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The enhanced functional sensitivity offered by ultra-high field imaging may significantly benefit simultaneous
EEG-fMRI studies, but the concurrent increases in artifact contamination can strongly compromise EEG data
quality. In the present study, we focus on EEG artifacts created by head motion in the static B0 field. A novel
approach for motion artifact detection is proposed, based on a simple modification of a commercial EEG cap, in
which four electrodes are non-permanently adapted to record only magnetic induction effects. Simultaneous
EEG-fMRI data were acquired with this setup, at 7 T, from healthy volunteers undergoing a reversing-
checkerboard visual stimulation paradigm. Data analysis assisted by the motion sensors revealed that, after
gradient artifact correction, EEG signal variance was largely dominated by pulse artifacts (81–93%), but contribu-
tions from spontaneous motion (4–13%) were still comparable to or even larger than those of actual neuronal
activity (3–9%). Multiple approaches were tested to determine the most effective procedure for denoising EEG
data incorporatingmotion sensor information. Optimal results were obtained by applying an initial pulse artifact
correction step (AAS-based), followed by motion artifact correction (based on the motion sensors) and ICA
denoising. On average, motion artifact correction (after AAS) yielded a 61% reduction in signal power and a
62% increase in VEP trial-by-trial consistency. Combined with ICA, these improvements rose to a 74% power
reduction and an 86% increase in trial consistency. Overall, the improvements achieved were well appreciable
at single-subject and single-trial levels, and set an encouraging quality mark for simultaneous EEG-fMRI at
ultra-high field.

© 2015 Elsevier Inc. All rights reserved.
Introduction

The simultaneous acquisition of scalp electroencephalography
(EEG) and functional magnetic resonance imaging (fMRI) can yield
valuable insights into the dynamics of brain function (Babiloni et al.,
2004; Gotman and Pittau, 2011; Jorge et al., 2014). A fundamental line
of development for fMRI has been the pursuit of higher magnetic field
strengths, which leads to super-linear gains in functional sensitivity
(van der Zwaag et al., 2009), that can be traded for increased spatial
resolution (Da Costa et al., 2011; Yacoub et al., 2008). Unfortunately,
however, simultaneous EEG-fMRI acquisitions at ultra-high field suffer
from various undesirable interactions that can degrade data quality
and potentially compromise subject safety (Dempsey et al., 2001;
nd Metabolic Imaging, LIFMET-
ausanne, CH-1015 Lausanne,
Neuner et al., 2014). Safety concerns have been effectively moderated
(Lemieux et al., 1997; Noth et al., 2012), and although EEG components
can reduce the signal-to-noise ratio (SNR) of MR images, numerous
studies have found that losses in temporal SNR remain acceptable for
fMRI, even at ultra-high field strengths with fairly high electrode densi-
ties (Jorge et al., 2015; Luo and Glover, 2012; Mullinger et al., 2008b). In
contrast, the artifacts induced in EEG recordings by the magnetic fields
used in fMRI can surpass the signals of interest by several orders of
magnitude, and severely compromise data quality (Allen et al., 2000;
Debener et al., 2008). This is currently the most limiting obstacle for
high-quality EEG-fMRI acquisitions, particularly at higher field strengths
such as 7 T.

EEG artifacts are mainly created by electromagnetic induction in the
loops formedby the EEG leads,which occurwhenever the existingmag-
netic field changes in time, or when loop geometry is changed relative
to the field (Yan et al., 2009). The strongest contributions are generally
due to the fast-switching gradient fields applied for image encoding
(Allen et al., 2000). Cardiac activity can also cause large artifacts through
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variousmechanisms, including bulk headmotion prompted by the arrival
of the ejected blood, scalp expansion due to arterial pulsation, andHall ef-
fects occurring in themoving blood— altogether known as pulse artifacts
(Mullinger et al., 2013; Yan et al., 2010). Given their importance, a consid-
erable amount of work has been dedicated to the study of gradient and
pulse artifacts, and the development of strategies for their minimization
(Mullinger and Bowtell, 2011). The inherent reproducibility of gradient
artifacts renders them suitable for correction based on average artifact
subtraction (AAS) (Allen et al., 2000), guided by image acquisition trig-
gers obtained from the scanner, andpossibly complementedwith optimal
basis set (OBS) methods (Niazy et al., 2005). The cyclic nature of cardiac
activity has also motivated a widespread use of AAS and OBS-based ap-
proaches for pulse artifact correction (Allen et al., 1998; Niazy et al.,
2005), in this case guided by triggers from a separate cardiac trace such
as the electrocardiogram (ECG).

Given their dependence on Faraday's law of induction (Yan et al.,
2009), many EEG artifact contributions scale with the amplitude of the
static magnetic field B0, and previously less relevant sources can attain
important roles in data degradation at 7 T. These include mechanical
vibrations propagated from the scanner environment, particularly due
to the Helium (He) compression systems (Mullinger et al., 2008a) and
patient ventilation (Nierhaus et al., 2013). Spontaneous head motion
in B0 can likewise become highly problematic, with visible artifact
contributions even for experienced, steady subjects, and very limiting
data degradation for less compliant subjects. Compared to gradient
and pulse artifacts, considerably less work has been devoted to these
contributions. Vibration-induced noise can be avoided by switching off
the associated sources during acquisition, when possible (Mullinger
et al., 2008a; Nierhaus et al., 2013), and certain EEG hardwaremodifica-
tions have been proposed to minimize its incidence (Jorge et al., 2015).
The periodic structure of He coldhead contributions, in particular, has
motivated a few novel data-based correction approaches as well (Kim
et al., 2015; Rothlubbers et al., 2013). Spontaneous head motion, how-
ever, is highly unpredictable, andwhile periods of importantmovement
can often be identified by visual inspection and excluded, more subtle
and widespread contributions can prove very hard to discern from
true EEG patterns, even on simplified data decompositions such as
those given by independent component analysis (ICA) (Arrubla et al.,
2013; Debener et al., 2007). To address this challenge, a few groups
have instead explored the use of dedicated motion sensors, recorded
along with EEG-fMRI, which can be used to estimate and remove mo-
tion artifacts from the EEG data (Hill et al., 1995). At 1.5 T, Bonmassar
et al. (2002) used a piezoelectric transducer to record motion informa-
tion, and applied an adaptive denoising technique based on Kalman fil-
tering to reduce both spontaneous motion and the motion-related
component of the pulse artifact. In a later study at 3 T, Masterton et al.
(2007) proposed the use of multiple sensors based on carbon wire
loops, distributed over the EEG cap and sensitive to magnetic induction
effects. These sensors were shown to provide richer information for
motion and pulse artifact estimation, with clear benefits for the identifi-
cation of epileptiform activity (Abbott et al., 2014). More recently, so-
called reference layer methods have been explored, where EEG-like
electrodes are distributed on a conductive layer on top of the EEG cap,
but isolated from the scalp, recording only induction effects. These
approaches aimed at both motion and pulse artifacts (Luo et al., 2014)
and even gradient artifacts (Chowdhury et al., 2014), at the cost of
requiring larger numbers of sensors.

