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The ballistocardiogram (BCG) artifact is currently one of the most challenging in the EEG acquired concurrently
with fMRI, with correction invariably yielding residual artifacts and/or deterioration of the physiological signals
of interest. In this paper, we propose a family of methods whereby the EEG is decomposed using Independent
Component Analysis (ICA) and a novel approach for the selection of BCG-related independent components
(ICs) is used (PROJection onto Independent Components, PROJIC). Three ICA-based strategies for BCG artifact
correction are then explored: 1) BCG-related ICs are removed from the back-reconstruction of the EEG (PROJIC);
and 2–3) BCG-related ICs are corrected for the artifact occurrences using an Optimal Basis Set (OBS) or Average
Artifact Subtraction (AAS) framework, before back-projecting all ICs onto EEG space (PROJIC-OBS and PROJIC-
AAS, respectively). A novel evaluation pipeline is also proposed to assess the methods performance, which
takes into account not only artifact but also physiological signal removal, allowing for a flexible weighting of
the importance given to physiological signal preservation. This evaluation is used for the group-level parameter
optimization of each algorithm on simultaneous EEG-fMRI data acquired using two different setups at 3 T and 7 T.
Comparison with state-of-the-art BCG correction methods showed that PROJIC-OBS and PROJIC-AAS
outperformed the otherswhenprioritywas given to artifact removal or physiological signal preservation, respec-
tively, while both PROJIC-AAS and AASwere in general the best choices for intermediate trade-offs. The impact of
the BCG correction on the quality of event-related potentials (ERPs) of interest was assessed in terms of the
relative reduction of the standard error (SE) across trials: 26/66%, 32/62% and 18/61% were achieved by,
respectively, PROJIC, PROJIC-OBS and PROJIC-AAS, for data collected at 3 T/7 T. Although more significant
improvements were achieved at 7 T, the results were qualitatively comparable for both setups, which indicate
the wide applicability of the proposed methodologies and recommendations.

© 2016 Elsevier Inc. All rights reserved.
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Introduction

The complementarity between the high temporal resolution of
electroencephalography (EEG) and the millimeter spatial resolution of
functional magnetic resonance imaging (fMRI) has strongly motivated
the integration of these two neuroimaging techniques (for reviews,
please refer to Jorge et al., 2013; Murta et al., 2015). Simultaneous
EEG-fMRI acquisitions, however, induce two major artifacts on EEG
data. Firstly, the rapidly-changing, high-amplitude MR-related artifacts
are induced by the switching of magnetic fields during the fMRI
1 Lisboa, Portugal.
acquisition. The gradient-related artifact occurrences are practically
time-invariant and the use of standard average artifact subtraction
(AAS) methods usually yields acceptable artifact reduction (Allen
et al., 2000).

The correction for the ballistocardiogram (BCG) artifact represents a
bigger challenge, mainly due to its non-stationary nature. As discussed
in (Mullinger et al., 2013; Yan et al., 2010), severalmechanisms contrib-
ute to the BCG artifact, the most plausible being: 1) the rotation of the
head inside a strong, static magnetic field due to the cardiac pulse
(Bonmassar et al., 2002), 2) the Hall effect of the pulsatile blood flow,
which is an electrically conductive fluid, inducing changes of the voltage
measured on the surface of the scalp (Tenforde et al., 1983) and 3) volt-
ages generated by movement associated with pulse-driven expansion
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of the scalp (Debener et al., 2008). Studies aiming at a better character-
ization of the contribution of each of those mechanisms to the BCG
artifact have found that most of the artifact variance is explained by
flow-induced Hall voltage and pulse-driven head rotation (Mullinger
et al., 2013). Additionally, a significant increase of the amplitude of the
BCG artifact with the static magnetic field strength, B0, has also been
shown (Debener et al., 2008; Neuner et al., 2013), with severely
hampered visual inspection of typical EEG patterns at 7 T. The accurate
removal of the BCG artifact while preserving the physiological EEG
signal is of utmost importance in several applications, particularly
when the quantification of EEG features allows the prediction of
blood-oxygen-level dependent (BOLD-)fMRI signal changes (e.g., Rosa
et al., 2010), including epilepsy applications (Leite et al., 2013).

The BCG artifact occurrences are known to be approximately time-
locked with the cardiac cycle; therefore, an AAS algorithm can be
employedwhereby an artifact template is extracted by averaging across
multiple cardiac cycles, and a time-domain subtraction is then per-
formed for artifact correction (Allen et al., 1998). In the most common
approach, a moving average template is computed from successive arti-
fact occurrences, assuming that the BCG artifact occurrences change
slowly over time. The BCG variability can be more accurately taken
into account by computing the temporal Principal Component Analysis
(tPCA) over all the time-locked occurrences of the artifact in order to
build an optimal basis set (OBS), comprising a given number of principal
components (PCs) that explain the BCG artifact variance to some extent
(Niazy et al., 2005). This basis set is then fitted to, and subtracted from,
each artifact occurrence. More direct approaches to correct for the BCG
artifact have been proposed, which are based on the use of motion sen-
sors (Bonmassar et al., 2002; Chowdhury et al., 2014; Jorge et al., 2015a;
Masterton et al., 2007). However, currently these techniques require
hardware-related changes of the experimental apparatus and may
therefore not be applicable in general.

A third category of BCG artifact correctionmethods is based on blind
source separation. Independent Component Analysis (ICA) is commonly
used for this purpose. By removing the contribution of independent
components (ICs) reflecting artifact-related processes in the back-
reconstruction of the EEG signal, an artifact-corrected signal can be ob-
tained (Bénar et al., 2003; Mantini et al., 2007; Srivastava et al., 2005).
Most of the ICA algorithms, however, assume spatial stationarity of
the sources, ignoring the spatio-temporal variability of the BCG artifact
occurrences (Debener et al., 2008; Vanderperren et al., 2007). Many ap-
proaches nevertheless rely on ICA-based methods, since alternative
methods present their own limitations as well (Vanderperren et al.,
2010). When using ICA-based EEG de-noising methods, several ques-
tions arise regarding: 1) the implementation of the ICA decomposition
of EEG data to be used; 2) the number of ICs to be estimated; and
3) the identification of the ICs to be classified as BCG-related. All three
issues have been addressed in (Vanderperren et al., 2010); however,
the objective and accurate classification of ICs remains a major concern
and several criteria can be found in the literature for that purpose,
which will be presented and discussed later in this paper.

Due to the relative advantages and disadvantages of OBS and ICA-
based methods, the combination of both has already been proposed
(Debener et al., 2005, 2007). The OBS method is used to remove most
of the BCG artifact contribution, followed by an ICA decomposition of
the OBS-corrected EEG data to further remove residual artifacts. Despite
its effectiveness in removing the artifact, the application of OBS directly
on the EEG signal may also induce undesirable physiological signal re-
ductions, which would be exacerbated if an additional step of ICA-
based correction is applied. Recently, it has also been proposed to use
a modified version of OBS in the IC space instead (Liu et al., 2012). For
that purpose, the EEG data is first decomposed into a set of ICs and the
mutual information (MI) (Bell and Sejnowski, 1995) between them
and the electrocardiography (ECG) data is computed. The number of
ICs with the highest MI is then chosen by means of a modified method
(Peng et al., 2005) thatfinds the optimal number of ICs yieldingminimal
error in leave-one-out cross-validation. The BCG-related ICs are
removed from the back-reconstruction of the EEG signal and all the
remaining ICs are singular value decomposition (SVD-)corrected before
back-projecting them onto the EEG space, as it is hypothesized that
the BCG artifact contributes to all ICs to varying degrees due to its
non-stationary nature (Liu et al., 2012).

