly repre-
sented in the CCs: 52.5% of the total 2'561 CCs contained at least one
DMN region spanning 61.7% of the overall CCs' activation time; 19.7%
of the total 2'561 CCs contained at least two DMN regions spanning
29.5% of the overall CCs' activation time. The CCs including DMN
regions did not always engage all the four F/PCC/P/T areas. Instead,
the four DMN regions were rather independently or synchronously
active, with preferential patterns of combined functional engagement.
Fig. 7c shows the recurrence of the CCs including all the 15 possible
combinations of DMN regions (taken 1, 2, 3 or 4 at a time) over
recording time and subjects. The most probable combinations were:
the independent activation of the four DMN regions (particularly
frontal and parietal areas), followed by fronto-posterior cingulate (F
+PCC) and parieto-temporal (P+T) activations, and the complete four-
region DMN activation (F+PCC+P+T). Other combinations were less
frequent.

Motifs of functional activity propagation

We asked if the functional activity propagation within the CCs
forms particular spatio-temporal motifs. To this end, we grouped the
2'561 CCs on the basis of their temporal duration and investigated their
temporal envelopes. We found that, independently of the overall
duration, a CC activity starts from a small set of brain areas (10% to
40% of the regions recruited in the single CCs), propagates to a large set
(40% to 80% of the CC's regions) and then vanishes toward a small set
(10% to 40% of the CC's regions) of brain areas, following an
expanding-shrinking motifs (Fig. 8a).

To further investigate the spatio-temporal propagation patterns for
the distinct brain functional systems, we computed the average
activity-propagation map for each sfAT cluster. The average propaga-
tion maps demonstrate non-random spatial patterns (Fig. 8b). In the

visual system (sfATs 1, 2) the functional activity propagates from the
fusiform cortices to the cunei and superior parietal areas. In the
sensorimotor circuits, the functional activity propagates from the
lateral pericentral cortices and cingulate gyri to the superior parietal
lobules (sfATs 3), and from the lateral extremities of the pre- and post-
central gyri toward higher-order somato-sensory regions as the supra-
marginal and insular cortices (sfATs 5, 6).

Discussion

In this work, we integrated brain anatomical connectivity and
narrow-band (0.01–0.1 Hz) functional activity (as derived from diffu-
sion and functional MRI) into a single multilayer graph (Kivelä et al.,
2014), a convenient mathematical framework for the analysis of fMRI
dynamics (Bassett et al., 2013; Braun et al., 2015). Particularly, we
explicitly included in the graph the anatomical connectivity informa-
tion. This enables the investigation of structure-function interplays and
of dynamic routing of functional interactions on the structural con-
nectome. The framework captures transient spatio-temporal networks
(i.e., CCs) (Kivelä et al., 2014; Nicosia et al., 2012), characterized by
specific spatial configurations and temporal dynamics.

We studied the spatio-temporal connectomes of a group of 68
healthy subjects and investigated the resulting 2'561 connected com-
ponents (3 out of 71 subjects were excluded because of excessive
motion in the fMRI recordings). For each subject, the sequence of CCs
can be clearly followed, is not trivially cyclic and individual CCs can
overlap in time. The distributions of the duration and spatial spread of
the CCs are heavy-tailed and approximate power-law functions. This
observation adds to previous reports that suggest that the brain works
in a self-organized critical state, across different frequency bands of
activity (Kitzbichler et al., 2009; Tagliazucchi et al., 2012).

The clustering of the CCs reveals well-known circuits relating to
classic RSNs and behaviorally meaningful functional network (Fig. 6),
thus suggesting that the spatio-temporal connectivity is a relevant
phenomenon in the self-organization of functional systems. However,
the spatial and temporal heterogeneity of the CCs (Fig. 5, Inline
supplementary Video S1) indicates that the resting-state transient
networks are more complex than the time-average RSNs. This com-
plexity could reflect a dynamic and flexible communication-rerouting
in response to a large variety of external and internal inputs, such as