While the use of dedicated sensors for artifact monitoring and re-
duction has shown clear benefits for EEG data quality (Chowdhury
et al., 2014; Flanagan et al., 2009; Luo et al., 2014), these approaches
have so far not achieved widespread use. This is possibly due to the
need for additional recording equipment for the sensors (including
amplification, synchronization with EEG acquisition, etc.), as well as
other customized elements (electrodes, gel layers), altogether increas-
ing the cost and complexity of acquisition setups. This is a highly disad-
vantageous situation given the unique potential of these approaches for
motion artifact reduction, with crucial importance at higher field
strengths. In the present study, we propose a novel approach formotion
artifact recording and EEG data denoising, and assess the benefits of this
methodology for simultaneous EEG-fMRI in humans at 7 T. Artifact de-
tection was performed with a simple and non-permanent modification
of a commercial EEG cap, where four electrodes were isolated from the
scalp and connected to the reference electrode via added resistors,mea-
suring only magnetic induction effects. Several analysis approaches
were investigated for optimal use of the sensor recordings in EEG signal
correction, including: (I) a study of the combination of motion and
pulse artifact correction techniques, (II) the development of different
techniques for offline motion artifact correction, along with an assess-
ment of artifact contributions at 7 T, and (III) the integration of motion
artifact correction with ICA-based denoising. Overall, data quality im-
provements were evaluated in terms of EEG power reduction and in-
creases in sensitivity to visual evoked potentials (VEP), particularly at
a single-trial level.

Theory

Here, the mechanisms underlying EEG artifact generation due to
head motion are described, to provide a theoretical basis for the devel-
opment of effective correction strategies.

Motion artifact generation

EEG artifacts due to head motion in the magnetic field B
!

0 can be
described by Faraday's law of induction (Yan et al., 2010), which states
that changes in the magnetic flux passing through the loop formed by
an EEG channel Ci with the reference channel, Cref, will induce an
electromotive force ξi in the corresponding loop given by:

ξi tð Þ ¼ −
dΦΣ

dt
tð Þ ¼ −

d
dt

Z
Σ
B
!

0 r!; t
� �

� N! r!; t
� �

dΣ ð1Þ

where ΦΣ is the magnetic flux through the surface Σ enclosed by the

loop (Fig. 1a), and N
!

is the unitary normal vector to the surface, at
each position r! and instant t. This is an approximated description
where the current path between Ci and CRef is treated as a linear path
along the scalp surface (a more rigorous approximation would involve
modeling the volume conduction properties of the head (Yan et al.,
2009)). Additionally, flux contributions from wire segments leaving
the cap surface are assumed to be minimal, as can be achieved by ade-

quate cable optimization (Jorge et al., 2015). If B
!

0 is spatially homoge-
nous, stationary and parallel to the z-axis, and assuming rigid-body
motion, Eq. (1) can be simplified to:

ξi tð Þ ¼ −B0

Z
Σ

d
dt

Nz r!; t
� �

dΣ ð2Þ

where Nz is the z-component of the surface normal vector. It follows
from Eq. (2) that only rotations along the x- and y-axis can produce
induction effects, as Nzð r!; tÞ does not change with translations or
with rotations along the z-axis. Under the rigid-body assumption, the
evolution of Nzð r!; tÞ with x- and y-axis head rotations (globally
described by angles ϕ and θ, respectively) can be written as:

Nz r!; t
� �

¼ sin θN0
x r!
� �

− sinϕ cosθN0
y r!
� �

þ cosϕ cos θN0
z r!
� �

ð3Þ

where Nx
0, Ny

0, and Nz
0 are the original components of the normal vector.

Inserting this decomposition in Eq. (2) and applying the temporal deriv-
ative, we obtain an expression of the form:

ξi tð Þ ¼ Fi ϕ tð Þ; θ tð Þð Þ dϕ
dt

tð Þ þ Gi ϕ tð Þ; θ tð Þð Þdθ
dt

tð Þ ð4Þ



Fig. 1. Schematics of EEG motion artifact generation and detection. a) Representation of
a loop formed by a given EEG channel Ci with the reference CRef, covering an area Σ on

the scalp surface; the static magnetic field B
!

0 is depicted along the z-direction.
b) Representation of the non-permanent cap modifications employed for motion artifact
detection: each of the selected channels (T7, T8, F5 and F6) was isolated from the scalp
and given a direct connection to the reference via a 5 kΩ resistor. c) The modified cap
after preparation on a human subject.
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where Fi and Gi are surface integrals of linear combinations of sine and
cosine functions of ϕ and θ, weighted by Nx

0, Ny
0, and Nz

0 at each position
r!. The potential difference created between Ci and CRef will then be pro-
portional to ξi, and is measured in addition to the true, physiological
EEG signal.

The structure of Eq. (4) suggests that this contribution can be ap-
proximated by a linear model with two degrees of freedom, dϕ/dt and
dθ/dt, weighted by temporally-varying coefficients, F(ϕ, θ) and G(ϕ, θ).
While the coefficients are channel-specific, the two rotations are com-
mon to all loops in the rigid body. This thus motivates the use of loop-
based motion sensors, sensitive to similar induction effects, and the
use of adaptive linear models to combine their timecourses and
estimate the artifact contributions affecting actual EEG channels.

Motion artifact correction

Weconsider a recorded signal y= s+m, where s is the EEG signal of
interest andm is a motion artifact timecourse. The two components are
assumed to be uncorrelated. Based on a set of motion sensor signals xi,
recorded along with y, the timecourse m is then modeled as a linear
combination of the sensors, weighted by time-varying coefficients wi:

m tð Þ ¼
X
i

wi tð Þxi tð Þ: ð5Þ

These coefficients can then be estimated through various approaches,
as described below.
Linear regression with basis set coefficients (BLS)
The model described by Eq. (5) can be made parametric by defining

the coefficientswi as linear expansions of appropriate basis functions bj
(Huang et al., 2002):

wi tð Þ ¼
X

j

ai; jb j tð Þ: ð6Þ

The introduction of Eq. (6) in Eq. (5) leads to a new linear model
with fixed coefficients ai,j for each product bjxi, which can then be
estimated analytically using an ordinary least-squares approach.