Regardless of the BCG artifact correctionmethod used, the quality of
the correction should be assessed (Freyer et al., 2009; Grouiller et al.,
2007). Typically, event-related simultaneous EEG-fMRI studies are
conducted and the performance of a given method can be computed
based on features extracted from the event-related potentials (ERPs)
of interest, such as: the inter-trial variability (Vanderperren et al.,
2010), the signal-to-noise (SNR) ratio (Debener et al., 2007) or the dif-
ference between the ERPs extracted from the inside-MR EEG datasets
and those that are obtained from the BCG artifact-free outside-MR
EEG data (Mantini et al., 2007). When the frequency content of a task-
modulated EEG signal is known, the power of the EEG within that
frequency band can also be computed before and after BCG artifact
correction (Xia et al., 2014). In resting-state fMRI (rs-fMRI) studies,
the quality of the correction can be assessed by comparing the BCG arti-
fact occurrences before and after correction, based on the root mean
square (RMS) of the BCG waveform or their peak-to-peak (PTP) values
(Chowdhury et al., 2014). Additionally, the total spectral power within
windows around the cardiac fundamental frequency and its first har-
monics (Liu et al., 2012) can be computed, and a ratio expressing the
loss in normalized spectral power after the correction is used to quantify
the amount of BCG artifact that was removed, measured by the
Improvement in terms of Normalized Power Spectrum (INPS) (Tong
et al., 2001).

Many studies continue to be dedicated to the development of more
efficient methods for BCG artifact correction, but the associated, un-
wanted removal of true physiological signal in the background has not
been systematically assessed. Here, we propose a novel method for
the selection of BCG-related ICs (PROJection onto Independent Compo-
nents, PROJIC), after which three ICA-based approaches for the removal
of the BCG artifact are explored. First, the contribution of the BCG-
related ICs is removed in the back-reconstruction step of the EEG signal
(PROJIC). Alternatively, we propose the use of OBS (PROJIC-OBS) or AAS
(PROJIC-AAS) for correcting the BCG-related ICs before back-projecting
them, instead of simply removing their contribution. In parallel, a novel
evaluation pipeline that assesses both artifact and background signal re-
moval is presented, and used to compare the novel approaches with
previous approaches, on data collected froma groupof epilepsy patients
(imaged at 3 T) and a group of healthy volunteers (imaged at 7 T). Data
quality improvements on ERPs of interest collected with both setups
(inter-ictal epileptiform discharges, IEDs, and visual-evoked potentials,
VEPs, collected at, respectively, 3 T and 7 T) were also assessed by
means of an inter-trial variability measure.

Materials and methods

The main steps of the processing pipeline proposed in this work for
the optimal BCG artifact correction and subsequent evaluation, in terms
of not only artifact removal and physiological signal preservation, but
also data quality improvements on ERPs of interest collected with
both datasets, are depicted in Fig. 1.

EEG-fMRI Data Acquisition

Two sets of simultaneous EEG-fMRI data were used, whichwere ob-
tained with two different EEG-fMRI setups, a commercially available,
standard one at 3 T and an optimized, custom one at 7 T.

Setup #1 (3 T)
A group of twelve patients (12 ± 9 years old, 7 males/5 females)

with drug-refractory focal epilepsy undergoing pre-surgical evaluation



Fig. 1. Schematic diagram of the processing pipeline for the optimal BCG artifact correction. 1) EEG data is pre-processed, ICA decomposed and 2) artifact-corrected resorting to different ICA-
and non-ICA-based methods. 3) BCG artifact correction is evaluated in the frequency domain, by means of the combination of two ratios reflecting the relative amount of artifact and
physiological signal removal. 4) The combined ratio is used for an exhaustive group-level optimization of the algorithms' parameters, providing optimal artifact-corrected EEG data,
from which ERP data quality improvements are assessed by the inter-trial variability computed as the relative reduction in the standard error across trials.
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was selected from the Program of Surgery for Epilepsy of the Hospital
Center of West Lisbon, by the clinical team, at suggestion of the physi-
cian responsible for the neurophysiological studies. These patients
were studied at the Imaging Center of Hospital da Luz in Lisbon,
Portugal. All patients or their legal representatives gave written
informed consent and the study was approved by the local ethics
committee.

The imaging was performed on a 3 T Siemens Verio scanner
(Siemens, Erlangen) using a 12-channel RF receive coil. Functional im-
ageswere acquired using a 2Dmulti-slice gradient-echo echoplanar im-
aging (EPI) sequence, with TR/TE = 2500/30 ms, 37 or 40 contiguous
axial slices with interleaved acquisition, and 3.5 × 3.5 × 3.0 mm3

voxel size, yielding whole-brain coverage in all cases.
EEG data were recorded using an MR-compatible 32-channel

BrainAmp MR plus amplifier (Brain Products, Germany). A standard
BrainCap MR model (EasyCap, Herrsching, Germany) was used,
containing 31 Ag/AgCl ring-type electrodes arranged according to the
10–20 system, a dedicated electrode for the referencing, and one elec-
trode placed on the back for ECG recording. Sampling was performed
at 5000 Hz, synchronized with the scanner's 10 MHz clock.

For each patient, two or three simultaneous EEG-fMRI runs of 10 or
20 min were then performed inside the MR scanner, yielding a total of
30 min. For the 12 patients, a total of 26 EEG datasets concurrently
acquired with fMRI were collected during rest. IEDs were captured
with EEG on 6 out of the 12 patients that participated in this study.

Setup #2 (7 T)
A group of six healthy volunteers (20 ± 2 years old, 5 males/1

female) was studied at the Centre d'Imagerie BioMédicale (CIBM) in
Lausanne, Switzerland. This study was approved by the institutional
review board of the local ethics committee, and all subjects provided
written informed consent.

The imaging was performed on an actively-shielded Magnetom 7 T
head scanner (Siemens, Erlangen, Germany), using an 8-channel
transmit/receive RF coil (Salomon et al., 2014). For each subject, two
simultaneous EEG-fMRI runs, of 5 and 8 mins, respectively, were
collected. Functional images were acquired using a 2D multi-slice
gradient-echo EPI sequence, with TR/TE=2000/25, from 25 axial slices,
and 1.5 × 1.5 × 1.5 mm3 voxel size. A visual stimulation was applied in
the 5-min run for each subject, according to the functional paradigm
described in (Jorge et al., 2015a).

EEG data were recorded using an optimized setup, as described in
(Jorge et al., 2015b), using two 32-channel BrainAmp MR Plus
amplifiers (Brain Products, Munich, Germany). A customized BrainCap
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MR model (EasyCap, Herrsching, Germany) was used, containing
59 Ag/AgCl ring-type electrodes arranged according to the 10–20 sys-
tem, a dedicated electrode for the referencing, and one electrode placed
on the back for ECG recording. Sampling was performed at 5000 Hz,
synchronized with the scanner's 10 MHz clock. A total of 11 intra-MR
EEG datasets were collected (as one of the subjects did not undergo
the 8 min run), 6 of which presented VEPs.

Data processing

All processing steps were implemented inMATLAB® using in-house
software, except for the pre-processing and ICA decomposition of EEG
data, which were performed using the EEGLAB toolbox (Delorme and
Makeig, 2004). Also, the implementations of AAS and OBS as in the
EEGLAB's FMRIB plug-in were used. Except when stated otherwise,
the same pre-processing was applied to EEG recordings from both
setups. All EEG datasets were gradient artifact-corrected using AAS
(Allen et al., 2000), downsampled to 250 Hz and band-pass filtered
(0.5–45 Hz). EEG data collected using Setup #1 were volume-wise gra-
dient artifact-corrected since the first artifact occurrencewithin each TR
was considerably different from the remaining ones, in terms of both
morphology and duration. Since this was not observed for Setup #2, a
slice-wise gradient artifact correctionwas performed in this case. An av-
erage over 100 slice sampleswas subtracted from each slice: 50 samples
from the preceding and 50 samples from the following slices, with
jittered steps of 8–13 slices separating the selected samples, allowing
for the preservation of low-frequency EEG activity, aswell as a balanced
distribution of samples relative to the visual stimulation cycle (3.35 Hz)
(Jorge et al., 2015a).