Fig. 8. Temporal envelopes and activity-propagation maps. (a) Examples of temporal envelopes of CCs with different durations (2, to 9 time points, corresponding to 3.8 to 17.3 s). The
mid-lines and the colored areas represent the percentage of the CC's active regions over time (average ± one standard deviation). (b) Examples of average activity-propagation maps
represented on the cortical surface. The maps illustrate the timing of activity propagation and have been obtained by avaraging the temporal patterns of all the Ccs classified in the
clusters sfAT 1, 2, 3, 4, 5 and 6. The color-coding indicates the average first activation time point of the different brain regions within the CCs of the spatio-temporal connectomes(time
scale normalized to the range [0,1]).
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selective attention or sensory-stimuli processing (Bassett et al., 2013;
Betzel et al., 2016; Braun et al., 2015), and cognitive requirements
(Bassett et al., 2011). The case of the default mode network (DMN) is a
prominent example of dynamical coupling. Others before us have
shown that the DMN breaks over time into heterogeneous patterns
(Hutchison et al., 2013; Karahanoğlu and Van De Ville, 2015; Raichle
2015), and that its component regions frequently switch among
different functional communities (Betzel et al., 2016; Zalesky et al.,
2014). Our data reveal that the DMN regions interact in a way that is
not constant over time and transiently synchronize in configurations
that are heterogeneous and not equiprobable.

The connected components present characteristic spatio-temporal
patterns of functional activity propagation. Typically, the functional
activity starts within a focal area, then spreads by recruiting an
increasing number of brain regions, reaches a peak of massive
activation and finally fades out in some specific location. Within the
different functional systems, some brain areas appear to be recruited
on average earlier than other in a resting-state condition. For example,
the fusiform-cortex activation often precedes the cuneus and superior
parietal activations in the visual circuit; the activation of the lateral
pericentral cortices precedes the activation of supramarginal regions in
the ventral attention network. These findings are in line with previous
reports that describe 'waves' of high signal-intensity propagation
(Majeed et al., 2011) and 'lag threads' including 'early' and 'late' nodes'
activity in fMRI recordings (Mitra et al., 2015), and they extend such
reports by explicitly linking the propagated activity and the anatomical
substrate. Indeed, the propagation of functional activity selects sets of
viable structural pathways for functional communication. Among
these, the time-respecting shortest paths of the spatio-temporal
transient networks appear as viable and convenient structural routings
for communication. We found that the time-respecting shortest paths
were significantly longer that the static shortest paths computed on the
brain structural graph (Fig. 5d, e). In line with recent studies (Avena-
Koenigsberger et al., 2016; De Reus and van den Heuvel, 2014; Goñi
et al., 2013), this evidence suggests that routing strategies, other than
static shortest paths, might underpin communication principles of the
human brain.

Although previous studies have shown that the structural connec-
tivity shapes time-average functional correlations (Deco et al., 2011;
Honey et al., 2010), the capacity of predictive and computational
models to reproduce functional connectivity from structural features
remains somehow limited (Goñi et al., 2014). This might result from
the fact that measures of time-average functional connectivity ignores
the dynamical aspects of brain activity at rest (Hansen et al., 2015). It
has been suggested that high functional correlations in absence of
direct anatomical links are related to indirect paths (Mišic et al., 2016)
and collective effects (Adachi et al., 2012). Both direct structural
connections and polysynaptic structural pathways have been associated
with temporal stability of functional dynamics (Shen et al., 2015). Here
we show that indeed, at the temporal resolution of fMRI recordings, the
most reproducible functional interactions take place between anato-
mically connected brain regions but organize into larger transient
networks with characteristic patterns of multi-step spatio-temporal
connectivity. Moreover, due to the temporal sequentiality imposed by
the framework, the frequencies of pairwise 'induced' activation of one
brain region by another structurally connected regions can be esti-
mated. The recurrences of functional interactions relate to the average
(directed) usage of the structural links for the emergence of transient
patterns of synchronization. With an appropriate row-wise normal-
ization of the recurrence matrix (Fig. 4a), it is therefore possible to
compute a transition matrix in the Markovian sense, where every entry
encodes the probability that an active brain region activates another. In
opposition to the structural connectivity matrix derived solely from
dMRI data, which is symmetric, this transition matrix is asymmetric.
These aspects deserve further investigation and might be relevant to
the study of mechanistic brain-communication models such as diffu-

sion (Abdelnour et al., 2014) or spreading dynamics (Mišic et al.,
2015).