Sliding-window weighted least squares (WLS)
In the model described by Eq. (5), the coefficients wi can be deter-

mined at each instant t by considering a local time window of the data
centered on t, Vt, and applying weighted least-squares (WLS) linear
regression to that segment (Fan and Zhang, 2000; Hoover et al., 1998).
In this sense, the least-squares cost function to minimize is defined as:

E w; tð Þ ¼
X
τ∈Vt

Ω τ−tð Þ y τð Þ−
X

i
wixi τð Þ

� �2
ð7Þ

where Ω is a weight function that can be chosen to attribute more
importance to instants closer to t.

Multi-channel recursive least squares (M-RLS)
Originally proposed for active noise control in audio applications

(Bouchard and Quednau, 2000), multi-channel recursive least-squares
(M-RLS) is a real-time estimation method based on Kalman filtering,
which has already been successfully applied to EEG data with loop-
basedmotion sensors (Masterton et al., 2007). In thismethod, the linear
model includes the original sensor timecourses xi along with time-
shifted versions, forming a finite impulse response (FIR) filter. For
each instant t, the fitting weightswi are updated from t− 1 to produce
the best estimate of m(t), combining FIR-filtering, regressor
decorrelation and least-squares fitting within the same update. A scalar
parameter λ controls the adaptability of the algorithm.

Methods

This study was approved by the institutional review board of the
local ethics committee, and involved the participation of 6 healthy
volunteers (20 ± 2 years old, 5 male/1 female), who provided written
informed consent. Volunteers were asked to remain as still as possible
during acquisitions.

Data acquisition

Simultaneous EEG-fMRI acquisitionswere performed on an actively-
shielded Magnetom 7 T head scanner (Siemens, Erlangen, Germany),
with 680mm bore diameter (Magnex Scientific, Oxford, UK). The scan-
ner was equipped with a head gradient set and an 8-channel transmit/
receive head loop array (Rapid Biomedical, Rimpar, Germany). Func-
tional images were acquired using a 2D multi-slice gradient-echo EPI
sequence, with 25 axial slices per volume, 1.5 × 1.5 × 1.5 mm3 spatial
resolution, TR/TE = 2000/25 ms, α = 78°, 2×-GRAPPA acceleration,
7/8 partial Fourier imaging and sinusoidal readout. The scanner He
coldheads were kept in function at all times, while patient ventilation
and room lights were switched off.

EEG data were recorded using two 32-channel BrainAmp MR
Plus amplifiers (Brain Products, Munich, Germany) and a customized
BrainCap MR model (EasyCap, Herrsching, Germany). The cap
contained 64 Ag/AgCl ring-type electrodes (“multitrodes”) arranged
following an extended 10–20 system, andwas designedwith shortened
copper leads. Each lead contained a 5 kΩ resistor near the electrode and
another inside the connector. One of the 64 electrodes was placed on
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the back of the subject for ECG recording. Abralyte gel (EasyCap) was
used to reduce electrode impedances. The cap connectors were linked
to the EEG amplifiers via two 12 cm bundled cables, with the amplifiers
placed just outside the head array (Jorge et al., 2015). After bandpass
filtering (0.016–250 Hz) and digitization (0.5 μV resolution), the EEG
signals were transmitted to the control room via fiber optic cables. Sam-
pling was performed at 5 kHz, synchronized with the scanner 10 MHz
clock. Scanner triggers marking the onset of each fMRI volume were
also recorded. All EEG artifact corrections were performed offline, after
acquisition, as described in the EEG data analysis section.

Motion sensors
In this setup, four of the EEG electrodes (T7, T8, F5 and F6) were

adapted to serve as motion artifact sensors. For this set, each electrode
was isolated from the scalp and given a direct connection to the refer-
ence electrode (FCz) via a copper wire fitted with a non-magnetic 5 k
Ω resistor (Vishay, Malvern PA, USA) (Fig. 1b). Connections were per-
formed in a non-permanent way: the selected electrodes were isolated
from the scalp by placing plastic tape underneath, and then filled with
gel within the ring; the connecting wires terminated in small Ag/AgCl
probes (Warner Instruments, Hamden, CT, USA) that were dipped in
the gel (Fig. 1c), allowing conduction between the four electrodes and
the reference electrode (which was not isolated and kept functioning
as normal). Given the high input impedance of the amplifiers, current
flows along the wires due to neuronal activity can be considered negli-
gible (Yan et al., 2009), and as such the electric potential measured by
each of the adapted electrodes will be equal to the potential at the ref-
erence, added by magnetically-induced fluctuations occurring in the
loop. As the system records EEG signals as the difference in potential be-
tween each channel and the reference, by design, these four channels
will then monitor essentially magnetic induction effects — including
gradient, pulse, vibration and spontaneous motion artifacts. For each
subject, the sensor connections were placed after minimizing the im-
pedances for the other electrodes, adding approximately 5 min of prep-
aration time.

Functional paradigm
Each of the 6 volunteers underwent a 5-minute VEP run using

reversing-checkerboard stimuli. Checkerboards were presented during
ten 10 s blocks at a reversal frequency of 3.35 Hz (totaling 33 reversals
per block), followed by 20 s of rest (fixation). The 7°-wide field of
view featured a red cross at its center at all times, with slight shifts in
color occurring twice per block at random time delays. Subjects were
instructed to focus on the cross and report color shifts via a button
press. Checkerboards were presented at 50% contrast, with an equiva-
lent average luminance to the fixation periods. As the stimulation was
performed using an LCD projector, a StimTracker box (Cedrus Corpora-
tion, San Pedro, CA, USA) equipped with a photodiode sensor was used
to record the precise timing of checkerboard reversals.

EEG data analysis

Data analysis was performed inMatlab using routines developed in-
house. All functional runs underwent an initial preprocessing pipeline,
andwere then studied in three distinct parts, addressing (I) the integra-
tion of motion and pulse artifact correction, (II) the optimization and
comparison of motion correction approaches, and (III) the integration
of motion correction with ICA denoising.

Data preprocessing
All recorded channels, including themotion sensors, underwent the

same preprocessing routine. For each run, based on the recorded fMRI
volume triggers, slice triggers were obtained by splitting each volume
interval in 25 equal segments, and fine-tuned by maximizing inter-
slice correlations on a 10×-upsampled EEG channel (Niazy et al.,
2005). Gradient artifacts were then corrected slice-by-slice via AAS
(Allen et al., 2000); each slice was corrected by subtracting an average
over 100 slice samples (50 from the preceding and 50 from the follow-
ing slices), with jittered steps of 8–13 slices separating the selected sam-
ples. These steps permitted sufficient spacing between samples to avoid
removing lower-frequency EEG activity (Niazy et al., 2005), and yielded
a balanced distribution of samples relative to the visual stimulation
cycle (3.35 Hz), mitigating phase-locking effects.