The Infomax ICA algorithm, as implemented in the EEGLAB toolbox,
was then applied to the pre-processed intra-MR EEG data using the
default parameters. The ICA algorithm decomposes the N × M EEG data
into L ×M independent components (ICs), where N, L andM denote, re-
spectively, the number of channels, ICs to be estimated and time-
samples. The number of components is defined equal to the number of
EEG channels: 31 and 59 for data collected using Setups #1 and #2, re-
spectively. In that case, the equation describing the relationship between
the EEG signal, E, and the independent components, I, is given by:

I N�M½ � ¼ W N�N½ � � E N�M½ � ð1Þ

where W represents the un-mixing matrix which carries the coefficients
of the linear combination between the EEG data and the ICs (Bell and
Sejnowski, 1995; Lee et al., 1999).

The detection of QRS complexes on ECG data using Setup #1 was
performed using a modified version of the Pan-Tompkins algorithm
(Pan and Tompkins, 1985). As for the EEG recordings using Setup #2,
no clear R peaks could be visually observed on ECG, nor the typical
morphology within each beat. Thus, cardiac triggers were first estimat-
ed from the ECG channel and then fine-tuned by a correlation-
maximization approach, using a combination of EEG channels where
pulse artifacts were most prominent (Jorge et al., 2015a; Mijović et al.,
2012). These annotations were centered in the middle of each BCG
artifact occurrence. The estimated cardiac triggers were visually
inspected for false positives and false negatives.

BCG Artifact correction

The MATLAB® code for the procedures described in the following
sub-sections is available at: https://github.com/rmabreu/BCG_Artefact_
Correction.git.

BCG-related IC selection
As a starting point for the BCG-related IC selection, it was hypothe-

sized that only a limited set of ICs is significantly affected by the BCG ar-
tifact. Hence, by projecting the BCG waveform onto the IC space, those
components that span the artifactwill have higher-powered projections
when compared to those that are relatively artifact free. Importantly,
the average BCG waveform is expected to be roughly devoid of other
large amplitude artifacts (e.g., motion, eye blinks, among others), as
those are not time-locked to the heartbeat and thus should be averaged
out. For the purpose of computing the average BCG waveform, QRS-
triggered event-related potentials (QRS-ERPs) are first computed,
using the detected R peaks as time-locking events, yielding an
N × E × Tmatrix, where N is the number of EEG channels, E the number
of epochs or R peaks and T the length of each epoch, the latter being de-
pendent on the subjects' cardiac rate. The average across epochs is then
computed, yielding the N × T matrixM=(m1,⋯ ,mN), wheremi is the
average QRS-ERP of the i-th channel, of length T. Considering M the
aforementioned BCGwaveform, a set of N projections, P, of the average
QRS-ERPonto the IC space are computed bymeans of the corresponding
un-mixing matrix W as:

P ¼ W �M ð2Þ

The classification of ICs as BCG or non-BCG related is performed by
means of a k-means clustering algorithm. The power of each projection
in P is computed as the squared sum of each projection occurrence,
and used as the discriminative feature to inform the clustering algo-
rithm. The number of clusters to be computed is a mandatory input of
k-means, and it will influence the classification output profoundly.
Due to the subsequent parameter optimization step that will be de-
scribed next, artifact correction using PROJIC is repeated with the num-
ber of clusters, k, ranging from 2 to 5. For each value of k, the cluster
centroids are sorted in descendent order, so that ICs assigned to the
first, highest centroid cluster will then yield corresponding projections
with the highest power and vice-versa for ICs assigned to the last clus-
ter. As a selection criterion, the ICs labeled as belonging to the first
k − 11 clusters (after sorting) are classified as BCG-related. The
upper limit for the number of clusters is chosen to ensure that even
in this case, all selected ICs still exhibit strong artifact contributions.
In fact, the higher the power of a given projection, the larger is the
contribution of the BCG artifact to the associated IC, and for higher
k, ICs associated with lower-powered projections are also selected,
thus exhibiting only minor contributions of the BCG artifact.

PROJIC algorithm
A BCG artifact-corrected EEG, Ecor, is obtained by back-projecting all

the ICs except those classified as BCG-related according to:

Ecor ¼ X � Z � I ð3Þ

where Z is a N × N diagonal matrix in which the zii element is equal to 0
if the i-th IC was classified as BCG-related, and 1 otherwise. X denotes
the mixing matrix, that is, the inverse of W, representing the spatial
map, or topography, associated to each IC and respective time-course
(Bell and Sejnowski, 1995; Lee et al., 1999). The contribution of the
selected components is then removed, yielding a purely ICA-based
BCG artifact-corrected EEG signal.

PROJIC-OBS and PROJIC-AAS algorithms
As discussed previously, one of the main assumptions of ICA

algorithms is the stationarity of the sources, which is not completely
fulfilled for the BCG artifact, and rendering the selected ICs potentially
contaminated by other contributions of interest. On the other hand, it
is expected that the time-courses of the ICs classified as BCG-related
should yield artifact occurrences that are closer to the ones of the
artifact than those of the original data, since the latter results from a
weighted contribution of several head sources, including the BCG
artifact ones. Taking these considerations into account, two modified
versions of the purely ICA-based PROJIC algorithmare proposed,where-
by the ICs classified as BCG-related according to the selection criteria
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described previously, are corrected for the BCG artifact occurrences by
either applying the OBS (Niazy et al., 2005) (PROJIC-OBS method) or
the AAS (Allen et al., 1998) (PROJIC-AAS method) algorithms to the as-
sociated time-courses. Instead of simply removing their contribution,
the artifact-corrected BCG-related ICs are also included in the back-
reconstruction of the EEG signal, attempting to guarantee that
physiological EEG variance captured by those ICs is preserved, while
suppressing that of the BCG artifact occurrences.

The PROJIC-OBS and PROJIC-AAS algorithms present two parameters
that are likely to be optimized: the number of clusters in the IC selection
step and, respectively, the number of PCs or artifact windows that will
be used to build the artifact template in the IC space. Thus, artifact cor-
rection is repeated with the number of clusters ranging from 2 to 10,
while the number of PCs in PROJIC-OBS range from 3 (the minimum
number of PCs recommended in (Niazy et al., 2005)) and 10, in unit
steps. As for the PROJIC-AAS, the number of artifact windows is set to
range from 10 to 80, in steps of 10. A more flexible selection of BCG-
related ICs was permitted for PROJIC-OBS and PROJIC-AAS by increasing
the upper limit of the number of clusters range. In fact, only the artifact-
related variance of the selected ICs is expected to be removed, in con-
trast with PROJIC, for instance, which thus requires a more conservative
selection. Hence, ICs less contributed by the artifact may be selected for
higher number of clusters. All possible combinations of parameters are
tested, yielding a total of 9 × 8 = 72 artifact-corrected EEG traces for
both PROJIC-OBS and PROJIC-AAS algorithms.

Comparison with state-of-the-art methods
Several criteria for the selection of BCG-related ICs can be found in

the literature, and reviewed in (Vanderperren et al., 2010). Here, we
tested the followingmethods, repeating the analysiswith varied param-
eters within reasonable intervals, which will be then optimized in the
subsequent optimization step:

1. Correlation. Each IC time-course is first correlated with the simulta-
neously acquired ECG signal (CorrECGmethod) (Mantini et al., 2007;
Srivastava et al., 2005). Alternatively, a template for the BCG artifact
is computed by detecting the artifact occurrences, concatenating
them and averaging across channels (CorrBCG method) (Srivastava
et al., 2005). The correlation coefficients are used as threshold for
the selection of ICs. The threshold ranges from 0.05 to 0.35, in 0.05
steps, 0.2 being the default (Vanderperren et al., 2010).