Our results, by characterizing transient networks of spatio-temporal
connectivity, highlight patterns of activity propagation and structural-
connection selection. Taking a step forward, we could interpret these
transient networks as the reflection (at a macroscopic and temporally
smoothed scale) of neural communication-channel selection. We dare
this interpretation in light of diverse studies that identify temporal
synchronization as a central mechanism for adaptive neural commu-
nication (Fries, 2015). In particular, the communication-through-
coherence (CTC) hypothesis proposes that, on the microscopic scale,
nervous communication and effective post-synaptic excitation are
promoted by patterns of synchronization (phase-coherence) among
the gamma and beta electrical oscillations of wired neuronal groups
(Fries, 2005, 2015). The nervous spatio-temporal coherence on this
scale would be both functional to, and a shaper of, effective commu-
nication among distinct neural units. Recent computational studies
suggest that the microscale CTC mechanism could be reflected on the
whole-brain macro-scale and, crucially, across different (from fast to
infra-slow) time scales of brain synchronization (Deco and
Kringelbach, 2016; Hansen et al., 2015). In the light of these studies,
the large-scale transient networks of spatio-temporal connectivity that
we observe could be the expression of the flexible and adaptive
communication structure of the brain. Accordingly, the interpretability
of our framework expands significantly, because we can associate
spatio-temporal connectivity with the notion of information transmis-
sion and selective communication. The connected components and
their time-respecting paths become transient channels of communica-
tion, thus implementing a variety of functional configurations on the
top of a static anatomical substrate. The transition matrix, by quantify-
ing the frequency of forward interactions between brain regions,
conveys information fluxes. If we are speculative, the single connected
components might reflect neural assemblies (Varela et al., 2001), also
referred to as neuronal representations (Fries, 2015), underlying basic
elements of cognitions.

Finally, it must be noted that the proposed spatio-temporal frame-
work can be improved in several ways. The method relies on the
confluence of functional dynamics and dMRI structural information. It
is well known that dMRI- tractography suffers form different metho-
dological limitations derived from both image acquisition and algo-
rithmic factors (Jones et al., 2013), and structural connectomes contain
a certain percentage of false positive and false negative connections (De
Reus and van den Heuvel, 2013). Moreover, dMRI cannot recover the
directionality of structural connections. These elements can bias the
analysis of spatio-temporal connectivity patterns. This could for
example be the case with the left and right auditory cortices that are
separated in two distinct sfATs in our analyses. Future work should
improve the current methodological formulation by including structur-
al connection weights (e.g., axonal fiber density or diameter) and/or
connection probabilities (Daducci et al., 2016; Hinne et al., 2013). We
have defined the time-resolved functional connectivity ('temporal'
connectivity) using a point-process compression of the fMRI time
series. Although simple and dependent on the threshold selection, this
approach does not require the definition of any temporal window of
analysis (Preti et al., 2017), preserves the important statistical features
of resting-state signals (Tagliazucchi et al., 2016) and identifies
functional patterns related to behavioral and cognitive processes
(Chang et al., 2016; Chen et al., 2016). We found that at rest the
frequency of co-activation patterns detected through a point-process
analysis cannot be explained by the signals' time-average linear-
relationships alone. This finding adds to the current debate on the
stationary and non-stationary aspects of functional connectivity
(Zalesky and Breakspear, 2015; Hindriks et al., 2016), and it en-
courages further methodological and statistical work on time-varying
fMRI patterns. Within the present framework clustering algorithms
other than the k-means, and tailored to complex data-distributions,
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could be used to highlight further spatio-temporal hierarchies among
the identified CCs.

It should also be mentioned that both the point-process approach
and the intrinsic smoothness of the fMRI signals drastically limit the
capability of temporal localization of neural events. Since the BOLD
response occurs at a slower temporal scale than actual neural dynamics
and since the HRF can vary across different brain regions and different
subjects, it is difficult to estimate the exact timing of brain activity and
lagged synchronization (Lindquist, 2008; Mitra et al., 2014). In
general, mathematical approaches more sophisticated than point-
process analysis can grant a more robust estimation of causal
(Friston, 2011) and phase-relationships (Karahanoğlu and Van De
Ville, 2015; Ponce-Alvarez et al., 2015) between local activities.
Furthermore, our analyses are restricted to the infra-slow (0.01–
0.1 Hz) frequency band. The investigation of multiple frequency bands,
from fMRI and complementary modalities such as EEG or MEG (Chu
et al., 2015; Yaesoubi et al., 2015), could extend our findings and help
to clarifying causal relationships and the role of frequency encoding in
the communication mechanisms that pertain to different functional
systems. Indeed, the characterization of spatio-temporal connectomes,
provided in this initial work, brings forward several questions. For
instance, how does spatio-temporal connectivity re-organize in pre-
sence of external stimuli and task requirements, or in different
conditions such as development or neuropsychiatric disorders? What
is the role of time-respecting paths in driving communication-channel
selection and brain plasticity? Which communication principles under-
lie large-scale adaptability and cognitive mechanisms? A shift from the
characterization of functional dynamics to the investigation of spatio-
temporal connectivity could be an instrument to expand our under-
standing of the flexible behavior of the brain.
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