Cardiac triggers were estimated from the ECG channel and fine-
tuned by another correlation–maximization approach, using a combi-
nation of EEG channels where pulse artifacts were most prominent.
Based on these triggers, pulse artifacts were reduced via AAS,
subtracting each instance of an average over the closest 50 pulse sam-
ples (25 of the preceding and 25 of the following cardiac cycles). AAS
was chosen for this step because each artifact instance is corrected
with a fixed linear combination of its neighbors, which is the same for
every channel (both EEG andmotion sensors), thus preserving the line-
arity relationships of Eq. (4). This would not hold for certain approaches
such as OBS, where each instance is corrected by a local fit (not a sub-
traction) of basis functions, which is differently biased by the ongoing
motion artifacts and EEG fluctuations of each channel.

Following gradient and pulse artifact correction, EEG data were
downsampled to 250 Hz, and bad channels were identified (2–5 per
subject) and replaced by weighted averages of 3–4 of the neighboring
electrodes. Each functional run was also inspected based on its global
field power (GFP) timecourse, and periods displaying strong GFP
peaks were manually excluded from all subsequent analyses (a total
of approximately 20–40 s per 5-minute run).

Part I: pulse and motion artifact correction
Previous studies have assumed the pulse artifact to bemainly caused

by bulk head motion, relying on sensor information to correct both
pulse and spontaneous motion artifacts (Bonmassar et al., 2002;
Masterton et al., 2007). Here, the potential benefits of combining mo-
tion artifact correction with a dedicated pulse artifact correction step
(AAS-based, as described in the Data preprocessing section), at 7 T,
were investigated. The original data were preprocessed in two versions,
one with and another without pulse artifact correction. Both datasets
underwent temporal highpass-filtering (1 Hz) and then motion artifact
correction with M-RLS, implemented exactly as proposed in Masterton
et al. (2007) (35 shifts for the FIR kernel with 2×-downsampling, λ =
1–10−8).

Part II: optimization of motion artifact correction
This part focused on the comparison of different approaches for op-

timal sensor-basedmotion artifact correction. Based on the results from
part I, pulse artifact correctionwas included in data preprocessing. Tem-
poral bandpass filtering was also applied, set at 2–120 Hz for EEG data
and 2–30 Hz for the motion sensors. The choice of a highpass cutoff of
2 Hz was motivated by preliminary tests showing that increasing the
cutoff frequency improved motion artifact estimation, likely due to re-
duced biases from slow-drift contributions; this compromise comes at
the cost of excluding EEG information from part of the delta band, but
did not affect VEP morphology (Widmann et al., 2015). The choice of a
lowpass cutoff of 30 Hz for the motion sensors was again based on in-
sights from part I, pointing that this is the relevant frequency band for
motion contributions. Motion correction was based on the linear
model of Eq. (5), and explored the three approaches introduced in the
Motion artifact correction section: BLS, sliding-window WLS and M-
RLS. In all cases, the model regressors xi included the 4 original sensors
and a set of shifted versions of their timecourses, to produce a subject-
specific FIR kernel (Bonmassar et al., 2002). The number and spacing
of the shifts were optimized by testing multiple models with linear fits
to the data (assuming constant weightswi), and then comparing the re-
spective adjusted coefficients of determination (R2adj), aswell as the im-
pact on visual response amplitude. R2

adj is a goodness-of-fit measure
that is independent of the number of regressors in a model, and is
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thus particularly suitable for model comparison (Jorge et al., 2013). As
all approaches were designed for offline correction, both positive and
negative shifts could be included in the models — this was confirmed
to produce better results than including only shifts from the past, as in
real-time correction.

BLS: for this approach, three basis sets were tested to model the
time-varying coefficientswi, all designed tomodel smooth fluctuations:
(i) a discrete cosine transform expansion (DCT), (ii) a full Fourier series
expansion with an initial linear slope term, and (iii) a cardinal cubic
B-spline set (Huang et al., 2002). The optimal expansion degree for
each case was estimated by a similar empirical procedure to the one
used for FIR kernel optimization.

Sliding-window WLS: for this approach, a Gaussian distribution was
chosen as weight function for the sliding window, with its full width
at half maximum (FWHM) controlling the temporal adaptability of the
estimation. Preliminary tests yielded a value of 60 s as a good compro-
mise between adaptability and robustness.

Offline M-RLS (oM-RLS): this approach was based on themethod de-
scribed by Masterton et al. (2007), with a number of modifications that
took advantage of the choice for post-acquisition data correction:
(1) both forward and backward shifts were included in the FIR kernel,
optimized as described above; (2) the coefficients wi were updated for
every time instant; and (3) the coefficient timecourses were estimated
with a double passage, where the iterations were first performed for-
wards in time, from the beginning to the end of the timecourse, and
then backwards. This yielded a cleaner estimation for the starting
periods, where the initial passage is not accurate since the coefficients
take a certain time to converge from the initial set value (wi(0) = 0)
to the least-squares solution (see Supplementary Fig. 1 for an example).
The adaptability parameter λ was kept at a value of 1–10−8, as in
Masterton et al. (2007).

Besides the comparison of the three correction approaches, an addi-
tional characterization of the different artifact contributions to EEG sig-
nal powerwas performed in this part, based on the results from oM-RLS
correction. For each subject, the EEG data resulting from three stages of
the correction pipeline were considered: gradient artifact-corrected,
gradient + pulse artifact-corrected, and finally gradient + pulse +
motion artifact-corrected. At each stage, an estimate of the signal vari-
ancewas obtained for each channel, and then averaged across channels.
The decreases in variance across stages were then computed, as an
estimate of the fraction of total signal variance expressed by each of
the targeted sources (assuming all sources are uncorrelated).