2. Auto-correlation (AutoCorr method). The auto-correlation of each
IC time-course is computed, searching for the oneswith a peak in the
auto-correlation function located at the distance between two con-
secutive QRS complexes (Deburchgraeve et al., 2008). ICs yielding
an estimated fundamental frequency located no more than 2.5% to
27.5% (in 5% steps) away from the cardiac frequency are classified
as BCG-related. The default is 10%. This value was empirically deter-
mined, as no references in the literature were found.

3. Frequency content (PSD method). The presence of BCG artifacts is
characterized by high-amplitude peaks in the power spectrum of
EEG data at frequencies next to the cardiac fundamental frequency
and its first harmonics. The power spectrum of each IC can thus be
probed for a higher average spectral power within those frequency
windows, possibly indicating the presence of a BCG-related IC
(Vanderperren et al., 2007). After normalizing and sorting in
descending order the average spectral power of each IC, the first ICs
yielding a minimum of 10% to 50% (in 5% steps) of the cumulative
average spectral power are classified as BCG-related ICs. The default
is 40%. This value was empirically determined, as no references in
the literature were found.

4. Variance explained (VEmethod). The amount of variance explained
(VE) by each source to the occurrence of BCG artifacts is used to
determine whether an IC is BCG-related or not (Debener et al.,
2008), as a threshold ranging from 0.025 to 0.275, in 0.05 steps.
The default is 0.1 (Vanderperren et al., 2010).
5. Peak-to-peak of reconstructed sources (BackProj method). It is
assumed that, when individually back-projecting a given BCG-
related IC onto the EEG space, the reconstructed EEG signal will ex-
hibit peaks at times of BCG artifact occurrences. The difference be-
tween the maximal and minimal peak-to-peak (PTP) values of the
QRS-ERP is computed for each channel. The relative contribution of
a source is quantified by computing the ratio between the PTP differ-
ences of both reconstructed and original EEG signals (Vanderperren
et al., 2010). The normalized PTP is used as threshold, ranging from
0.01 to 0.50, in 0.05 steps. The default is 0.25 (Vanderperren et al.,
2010).

The ICs classified as BCG-related based on the different selection
criteria are removed from the back-reconstruction step of the EEG signal
according to Eq. (3), yielding purely ICA-based corrections.

A comparison with other previous, non-ICA-based approaches was
also performed, comprising the two most commonly used methods,
AAS and OBS. For the purpose of assessing the performance of these
methods, aswell as the effect of parameter optimization, artifact correc-
tion is repeated with the number of windows used to compute the
average template in AAS set to 20, 30 or 40 (20 being the default
(Delorme and Makeig, 2004)); the number of PCs in OBS is set to 3, 4
or 5 (4 being the default (Delorme and Makeig, 2004; Niazy et al.,
2005)). Prior to correction, a fixed time delay is applied to the cardiac
triggers as needed in order to have them placed at the center of each
artifact occurrence.

BCG Artifact correction evaluation

Two frequency-based ratios reflecting the performance of the BCG
artifact correctionmethods in terms of artifact removal and background
physiological signal preservation are defined as:

Rart ¼ Suncart −Scorart

Suncart
; Rbkg ¼ Suncbkg−Scorbkg

Suncbkg
ð4Þ

where Sart
unc and Sart

cor denote the average spectral power before and after
BCG artifact correction, respectively, within representative windows of
artifact. Analogously, Sbkgunc and Sbkg

cor denote the average spectral power
before and after BCG artifact correction, respectively, within representa-
tive windows of physiological background. While Rart quantifies the
percentage of BCG artifact that is removed and hence should be maxi-
mized, Rbkg quantifies the relative amount of physiological background
that is removed from EEG data and hence should be minimized. The
procedure used to obtain the representative windows of artifact and
physiological background is described next.

First, the Fast Fourier Transform (FFT) of the EEG signal before and
after applying the different correction methods is obtained. Since the
timing of the BCG artifact is closely related to the occurrence of the R
peaks in the ECG signal, it is expected that BCG-contaminated EEG
datawill yield spectral peaks at cardiac-related frequencies. For the pur-
pose of defining artifact representative windows, an approximation of
the cardiac fundamental frequency, f0, and its first four harmonics fn=
(n+1)× f0, with n=1,2,3 ,4, is first obtained based on the heart rate.
The exact value of fn, however, is determined by convolving a Lorentzian
function of width 0.01 Hz and radius 0.3 Hz with power spectrumwin-
dows of 0.1 Hz centered in fn, and extracting the convolution peaks
(Rothlübbers et al., 2014). In order to guarantee that the quantification
of the BCG artifact reduction is computed only in ECG harmonics for
which a BCG-related peak in the power spectrum is present, the value
of the convolution peaks is used as a rejection criterion. The harmonics
yielding a convolution value lower than 25% of the maximum across all
harmonics and channels are discarded from the subsequent quantifica-
tion, avoiding an underestimation of the BCG artifact contribution. A
threshold of 20% is used for the EEG recordings in Setup #2, taking
into account the higher variability of convolution peaks across channels
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and datasets in this case. The convolution thresholds were empirically
determined. The artifact representative windows are finally defined as
0.13 Hz windows centered in the cardiac harmonics exhibiting a
spectral peak according to the criterion described previously (Fig. 2).

Physiological background is quantified within a 0.39 Hz window
centered in a frequency 0.52 Hz above each BCG artifact window
(Fig. 2). For the purpose of taking into account the dips in the power
spectrum at frequencies around the TR of the fMRI acquisition, associat-
ed with residuals of the application of the gradient artifact correction
algorithm, 0.04 Hz windows centered at the TR-related frequencies
are defined and their contribution excluded from the subsequent com-
putations. Thus, an underestimation of the average spectral power for
both BCG correction and background preservation is avoided.

Parameter optimization procedure

Depending on thefinal goal of a given study, onemight be interested
in removing as much as possible of the BCG artifact without being too
much concerned with the preservation of the physiological background
signal (e.g., ERP studies); in resting-state studies, however, where
no ERPs are present in EEG data, preserving the physiological back-
ground signal is of utmost importance at a cost of leaving residual BCG
artifact contributions. Taking into account these potential trade-offs, a
combined ratio, C, is defined:

C wbkg
� � ¼ wbkg 1−Rbkg

� �þ 1−wbkg
� �

Rart ð5Þ

wherewbkg denotes the physiological background weight reflecting the
importance given to the preservation of the EEG background signal in
relation to the removal of the BCG artifact. By varying wbkg from 0
(the BCG artifact removal is the priority) to 1 (the physiological back-
ground signal preservation is the priority) in steps of 0.1, an exhaustive
search optimization algorithm is employed for each value of wbkg. For
the PROJIC algorithm, Eq. (5) can be written as:

C wbkg; k
� � ¼ wbkg 1−Rbkg kð Þ� �þ 1−wbkg

� �
Rart kð Þ ð6Þ

The optimization algorithm aims at finding the optimal number of
clusters, k⁎, that maximize C for each value of wbkg, according to:

k� wbkg
� � ¼ arg max

k
C wbkg ; k
� � ð7Þ
Fig. 2. Power spectrum of a highly BCG artifact-contaminated EEG channel, for a representative
evaluation of the artifact and background physiological signal removal. The red rectangles sho
signal. The associated spectral peaks (highlighted by the red circles) exhibited a relative conv
contributing to the quantification of Sartunc. The black rectangles denote the corresponding powe
When combining PROJIC and OBS, Eq. (5) can be written as:

C wbkg ; k; p
� � ¼ wbkg 1−Rbkg k;pð Þ� �þ 1−wbkg

� �
Rart k;pð Þ ð8Þ

where p denotes the number of PCs used to build the optimal basis set
that will be used to remove the artifact occurrences from the BCG-
related ICs. The optimization algorithm sequentially searches for the
optimal number of PCs and clusters, (k⁎,p⁎), that maximize C for each
value of wbkg, according to:

k�; p�ð Þ wbkg
� � ¼ arg max

k;p
C wbkg ; k;p
� � ð9Þ

Eqs. (8–9) can be easily adaptable for the PROJIC-AAS algorithm, by
replacing p with w, where w denotes the number of artifact windows
used to build the average artifact template that will be subtracted
from the data.

A subject-specific optimization of the method parameters was first
performed. Interestingly, the optimal parameters were not found to
substantially differ across subjects, exhibiting between-subjects coeffi-
cients of variation of 21.7% and 19.9%, averaged across methods and
background weights, for data collected at 3 T and 7 T, respectively.
Based on this relatively modest variability, a group-level optimization
was then conducted and statistically significantly differences were not
found (p N 0.05) between the performances of each method, when
performing the optimization on a subject- or group-level. Because the
same setup-specific set of optimized parameters is therefore used for
all EEG datasets and subjects, straightforward and general conclusions
and recommendations can be drawn for each setup.

Method comparison

All proposed approaches, PROJIC, PROJIC-OBS and PROJIC-AAS, were
compared to other purely ICA-basedmethods described in Section 2.3.4,
aswell aswith the non-ICA-basedmethods AAS andOBS, in terms of the
ratios C computed for all background weights. Similarly to newly pro-
posed methods, all other correction algorithms tested were submitted
to a group-level optimization of their respective parameters. The opti-
mization procedure is partially motivated by previous studies reporting
that theuse of default parameterswhen applyingAAS orOBS for BCG ar-
tifact removalmight not yield reasonable results in all cases, particularly
on data collected at 7 T (Debener et al., 2008). In order to assess the im-
pact of the parameter optimization on the novel methods, the following
BCG Artefact

Background

subject imaged using Setup #1 at 3 T: illustration of the frequency windows used for the
w power spectrum windows of 0.13 Hz around f0 and the first two harmonics of the ECG
olution value higher than 25% of the maximum across all harmonics and channels, thus
r spectrum windows associated with the background.
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sets of default parameters were defined: PROJIC, k=2; PROJIC-OBS,
(k,p)=(4,4); PROJIC-AAS, (k,w)=(4,20). The most conservative sce-
nariowas considered as default for PROJIC; the default set of parameters
for PROJIC-OBS and PROJIC-AAS was chosen based on a fairly conserva-
tive selection of BCG-related ICs, allowing for the selection of ICs less
contributed by the artifact, and followed by the default parameters of
OBS and AAS, respectively (Delorme and Makeig, 2004; Niazy et al.,
2005).

Themain effects of the optimization procedure, themethod used for
the BCG artifact removal and the background weights, as well as inter-
action effects, were evaluated by means of a 3-way repeated measures
Analysis of Variance (ANOVA) for the combined ratio C. Multiple com-
parisons using 1-way ANOVA between the correction methods were
performed by means of a post-hoc statistical test with the Tukey–
Kramer correction. A level of significance p b 0.05 was considered.

ERP Quality assessment

The impact of the BCG correction on the quality of the ERPs of inter-
est recorded with Setups #1 and #2 (IEDs and VEPs, respectively) is
quantified by means of an inter-trial variability measure (Niazy et al.,
2005). For EEG data collected using Setup #1, the IEDs were visually
inspected by an expert neurophysiologist and subjected to a standard
alignment step, by shifting them to match the occurrence of a negative
peak, whichwas observed in all IED types recorded. The aligned annota-
tions are then used as time-locking events to epoch the EEG data. The
duration of the epochs is defined for each patient separately, taking
into account the inherent variability across IEDs due to the patients' het-
erogeneous epilepsy profiles. Regarding Setup #2, the VEP onsets were
provided by a photodiode sensor placed in front of the LCD projector
(Jorge et al., 2015a). The duration of each epoch is defined as the
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Fig. 3. Illustration of the PROJIC, PROJIC-OBS and PROJIC-AAS algorithms for data collected using Set
and the corresponding ECG signal (bottom), for a representative subject with an average heart
OBS and AAS, yielding the BCG artifact corrected EEG channel POz, highlighted by the red and
illustrated. PROJIC, PROJIC-OBS and PROJIC-AAS algorithms were optimized for wbkg=0.5, yield
average difference between successive VEP onsets. In both setups, EEG
data are re-referenced to the average channel and band-pass filtered:
1–45 Hz for Setup #1 and 3–40 Hz for Setup #2 (Jorge et al., 2015a).

The relative reduction in the standard error (RSE) across trials, before
(SEunc) and after (SEcor) applying the different BCG artifact correction
methods tested, is computed as:

RSE ¼ SEunc−SEcor
SEunc

ð10Þ

RSE should always be positive, as it is expected a lower inter-trial var-
iability after correcting EEG data for the BCG artifact under the assump-
tion that the artifact occurrences are uncorrelated with the ERPs of
interest (Niazy et al., 2005; Vanderperren et al., 2010). This performance
metric is calculated for each EEG channel, subject, correction method
and background weight. The specific set of optimized parameters for
each background weight and method is used (obtained according to
the procedure described in 2.4). RSE is finally averaged across channels
and subjects.

Results

The results obtained using the different algorithms tested on the
data collected using Setups #1 and #2 are presented and discussed
jointly in this section. The IC selection criterion underlying PROJIC was
found to successfully select BCG-related ICs in both setups, as evidenced
by the clear presence of artifact occurrences in the corresponding time-
courses upon direct visual inspection. Moreover, the subsequent appli-
cation of the three proposed approaches was also found to substantially
reduce the BCG artifact from the EEG data. Illustrative examples of ECG,
EEG and IC time courses (Figs. 3 and 4), the EEG power spectrum (Figs. 5
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up #1 at 3 T: segments of 10 s from the BCG-related IC #1 (top), EEG channel POz (middle)
rate of approximately 75 BPM. The BCG artifact occurrences were greatly attenuated with
green traces, respectively. In black, the output of the purely ICA-based PROJIC algorithm is
ing the optimal parameters k⁎=3, (k⁎,p⁎)=(10,3) and (k⁎,p⁎)=(10,10), respectively.
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and 6) and the evaluation ratios spatial distribution for wbkg=0.2,0.5
(Figs. 7 and 8) are provided for Setups #1 and #2, respectively. The
group average values of the ratio C (Eq. (5)) as a function of background
weight, for all methods tested, are shown in Figs. 9 and 10. Illustrative
ERPs and the average inter-trial variability across subjects as a function
of background weight, before and after correction with the different
methods tested, are shown in Figs. 11 and 12.

In Figs. 3 and 4, the BCG-related IC time-course yielding the highest-
powered projection, the highly BCG artifact-contaminated EEG signal
from the POz and Oz channels and the corresponding ECG signal are
shown for representative subjects. The BCG artifact occurrences in the
ICs #1 (Fig. 3) and #2 (Fig. 4) time-courses were greatly suppressed
when using PROJIC-OBS and PROJIC-AAS. A clear attenuation of the
BCG artifact is observed for all methods. For Setup #1, artifact residuals
are present if either PROJIC-OBS or PROJIC-AAS methods are applied;
however, physiological fluctuations in between BCG artifact occur-
rences are less attenuated as well (Fig. 3). In contrast, for Setup #2,
PROJIC and PROJIC-OBS seemed to better preserve physiological fluctu-
ationswithout clearly compromising the reduction of the BCG artifact in
this case (Fig. 4).