Part III: motion artifact correction and ICA
ICA is a powerful exploratory technique that is often used in EEG

data denoising (Arrubla et al., 2013; Eichele et al., 2005; Jorge et al.,
2015). In this last section, we compared the performance of motion ar-
tifact correction based on motion sensors with an approach based on
ICA denoising, and investigated the potential benefits of combining
the two techniques. As in part II, data preprocessing included pulse arti-
fact correction and temporal bandpass filtering (2–120 Hz for EEG data,
2–30Hz for themotion sensors). Datawere then corrected based on the
motion sensors, ICA, or a combination of motion artifact correction
followed by ICA denoising. The approach here chosen formotion artifact
correction was oM-RLS (as discussed in the Motion artifacts and ICA
section). ICA decompositionwas performedwith the extended infomax
algorithm (Lee et al., 1999), imposing statistical independence in the
temporal dimension. The resulting components were then reviewed
based on their topography, trial-average response and trial-by-trial con-
sistency (Arrubla et al., 2013). Components found to be clearly not relat-
ed to the visual response (pulse and motion artifacts/residuals, eye-
movement artifacts, etc.) were marked and excluded from subsequent
data reconstruction. Additionally, an alternative ICA-based approach
was tested where the motion sensor timecourses were included as ad-
ditional channels in the ICA decomposition, and reconstructionwas per-
formed after manually rejecting components with strong projection
weights in the motion channels. This approach guided bymotion infor-
mation was termed motion-integrated ICA (miICA).

Performance measures
For the three main parts of data analysis (I–III), the performance of

the different correction approaches under study was assessed based
on EEG signal power and VEP single-trial consistency. EEG power was
computed for each channel via fast Fourier transform of the entire
timecourse, and estimated for the full frequency band (1–125 Hz), as
well as for specific bands delta (1–4 Hz), theta (4–8 Hz), alpha
(8–12 Hz), beta (12–30 Hz) and gamma (30–100 Hz), in part I. For
part I, relative power reductions obtained with correction were also es-
timated in dB as 10 log10(Pf/Pi) (with Pi and Pf being the power before
and after correction, respectively), for direct comparison with results
fromMasterton et al. (2007) at 3 T. VEP trial consistency was estimated
after bandpass filtering (3–40 Hz) and re-referencing to the channel
average, and involved computing the trial-average response in each
channel, and then performing a least-squares fit of the average to each
single trial. This yielded a Z-score of the fit per trial and per channel;
the scores of all trials from occipital channels (Oz, 1, 2 and POz, 3, 4, 7,
8) were then averaged together, to yield a single Z-score per subject.
The more restrictive filtering range of 3–40 Hz employed for this esti-
mation was previously confirmed not to affect the average VEP mor-
phology, while leading to more accurate single-trial fits. While signal
power provides a more direct measure of the impact of denoising ap-
proaches on signal variability, VEP trial consistency is more informative
of changes in response sensitivity due to artifact reduction, including
potential effects of over-correction (since, under the assumption that
the motion timecourses are uncorrelated with the visual responses,
over-corrections will affect the different trials differently, and thereby
reduce trial consistency). It should nevertheless be noted that this
measure is only intended to monitor the effects of artifact correction,
as it does not differentiate the natural variability of brain responses
(Debener et al., 2006) from the variability introduced by the artifacts.
For both measures, the values obtained with each correction approach
were then compared via paired t-tests across subjects, assuming a
maximum p-value of 0.05 for statistical significance. Relative variations
in power and trial consistency reported in the text are shown as
average ± standard error across subjects. In part III, the quality im-
provements obtained with the optimal correction approach were fur-
ther analyzed by direct observation of its effects on the trial-average
and single-trial responses of individual subjects.

Results

Tests conducted with the motion sensors showed no discernible
contamination of themotion timecourseswith neuronal activity. In par-
ticular, for EEG recordings performed outside the scanner on a volunteer
at rest, signal power in the motion channels was below 1.4 μV2, com-
pared to an average across the scalp of 41±28 μV2 for the EEG channels.
A power peak in the alpha band was clearly identifiable in most EEG
channels, including those adjacent to the reference electrode (Fz, Cz,
FC1, FC2), but not on the motion sensors; accordingly, the temporal
correlation between motion timecourses and EEG timecourses was, on
average, 0.04 ± 0.02. The impact of the sensor modification on fMRI
data quality was found negligible, adding no visible susceptibility arti-
facts to the images; awhitematter temporal SNR of 19±1was estimat-
ed for this subject group, whereas a value of 17 ± 1 had been obtained
in a previous studywith a group of similar size and the sameMRI acqui-
sition parameters, using a non-modified EEG setup (see Jorge et al.
(2015) for further details).

Part I: pulse and motion artifact correction

The impact ofmotion artifact correctionwithM-RLSwaswell visible
in both the temporal and spectral domains of each subject dataset, even
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when pulse artifact correction had been applied beforehand with AAS
(see Supplementary Fig. 2 for an example). The three correction ap-
proaches (AAS, M-RLS and AAS + M-RLS) also brought appreciable
changes to VEP morphologies across the scalp for each subject (see
example in Supplementary Fig. 3). To evaluate the impact of AAS,
M-RLS and AAS+M-RLS, the corrected and uncorrected data were com-
pared in terms of signal power and VEP trial consistency. Across delta,
theta, alpha and beta bands, all three approaches produced statistically
significant reductions in signal power, with M-RLS performing more
effectively than AAS, but the combination of AAS followed by M-RLS
achieving the largest power reductions (Fig. 2a). For the gamma band,
no significant changes in power were found for any of the approaches.
Compared to results obtained at 3 T using a similar M-RLS implementa-
tion (Masterton et al., 2007), the power attenuation achieved (without
prior pulse correction) was approximately 1.5× larger in the delta band,
2.3× larger in the theta and alpha bands, and 4.8× larger in the beta
band, at 7 T (Fig. 2b).

Across subjects, full-band EEG signal power achieved its lowest aver-
age value with the combination of AAS and M-RLS, corresponding to a
91 ± 1% reduction relative to the uncorrected data (Fig. 3a). The
power achieved with the combined approach was significantly lower
than with each method separately. An equivalent outcome was found
for VEP trial consistency, with the combination of AAS andM-RLS yield-
ing an average increase of 55 ± 5% in consistency Z-score (Fig. 3b). The
value achieved was significantly higher than with AAS alone, and also
superior to M-RLS alone, although not reaching significance (p =
0.12). Regarding full-band power distributions across the scalp, the
original (preprocessed) data exhibited a strong concentration of
power at themost lateral electrodes, along with a moremoderate pres-
ence at occipital electrodes (Fig. 3c). Across the scalp, the use of AAS ap-
peared to have a higher impact on occipital electrodes, while M-RLS
produced stronger changes in more lateral electrodes. The combination
of both approaches led to the most balanced, radial power distribution
(centered at the reference electrode). The power attenuation achieved
by M-RLS, after AAS correction, was confirmed to be strongest at more
lateral regions (Fig. 3c, right).
Part II: optimization of motion artifact correction

Regarding model optimization, the preliminary tests performed for
each subject, iterated in steps of 5 added shifts, indicated optimal kernel
Fig. 2. The impact of AAS-based pulse artifact correction andM-RLSmotion artifact correction o
band, before correction and after AAS, M-RLS, or AAS followed byM-RLS. b) Relative power red
corrected data; values obtained in a previous study usingM-RLS at 3 T (Masterton et al., 2007),w
nels and subjects, and error bars represent the standard error across subjects.
sizes of 11–61 regressors permotion sensor (41, 11, 61, 41, 61 and 21 for
subjects 1–6, respectively), centered at Δt=0 and spanning both posi-
tive and negative shifts in steps of 4 time samples (i.e.,−80,−64,−48,
−32, −16, 0, +16, +32, +48, +64, +80 ms for subject 2, for exam-
ple). Regarding the BLS approach, the three bases tested yielded very
similar results for this subject group, and as such only the simplest,
DCT, was considered for further comparisons. For this basis set, an ex-
pansion up to 2nd degree (cosine period equal to the total timecourse
length) showed a good compromise between temporal adaptability
and model size.