In Figs. 5 and 6, the power spectra of the EEG signal from POz and Oz
channels are shown before and after applying all the correction
methods tested, for Setups #1 and #2, respectively. While only the
harmonics f0 and f1 of the ECG signal were deemed to present a clear
spectral peak in the POz channel (Setup #1), the quantification of the
BCG artifact removal and physiological signal preservation was based
on all harmonics except for f4 in the Oz channel (Setup #2). When
comparing the three novel methods, the attenuation in power near
cardiac-related frequencies was found to be comparable, with a stron-
ger reduction from PROJIC-AAS observed for both setups. The OBS and
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Fig. 4. Illustration of the PROJIC, PROJIC-OBS and PROJIC-AAS algorithms for data collected using Se
and the corresponding ECG signal (bottom), for a representative subject. The high-amplitude
artifact corrected EEG channel Oz, highlighted by the red and green traces, respectively. In blac
PROJIC-AAS algorithms were optimized for wbkg=0.5, yielding the optimal parameters k⁎=3,
PROJIC algorithms yielded the strongest reduction of the power spec-
trum amplitude in general for, respectively, Setups #1 and #2, particu-
larly within physiological background related frequencies, as
highlighted by the zoomed background windows. In contrast, the
associated, remaining methods seemed to preserve most of the
background spectral power.

In Figs. 7 and 8, topographies of both artifact (Rart) and background
(1−Rbkg) ratios obtained using all novel and non-ICA-based methods
are shown, highlighting the relative reduction in average spectral
power of artifact and background signals, averaged across patients, for
each channel separately. Although 59-channel EEG acquisitions were
performed using Setup #2, only the 31 channels that were also present
in the lower-density EEG recordings of Setup #1 are shown, for compar-
ison and visualization purposes. A low inter-subject variability was
found for all correction methods and background weights showed
here, as evidenced by the blue to dark-blue standard error (SE) topogra-
phies for both ratios. As shown in both figures, although more clearly
observed for Setup #2 (Fig. 8), the ratios topographies follow a crown-
like lateral-posterior pattern, in which electrodes located on the right–
left temporal, posterior and frontal-central regions are the most
contaminated with the BCG artifact (Debener et al., 2008; Iannotti
et al., 2014), thus exhibiting higher values of Rart. As expected, increas-
ing wbkg yielded lower artifact removal efficiency but also increased
the background signal preservation.

The average performance results are shown in Figs. 9 and 10 for
Setups #1 and #2, respectively. The combined ratio C is shown for all
methods, before and after the optimization procedure, comparing the
three proposed methods with all the ICA-based methods and with
AAS and OBS. Significant main effects were found for all factors.
Significant interactions were also found between all factors. For Setup
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BCG artifact occurrences were accurately attenuated with OBS and AAS, yielding the BCG
k, the output of purely ICA-based PROJIC algorithm is illustrated. PROJIC, PROJIC-OBS and
(k⁎,p⁎)=(10,3) and (k⁎,w⁎)=(10,10), respectively.
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Fig. 5. Power spectra of the EEG signal from POz channel, before and after applying the different methods for BCG artifact correction, optimized for wbkg=0.5, for a representative subject imaged
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#1, the PROJIC algorithm only outperformed the other ICA-based
methods for wbkg=0.6 ,0.7, when considering the optimized param-
eters. When optimized, VE exhibited the best performance for
wbkg≤0.2, BackProj for wbkg=0.3 , 0.4, PSD for wbkg=0.5 and
AutoCorr for wbkg≥0.8. Regarding the comparison with the non-
ICA-based approaches, after optimization, the PROJIC-OBS algorithm
outperformed all methods for wbkg≤0.2. The optimized AAS method
achieved the best performance for 0.7≤wbkg≤0.9, being outperformed
by PROJIC-AAS for the remaining background weights. Post-hoc
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Fig. 6. Power spectra of the EEG signal from Oz channel, before and after applying the different me
using Setup #2 at 7 T. (A) PROJIC-OBS and PROJIC-AAS exhibited comparable attenuations in p
around fn. PROJIC provided the strongest background attenuation, evidenced by the black t
PROJIC-AAS. (B) AAS yielded the strongest attenuation in power, particularly at cardiac-relate
removal of each method, with AAS and OBS exhibiting substantial background signal preserva
statistical testing revealed that PROJIC-OBS and PROJIC-AAS were not
statistically significantly different from the conventional methods
(AAS and OBS).

For Setup#2, the PROJIC algorithmonly outperformed theother ICA-
basedmethods forwbkg=0.5,0.6, independently from the optimization
procedure. When using the optimized parameters, PSD exhibited the
best performance for wbkg≤0.4, AutoCorr for wbkg=0.7, VE for wbkg=
0.8 ,0.9 and CorrBCG for wbkg=1. Regarding the comparison with
the non-ICA-based approaches, with the optimization procedure, the
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thods for BCG artifact correction, optimized for wbkg=0.5, for a representative subject imaged
ower, with PROJIC-AAS algorithm further reducing the spectral power within windows
race in the zoomed, gray background window. This is not observed for PROJIC-OBS or
d frequencies. The zoomed, gray background windows highlight the physiological signal
tion, as the associated power spectra are quite similar to that of raw EEG.
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Fig. 7. Topographies of artifact (Rart) and background (Rbkg) ratios for wbkg=0.2,0.5, after BCG artifact correction by the novel and non-ICA-basedmethods, averaged across subjects imaged using
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associated background weight is highlighted in bold.
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PROJIC-OBS algorithm outperformed all methods for wbkg≤0.1, being
surpassed, however, by the OBS algorithm for wbkg=0.2. For wbkg≥0.3,
the PROJIC-AAS algorithm exhibited the highest values of C, following
the same pattern as in the non-optimized methods. The performance
of PROJIC-OBS was not significantly different from those of PROJIC-
AAS, OBS and AAS. Moreover, PROJIC-AAS was not statistically signifi-
cantly different from AAS.

Multiple comparisons between all correction methods are depicted
in Tables 1 and 2, for data collected using Setups #1 and #2, respective-
ly. PROJIC-OBS, PROJIC-AAS and AAS outperformed all methods for
background weights of 0.2 (light gray), 0.5 (gray) and 0.8 (dark gray),
respectively, in terms of combined ratio C. On the other hand, OBS
outperformed all methods for wbkg=0.2 (light gray), while PROJIC-
AAS exhibited the best performance for wbkg=0.5,0.8 (gray and dark
gray, respectively), in terms of the combined ratio C.

The data quality improvements on IEDs and VEPs recorded in sub-
jects that were imaged at 3 T and 7 T are illustrated in Figs. 11 and 12,
respectively, in terms of inter-trial variability. The top panel (Figs. 11A
and 12A) shows a representative average IED/VEP from P7/POz channel
(in red), across epochs, and the associated standard deviation/error,
evidenced by the gray area. The standard deviation, instead of the
standard error, is illustrated for data collected at 3 T for visualization
purposes, in order to make more obvious the effects of the artifact
correction methods on IED quality. These channels were selected as
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they provided the average ERPs of the highest amplitude. Consistently
across setups, all methods returned comparable results, with PROJIC-
OBS and OBS exhibiting a clearer improvement on ERP quality. Particu-
larly, allmethodswere able to recover the expected features of themore
subtle VEP response (when compared to IEDs): the larger P100 compo-
nent, and the more subtle N75 and N140 components. The PROJIC algo-
rithm, however, introduced unexpected higher-frequency oscillations
after the P100 component, without apparent physiological meaning.
In Figs. 11B and 12B, the average SE ratio, RSE, is shown for eachmethod
and background weight. The asterisk denotes the optimal method for a
given background, considering the combined ratio C. Only PROJIC-OBS,
when applied to data collected at 3 T, exhibited the best performance
in terms of C and RSE simultaneously, for wbkg≤0.2.

Discussion

In this paper, a novelmethod for the selection of BCG-related ICswas
proposed, following which three ICA-based approaches for BCG artifact
removal were explored on EEG data recorded simultaneously with
fMRI. These novel methods were compared with other ICA-based
approaches in the literature, as well as with the commonly used AAS
and OBS methods. We found that group-level optimization of the
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algorithms' parameters significantly improved performance of all
methods, and that, when optimized, PROJIC-OBS, PROJIC-AAS and AAS
in general outperform all other methods, with PROJIC-AAS exhibiting
the best results across the widest range of physiological noise preserva-
tion levels. Data quality improvements on ERPs of interest (IEDs and
VEPs collected at, respectively, 3 T and 7 T) were also consistently ob-
served with BCG artifact correction, in terms of the relative reduction
in the standard error across trials.

Method comparison

We found that the performance of the various methods tested is
strongly dependent on the relevance given to the preservation of the
physiological signal in the background, relative to the removal of the
BCG artifact. In (Grouiller et al., 2007), it was found that AAS was the
method of choice whenever high quality ECG data was available, since
a poor QRS detection strongly influenced its performance. This is in
agreement with our findings, where the AAS algorithm outperformed
every other method for some intermediate background weights.
Interestingly, the method exhibiting the best performance across most
of the background weights was the PROJIC-AAS, which corrects the ICs
classified as BCG-related resorting to the AAS algorithm. We further
concluded that, for the lowest background weights, the PROJIC-OBS
algorithm should be used with the optimal parameters (k⁎,p⁎)=
(10,10), while PROJIC-AAS might be the most suitable method for
intermediate and higher background weights.
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The rationale for correcting the IC time-courses for artifact occur-
rences has beenpreviously proposed by (Liu et al., 2012). This approach,
however, seems mainly focused on removing as much of the artifact as
possible, since the BCG-related ICs are removed from the back-
reconstruction step of the EEG signal, prior to artifact-correcting all
the other ICs. Our approach is rather targeted at keeping intact as
much of the physiological background as possible without compromis-
ing artifact removal efficiency, by correcting only the BCG-related ICs,
and still keeping those for the reconstruction. Although OBS or AAS
algorithms are being applied to a presumably time-independent source
resulting from the ICA decomposition of EEG data, the BCG artifact
variability is still present, as evidenced by the eigenvalues of each PC
when applying PCA to the QRS-epoched time-courses of the selected
BCG-related ICs. In fact, we found that, on average, at least 30 PCs
were required to explainmore than 90% of the artifact variance, making
the use of OBS (and consequently AAS) appropriate in the IC space, so as
to preserve most of the physiological EEG variance contributing to the
BCG-related ICs, while removing as much of the artifact variance as
possible.

Several methods aiming at the selection of artefactual ICs from the
decomposition of EEG data have already been proposed (Chaumon
et al., 2015). Many of those, however, require prior knowledge
regarding spatio-temporal characteristics underlying the EEG artifact
that is to be removed, which is often translated into finding a single
suitable template in both temporal and spatial domains (Abreu et al.,
2015; Campos Viola et al., 2009; Wessel and Ullsperger, 2011). The
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non-stationary nature of the BCG artifact hinders the use of such
methods, as no spatial template can be computed, thus narrowing the
selection criteria to be temporal- or frequency-based exclusively.

Artifact removal vs. physiological signal preservation

Although BCG artifact correction is of the utmost importance in
every simultaneous EEG-fMRI study (Mulert and Lemieux, 2009), the
amount of artifact cleaning required in each case will strongly depend
on the subsequent analyses that onewishes to perform on the corrected
EEG data. In the time domain, the presence of the BCG artifact can tam-
per with the (manual or automatic) detection of events of interest, par-
ticularly IEDs, as their not-so-different morphology might mislead one
into wrongly identifying them, possibly increasing the number of false
positives (Kobayashi et al., 2001; Nayak et al., 2004; Siniatchkin et al.,
2007). Additionally, it has been found that IED morphological features
such as their amplitude, width or rising slope, may be correlated with
the BOLD signal (Bénar et al., 2002; LeVan et al., 2010); the accurate ex-
traction of such features would demand high performance of artifact
correction algorithms, both in terms of artifact removal as well as
physiological signal preservation. In the frequency domain, spectral
peaks related with the cardiac rate will always be present, which lie
within frequency bands of interest for several EEG-fMRI studies, thus
hampering the use of spectral EEGmetrics as predictors of the BOLD sig-
nal (e.g., De Munck et al., 2009; Leite et al., 2013; Rosa et al., 2010). The
study of trial-by-trial variations in ERPs is also in general highly depen-
dent on an accurate artifact removal (e.g., Jorge et al., 2015a). In contrast
to these situations, for amore conventional analysis of EEG-fMRI data of
epileptic activity where IEDs are simply treated as all-or-none events, a
moderate-quality artifact cleaning will probably be sufficient. In
general, if one has no particular clues regarding the amount of artifact
removal required, then the background weight and associated opti-
mizedmethod can be chosen as the ones yielding the highest combined
ratio C.

Parameter optimization

An optimization on the subject level was first performed, motivated
by the well-known high variability of the BCG artifact across time,
channels and subjects. However, a relatively modest variability in the
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optimal parameter values of each algorithm was found across subjects,
which was reflected in the statistically non-significant differences
found between the performance obtained with subject- relative to
group-level optimization. The latter allowed for the choice of the opti-
mal method and associated set of parameters, for a given background
weight, to be applied to all artifact-contaminated EEG datasets for
each setup. Nevertheless, substantial variability was found regarding
the optimal parameters across background weights, together with sta-
tistically significant effects of the optimization procedure on the perfor-
mance of most methods. These results encourage the employment of
the optimization step, despite the additional computational time it re-
quires. This is in agreement with previous reports indicating that the
use of default parameter settings for themore conventional artifact cor-
rection methods might not yield reasonable results, particularly at high
magnetic field strengths (Debener et al., 2008). The optimization could
also be performed on a channel-by-channel basis since typically high
variability across channels and subjects was observed in terms of the
BCG artifact occurrences, as well as in the spectral content of each
channel. This high variability, however, was taken into account by
searching for the cardiac harmonics where a peak was observed, and
then fine-tuning the spectral peak, more accurately quantifying
the power within the artifact-related frequency windows and better
informing the subsequent optimization procedure.

The use of different ICA algorithmswith different parameters (for in-
stance, the number of ICs to be estimated)would yield different EEGde-
compositions, which might interfere with the ultimate conclusions
regarding the combination of optimal parameter settings and algorithm
to correct EEG data for the BCG artifact, for a given background weight.
As discussed in (Vanderperren et al., 2010), OBS and ICA only yielded
comparable results whenever fine-tuning of the ICA parameters was
performed, although no significant differences across different ICA algo-
rithm implementations were found. These findings further support the
hypothesis that the tuning of the parameter settings of the correction
algorithms is of utmost importance (Debener et al., 2008).