Following optimization, the different approaches developed for mo-
tion artifact correction (DCT-based BLS,WLS and oM-RLS) were applied
to the data and then compared in terms of signal power and trial consis-
tency. All three approaches achieved statistically significant power re-
ductions of 62 ± 4% (DCT), 63 ± 4% (WLS) and 61 ± 4% (oM-RLS),
relative to the preprocessed, pulse-correcteddata (Fig. 4a). Analogously,
in trial consistency, these approaches led to significant improvements of
58± 15% (DCT), 57± 14% (WLS) and 62± 17% (oM-RLS) in consisten-
cy Z-score (Fig. 4b). No significant differences between the three correc-
tion approaches were found for either measure. Alongside group-
average effects, motion artifact correction produced clear improve-
ments on visual response quality at the level of individual subjects — a
detailed description is given below (Part III: motion artifact correction
and ICA section and Fig. 7). The characterization of signal variance con-
tributions yielded consistent results across the subject group,with pulse
artifact contributions explaining 81–93% of the total variance, while
spontaneousmotion artifacts and actual neuronal activity (plus residual
artifacts) expressed more moderate contributions of 4–13% and 3–9%,
respectively (Fig. 5). Spontaneousmotion contributions were compara-
ble or superior to neuronal contributions in 5 of the 6 subjects.
Part III: motion artifact correction and ICA

To evaluate the performance of ICA, miICA and oM-RLS artifact cor-
rection, the corrected and uncorrected data of all subjects were ana-
lyzed in terms of signal power and VEP trial consistency. On average,
full-band EEG power was reduced by 53 ± 5% with miICA, 60 ± 4%
with ICA, 61 ± 4% with oM-RLS, and 74 ± 3% with oM-RLS followed
by ICA, relative to the preprocessed pulse-corrected data (Fig. 6a). The
EEG power achieved with the combined approach was significantly
lower than with individual methods. Regarding VEP trial consistency,
n EEG signal power, after gradient artifact correction. a) Average EEG power per frequency
uction achievedwithM-RLS or with AAS followed byM-RLS, relative to pre-processed, un-
ithout prior AAS, are included for comparison. Bar heights represent averages across chan-



Fig. 3. The impact of AAS-based pulse artifact correction and M-RLS motion artifact correction on a) EEG signal power and b) VEP trial consistency, after gradient artifact correction. Bar
heights represent averages across channels and subjects, and error bars represent the standard error across subjects. c) Subject-averaged full-band power topographies before (Orig) and
after corrections (AAS, M-RLS, AAS + M-RLS), and the relative power reduction achieved with M-RLS after AAS correction.
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the average Z-score was increased by 12 ± 11% with miICA, 37 ± 15%
with ICA, 62 ± 17% with oM-RLS, and 86 ± 19% with oM-RLS followed
by ICA (Fig. 6b). The value achieved with the combined approach was
Fig. 4. The impact of motion artifact correction on a) EEG signal power and b) VEP trial
consistency, after gradient and AAS-based pulse artifact correction. The techniques tested
included DCT-based BLS, sliding-window WLS and oM-RLS. Bar heights represent aver-
ages across channels and subjects, and error bars represent the standard error across
subjects.
significantly higher than with miICA and oM-RLS alone, and tended to
be superior to ICA as well (p = 0.06). The outcome of oM-RLS alone
was significantly superior to that of miICA and, on average, also tended
to be superior to ICA.

Besides group-average effects, motion artifact correction also
yielded clear improvements on visual response quality for each individ-
ual subject (Fig. 7, and remaining subjects in Supplementary Fig. 4). In
several cases, oM-RLS effectively enabled the recovery of the main
expected features of the VEP response, including the larger P100 com-
ponent and even the more subtle N75 and N140 components. Scalp to-
pographies at the timing of the P100 component were also improved
considerably, showing a clearer anterior–posterior dipole and minimal
left-to-right asymmetries. While trial-average responses were more
drastically corrected in lateral channels, single-trial responses were
still visibly improved in occipital channels, allowing for the detection
of P100, N75 and N140 components in a large fraction of trials. The
use of ICA after oM-RLS further added smaller, yet important benefits
to signal quality, especially at a single-trial level (Fig. 7).

Discussion

In the present work, a novel technique for online measurement of
EEG headmotion artifactswas developed and implemented for simulta-
neous EEG-fMRI acquisitions at 7 T. Data were collected from 6 healthy
subjects, and several aspects of post-processing artifact reductionmeth-
odology were analyzed, aiming for optimal data quality improvements



Fig. 5.EEG signal power distribution after gradient artifact correction, based onAASpulse artifact correction and oM-RLSmotion artifact correction. Thepercentages shown for each subject
correspond to averages across EEG channels. As should be noted, these estimateswere obtained based on the outcome of the artifact correction procedures, and as such are not perfect; in
particular, the estimates for spontaneous motion contributions are expected to contain residuals of pulse artifacts, and vice versa.
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using the motion information. The impact of spontaneous motion arti-
facts on EEG data at 7 T was for the first time quantitatively assessed,
and significant improvements in visual response sensitivity were
achieved with artifact reduction.

Motion artifact detection

The impact of spontaneous head motion on EEG recordings per-
formed in strong magnetic fields is a well-known problem in EEG-fMRI
studies (Flanagan et al., 2009; Jansen et al., 2012), most often addressed
simply by excluding affected periods fromdata analysis, and in theworst
cases discarding entire datasets. This approach incurs losses in acquisi-
tion time and costs, and tends to become less effective in acquisitions
performed at higher magnetic fields. As discussed here (Introduction
and Motion artifact generation sections) and in previous studies
(Debener et al., 2008; Yan et al., 2010), motion artifacts are based on
magnetic induction effects that scale with B0. In this work, at 7 T, we es-
timated that contributions to signal variance from spontaneous motion
artifacts are comparable to or even larger than those of actual neuronal
activity (Fig. 5). The main artifact contributions were associated with
the MRI gradients and the cardiac cycle, but while these contributions
are approximately periodic, and thusmore suited to temporal segmenta-
tion for averaging and subtraction, spontaneous motion does not follow
regular patterns, and can thus highly benefit from an external monitor-
ing system.

Several approaches for head motion detection have been proposed,
including the use of highly sensitive optical systems (Maclaren et al.,
Fig. 6. The impact of ICA denoising and oM-RLSmotion artifact correction on a) EEG signal
power and b) VEP trial consistency, after gradient and AAS-based pulse artifact correction.
The approaches tested comprised ICA, with and without including the motion sensor
timecourses (miICA, ICA), oM-RLS, and oM-RLS followed by ICA. Bar heights represent
averages across channels and subjects, and error bars represent the standard error across
subjects.
2012), piezoelectric sensors (Bonmassar et al., 2002), and conductive
wire loops (Masterton et al., 2007). We opted for loop-based sensors
since they share similar mechanisms of artifact generation with EEG
loops, and can be directly incorporated in linear regression models for
EEG signal correction (as shown in the Motion artifact generation sec-
tion). Optical systems, in contrast, while yielding more direct measures
of headmotion, would require the development of potentially complex
forward models to estimate the resulting artifacts induced in each EEG
loop. Similar to Masterton et al. (2007), we use multiple conductive
loops distributed across the scalp, but while their approach uses a sepa-
rate acquisition and recording system for the loops, we have imple-
mented these sensors by adapting a number of electrodes from the
EEG cap. This approach is not limited for use at 7 T, and requires neither
additional amplification, gel layers or other recording equipment, nor
modifications to the existing amplifiers, which are often the most ex-
pensive component of the EEG setup. While the cap adaptations, as im-
plemented in this study, were non-permanent and set in place during
each cap preparation, we foresee no impediments in the design of
new cap models with these modifications permanently integrated. In
particular, based on the tests conducted with our implementation, a
modification with a similar number of sensors and resistor types is
expected to have a negligible impact on either EEG or fMRI data
quality. As a benefit, a permanent modification would not only save
preparation time but also allow for a more geometrically optimal
placement of the sensors (Abbott et al., 2014), which here was limit-
ed to the positions of the existing EEG electrodes. It should be noted
that these sensors are connected to the reference electrode, and are
thus not electrically isolated from the scalp. As such, an additional
resistor was included in each connection to ensure subject safety,
resulting in a total resistance of 25 kΩ for eachmotion loop (considering
the two 5 kΩ resistors inserted in each channel lead), not including the
resistance of gel interfaces between electrodes. It is also important that
the input impedance of the amplifiers is sufficiently high to ensure that
currents in the leads created by true neuronal activity are effectively
negligible, so that the potential difference measured between eachmo-
tion sensor and the reference will effectively comprise only magnetic
induction effects.

Finally, since under certain assumptions EEG artifacts due to
rigid-body head motion only depend on two degrees of freedom
(head rotations, as described in the Motion artifact generation sec-
tion), we point out that motion artifact reduction could potentially
be performed using only two independent sensors. As in previous
studies (Luo et al., 2014; Masterton et al., 2007), we have instead
opted for an “overdetermined” detection approach, to ensure more
robust estimations and for a higher sensitivity to eventual non-
rigid motion effects — with the disadvantage of leaving less electrodes
for actual EEG recording. Future studies may focus on the optimization
of both the number and position of motion loops, possibly based on nu-
merical simulations (Mullinger et al., 2014; Yan et al., 2010), towards the
design of optimally effective motion sensor loops. We also stress the



Fig. 7. EEG responses to visual stimulation with reversing checkerboards, in two subjects, before and after correction with oM-RLS, andwith oM-RLS followed by ICA. In Subject 3, motion
artifact correction provided the largest quality improvements, while in Subject 6 the benefits added by ICA were also considerably relevant. The scalp topographies shown correspond to
the P100 component of the VEP, and are presented in a blue–white–red color scale centered at 0 V, with symmetric limits. The shadedmargins in single-channel trial-averaged responses
(3rd column) indicate the standard error across trials; the channel displayed was selected for having the largest average P100 amplitude amongst the occipital channels. Single-trial re-
sponses are shown Gaussian-smoothed across trials (σ = 3 trials).
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importance of minimizing noise contributions at the transmission stage
between the cap and amplifiers, as these sources do not follow rigid-
body properties. In our setup, such contributions have been minimized
by appropriate cable shortening and bundling, as described elsewhere
(Jorge et al., 2015).
Motion artifact correction

Motion information can be used in various ways for data analysis, a
simple and direct option being to use the sensor timecourses as an inde-
pendentmeasure of headmotion, which can guide epoch exclusion and
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help determining whether particular fluctuations can effectively be
attributed to neuronal activity (Abbott et al., 2014). Here, the sensor
timecourses were used to reduce motion contributions throughout the
EEG timecourses. The linear relationships between the artifacts
captured by loop sensors and EEG channels (as described in the
Motion artifact generation section) render them particularly suitable
for linear regression methods, which were systemically explored in
this work, in line with previous studies (Luo et al., 2014; Masterton
et al., 2007). It should be noted that this type of approach relies on the
assumption that motion artifacts are uncorrelated with neuronal activ-
ity (which forms the residuals of the linearfit). This assumptionmay be-
come compromised in studies involving motor tasks, painful
stimulation or attention modulations, for example, where subject mo-
tion may be more strongly correlated with the paradigm. Also impor-
tant, as the weights of the linear relationships depend on the current
head position (Eq. (4)), these linear models incorporated temporally-
adaptive coefficients (Eq. (5)). The approaches here tested assume
these coefficients to vary smoothly, and are thus less precise in the pres-
ence of large abrupt motion. Conversely, if the coefficients are allowed
to adapt too quickly, the estimation may instead become significantly
biased by neuronal activity. We opted to circumvent this compromise
by rejecting the periods of most abrupt motion from data analysis,
based onGFPfluctuations. The denoising of such periodswould possibly
require the use of other methods such as reference layer subtraction,
where each electrode has a “copy” placed in the same position but con-
nected to a reference layer, and denoising is performedwith a direct sig-
nal subtraction, instead of a fit (Chowdhury et al., 2014). This could also
be a potentially effective alternative for studies in which motion is ex-
pected to strongly correlate with brain activity. On the other hand,
this approach requires twice as many recording channels, along with
an additional gel layer, and residuals may still persist due to differences
in the current paths across the scalp and across the reference layer; the
additional (conductive) components are also more likely to affect MRI
data quality (Mullinger et al., 2008b).