Recently, real-time EEG-fMRI studies where human brain activity is
non-invasively modulated resorting to neurofeedback mechanisms



Table 1
Results of the post-hoc statistical testing for the performance of each correction method, on data collected using Setup #1 at 3 T. The red squares denote two correction methods that were not
significantly different, in opposition with the blue squares (for instance, the PROJIC-OBS and PROJIC-AAS methods did not yield statistically significantly differences in terms of the com-
bined ratio C). A color-coded illustration of the combined ratio C of each correction method is shown in the diagonal forwbkg=0.2,0.5,0.8, also highlighting the methods exhibiting the
best performance for a given background weight.
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have been reported (Zich et al., 2015; Zotev et al., 2014). For our pro-
posed methods to be appropriate for this purpose, a similar strategy to
that described in (Becker et al., 2011) would need to be applied. First,
a set of optimized parameters would be obtained either from another
subject group studied with comparable acquisition setups, or from the
same subjects in a previous acquisition. Second, a calibration run
would be performed for each subject, in which ICA would be applied
to the EEG data to obtain the un-mixing matrix, followed by the
selection of BCG-related ICs using PROJIC, for instance. Thus, the time-
consuming and computationally heavy procedures of both ICA decom-
position and parameter optimization would be overcome. During the
real-time EEG-fMRI acquisitions, Eq. (1) could be applied to the already
acquired EEG, and the previously selected BCG-related ICs corrected for
the artifact resorting to AAS or OBS, by exclusively using past artifact oc-
currences to build the artifact template that will be then subtracted
from the data. However, if substantial differences on head movement
are found between the calibration run and the real-time EEG-fMRI
acquisitions, the use of the un-mixing matrix from the former as a
spatial filter for the latter might not be applicable.

Evaluation pipeline

The novel evaluation pipeline we propose is designed for simulta-
neous EEG-fMRI data, and it relies on quantifying the physiological sig-
nal degradation within frequency windows neighboring those of the
BCG artifact. A similar approach was proposed by (Freyer et al., 2009)
for the quantification of the performance of gradient artifact correction
methods. However, in this case, MR-silent periods were obtained by
means of an optimized EPI sequence (Anami et al., 2003) in which a
long TR (4070 ms) was used, allowing for the acquisition of artifact-
free EEG data in between the gradient artifact peaks at a cost of longer
acquisition times. This method allows for a more accurate weighting
between artifact and physiological signal removal than in our case,
since EEG features such as the average spectral power, for instance,
are computed within the same frequency windows for both conditions
(scan and non-scan periods). Three ratios are defined to account for gra-
dient artifact reduction, physiological signal removal and a combination
of both, by comparing EEG features extracted from scan and non-scan
periods, before and after each gradient artifact correction.

Although motivated by the more challenging task of assessing the
performance of BCG artifact correction methods in resting-state data,
our proposed evaluation pipeline could also be employed whenever
events of interest are recorded on EEG. In particular, while some of the
Setup #1 EEG captured IEDs, Setup #2 EEG registered VEPs. The optimal
method for a given background weight, obtained based on our evalua-
tion pipeline, was not always in agreement with the one yielding the
greatest inter-trial variability reduction. Interestingly, the PROJIC-OBS
and OBS methods yielded the highest standard error ratios for several
background weights, particularly at 3 T. This is somewhat expected,
since OBS is quite efficient at removing the BCG artifact by compromis-
ing the background physiological preservation. Thus, the inherent, and
possibly of physiological relevance, variability of the ERPs might be
unwantedly removed, which also raises the question of whether the
standard error ratio is themost suitable performance metric. Neverthe-
less, it has been used previously for this purpose, which justifies its use
in this study for comparison with previous reports (Niazy et al., 2005;



Table 2
Results of the post-hoc statistical testing for the performance of each correction method, on data collected using Setup #2 at 7 T. The red squares denote two correction methods that were not
significantly different, in oppositionwith the blue squares (for instance, the PROJIC-OBS and AASmethods did not yield statistically significant differences in terms of combined ratio C). A
color-coded illustration of the combined ratio C of each correction method is shown in the diagonal forwbkg=0.2,0.5,0.8, also highlighting the methods exhibiting the best performance
for a given background weight.
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Vanderperren et al., 2010). Other performance metrics could also
be used, such as: peak-to-peak values (Debener et al., 2008), ERP differ-
ences (Mantini et al., 2007), the SNR (Debener et al., 2007), trial-to-trial
characteristics (Novitskiy et al., 2011) or the root mean square (RMS)
(Freyer et al., 2009).

An evaluation pipeline taking into account both artifact and background
ratios and one of the performance metrics described above could be desir-
able, better informing the subsequent optimization procedure of the BCG
artifact correction algorithms, and also allowing for a more comprehensive
assessment of the trade-offs between the artifact and physiological signal
removal. However, similar SE ratios were found for the data used here,
across methods and background weights, particularly at 7 T, possibly
reflecting that this performancemetric is not as discriminative of themeth-
od performances as the combined ratio C, and thus little would be gain by
introducing it as a driving element of the optimization procedure.

As a rejection criterion from the artifact removal quantification for
cardiac harmonics not exhibiting spectral peaks, thresholds based on
the value of the convolution peaks between a Lorentzian function and
cardiac-related power spectrum windows were used. Since these con-
volution thresholds were empirically determined, they are intrinsically
data-dependent. Due to the relatively large number of EEG datasets
tested in our study, particularly at 3 T, one can use the same convolution
thresholds as a starting point in other studies; these thresholds, howev-
er, might need to be fine-tuned, in order to guarantee that the quantifi-
cation of both artifact and background removal is as accurate as
possible. Nevertheless, if comparable acquisition setups to those utilized
in this study are used, the proposed thresholds could then be readily
applied.
Comparison between 3 T and 7 T setups

As expected from theory and previous results (Debener et al., 2008;
Neuner et al., 2013), the BCG artifacts showed larger amplitudes in the
7 T setup when compared to those from 3 T. Small deviations from the
theoretical linear relation between the BCG artifact amplitude and
field strength observed are unsurprising given the considerable differ-
ences in the populations of each study. An important remark on this is
that, although the amplitude of the BCG was much higher at 7 T, its rel-
ative variability seemed to be smaller to that at 3 T. This translates into
larger artifact correction ratios for the 7 Twhen keeping the background
weight constant. This line of results suggests that an important part of
the variability of the BCG artifact is not intrinsic to the variability of
the phenomena; if so, it should increase in the same proportion as the
amplitude. Rather, that variability is possibly associated to other sources
such as the ongoing EEG, for example.

Nonetheless, our results do now allow definite conclusions re-
garding the 3 T vs. 7 T comparison. In fact, our study is not particular-
ly aimed nor designed to quantify the differences of the BCG artifact
at different field strengths, as the population characteristics were not
controlled for; further experiments would have to be performed to
confirm these findings. Our goal is instead to illustrate the ability of
the methods showcased here to handle very different acquisition
scenarios, and crucially, to illustrate the importance of the optimiza-
tion of the parameters in nearly all of the correction methods. It also
aims to assess the consistency of the results and how generalizable
the findings and recommendations are across different acquisition
setups.
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Conclusion

We have proposed a novel method for the selection of BCG-related
ICs, with three associated approaches for the correction of the BCG arti-
fact in simultaneous EEG-fMRI, and have shown that they outperform
both ICA-based and non-ICA-based state-of-the-art methods for most
physiological background preservation weights. The PROJIC-OBS meth-
od returns the strongest attenuation of the BCG artifact, while the
PROJIC-AAS method manages to preserve most of the physiological
signal in the backgroundwith a small compromise of the artifact correc-
tion. For intermediate trade-offs, the AAS algorithm exhibits compara-
ble results to PROJIC-AAS, the latter performing better in a wider
range of background weights. Regardless of the desired level of physio-
logical signal preservation, optimization of the algorithm's parameters
is of the utmost importance. Clear data quality improvements on ERPs
of interest were also observed, particularly at 7 T, where the subtle
VEP features could be recovered after artifact correction. Overall, the
consistency of the results across simultaneous EEG-fMRI data acquired
with two different setups, a standard one at 3 T and a custom one at
7 T, indicates that these findings and recommendationsmay be general-
izable across a wide range of EEG-fMRI acquisition setups.
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