An important question investigated in this work regarded the
combination of motion and pulse artifact correction (part I). In our sub-
ject group, the use of an AAS-based pulse artifact correction step follow-
ed by a motion sensor-based correction step was found to be more
effective than either of the two techniques alone (Fig. 3). Consistent
with this, while several studies have assumed the pulse artifact to be
mainly caused by bulk head rotation, proposing to reduce both artifact
types with motion sensors (Bonmassar et al., 2002; Luo et al., 2014;
Masterton et al., 2007), substantial evidence exists for additional contri-
butions to the pulse artifact, including local scalp dilations due to arteri-
al pulsation, and the Hall effect occurring in charged particles carried by
the blood as it flows in B0 (Debener et al., 2008; Tenforde et al., 1983). In
particular, the Hall effect has evinced more important contributions to
pulse artifact variability than head rotation per se, at 3 T (Mullinger
et al., 2013), and all three contributions are expected to scale with
field strength. Our results suggest that the additional sources of the
pulse artifact do create important contributions at 7 T, which should
be addressed with a dedicated correction step. At lower fields, some
caution should be taken with this approach, since the prior reduction
of pulse artifacts leaves the linear fitting essentially dependent on spon-
taneous motion fluctuations alone, which at such field strengths may
not be sufficiently strong for a robust, unbiased fit (given that brain
activity does not scale with B0, and its correlation with motion is
never exactly null). The choice of a dedicated correction should thus
be carefully considered depending on the field strength and the perfor-
mance of each subject group.

Having settled for including a dedicated pulse artifact correction
step, we then focused on determining optimal methods to tackle the
contributions from spontaneous motion (part II). The three approaches
tested led to similar outcomes in data denoising (Fig. 4), but do differ
from each other in several aspects. Regarding computational speed,
for comparison purposes, in our particular system and implementations
(no parallelization added), BLS took less than 2 s to process each 5min-
long, 59-channel dataset, while oM-RLS took approximately 40min, and
WLS took more than 2 h. BLS is by far the fastest method and thus most
suitable for exploratory tests and model optimization (the FIR kernel,
for example); on the other hand, being based on parametric modeling,
its adaptability depends on particular dataset properties such as the
timecourse length. Sliding-window WLS avoids that limitation and
relies on an intuitive adaptability parameter (the window FWHM),
but was found to be considerably slower (although parallelization tech-
niques could be applied both across channels and time). Finally, oM-RLS
is a non-parametric technique based on a previously validated method
for EEG data correction (Masterton et al., 2007), and provided a good
compromise between versatility and computational speed, thus moti-
vating our preference for this method. Additionally, the original M-RLS
can be used for real-time correction.

Motion artifacts and ICA

The third part of this study compared the performance of motion
sensor-based correction with that of ICA denoising, and investigated
the benefits of combining the two techniques. ICA is often employed
for EEG data analysis and denoising, both in pure EEG studies (Makeig
et al., 1996; Onton et al., 2006) and with EEG-fMRI (Arrubla et al.,
2013; Marques et al., 2009). In the second case, however, a number of
authors have obtained suboptimal results with this approach, especially
at fields above 1.5 T (Debener et al., 2007; Jorge et al., 2015). Similarly,
our tests with ICA denoising alone systematically showed inferior re-
sults to those obtained with ICA after oM-RLS (Fig. 6), even with prior
pulse correction applied in both cases.Without oM-RLS, the ICA compo-
nent explaining themost variancewas consistently found to bemotion-
related, with a left-to-right dipolar topography and low stimulus-locked
periodicity. Nevertheless, the components associated with visual re-
sponses had considerably lower SNR than those obtained after oM-
RLS, appearing to be still significantly contaminatedwithmotion artifact
contributions. Analogous resultswere foundwithmiICA, where compo-
nents attributed to the visual responses frequently exhibited apprecia-
ble projections on the motion channels. These issues are currently
thought to be due to a violation of source stationarity, one of ICA's
most important assumptions: while neuronal sources are measured as
stationary (as long as the electrodes retain their positions on the
scalp), motion-related artifacts are not. The pulse artifact, for instance,
has been shown to increase in both amplitude and spatial variability
with field strength (Debener et al., 2008), and our own theoretical de-
scription of motion artifacts (Motion artifact generation section) clearly
shows their dependence on the current head position, thus varying
their topography as head position drifts in time.

Despite the suboptimal performance obtained with ICA alone, its
application following oM-RLS improved data quality. This is not unex-
pected since motion artifact correction does not cover other typical
EEG artifacts (ocularmovements, for example), which ICA can effective-
ly isolate. Overall, for the 7 T datasets analyzed in this work, the combi-
nation of AAS-based pulse artifact correction, oM-RLS motion artifact
correction and ICA denoising yielded optimal improvements in EEG
data quality, with well appreciable benefits for visual response sensitiv-
ity. These were not only indicated by signal power and trial consistency
measures, but also confirmed by direct observation of single subject re-
sults, both at trial-average and single-trial levels (Fig. 7, Supplementary
Fig. 4). Motion artifact correction had a stronger impact on more lateral
electrodes (Fig. 3c), as could be expected since the respective loops have
the largest projection areas relative to B0. Nevertheless, occipital chan-
nels still exhibited crucial improvements at a single-trial level, setting
a highly encouraging quality mark for this multimodal approach at
ultra-high field. Further improvements can be contemplated, for in-
stance through the design of more unified correction schemes that can
incorporate gradient, pulse and motion artifact estimation simulta-
neously — since head motion changes the projection of EEG loops
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relative to B0, it is thereby highly interconnected with the temporal
variability of gradient and pulse artifacts, and the three could potentially
be more effectively corrected together (Abbott et al., 2014).
Conclusion

The present study demonstrates clear improvements in EEG data
quality acquired simultaneously with fMRI, at 7 T, through the minimi-
zation of motion-induced artifacts using information from independent
loop sensors. At thisfield strength, spontaneousmotion contributions to
EEG signal variance were found to be comparable to or even larger than
those of neuronal activity, and their removal led to strong improve-
ments in the detection of visual responses, particularly at a single-trial
level. Overall, we conclude that concurrent monitoring of head motion
during simultaneous EEG-fMRI, along with the use of optimized data
analysis techniques, can be highly beneficial for EEG data denoising,
especially for studies conducted at higher magnetic field strengths.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2015.07.020.
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