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Although fetal anatomy canbe adequately viewed innewmulti-sliceMR images,many critical limitations remain
for quantitative data analysis. To this end, several research groups have recently developed advanced image pro-
cessing methods, often denoted by super-resolution (SR) techniques, to reconstruct from a set of clinical low-
resolution (LR) images, a high-resolution (HR) motion-free volume. It is usually modeled as an inverse problem
where the regularization term plays a central role in the reconstruction quality. Literature has been quite
attracted by Total Variation energies because of their ability in edge preserving but only standard explicit steepest
gradient techniques have been applied for optimization. In a preliminary work, it has been shown that novel fast
convex optimization techniques could be successfully applied to design an efficient Total Variation optimization
algorithm for the super-resolution problem. In this work, two major contributions are presented. Firstly, we will
briefly review the Bayesian and Variational dual formulations of current state-of-the-art methods dedicated to
fetalMRI reconstruction. Secondly, we present an extensive quantitative evaluation of our SR algorithmprevious-
ly introduced on both simulated fetal and real clinical data (with both normal and pathological subjects). Specif-
ically, we study the robustness of regularization terms in front of residual registration errors andwe also present
a novel strategy for automatically select theweight of the regularization as regards the data fidelity term. Our re-
sults show that our TV implementation is highly robust in front of motion artifacts and that it offers the best
trade-off between speed and accuracy for fetal MRI recovery as in comparison with state-of-the art methods.

© 2015 Elsevier Inc. All rights reserved.
Introduction

Recent advances in clinical magnetic resonance imaging (MRI) pro-
vide an unprecedented opportunity to study the human brain growth
in-utero. Concretely, T2-weighted (T2w) MR images have proven to
provide the best ability to delineate structures and layers in fetal brain
MRI (Prayer, 2011; Coakley et al., 2004; PC et al., 2006; Garel, 2006).
Clinical MRI examination involves the use of ultra-fast multi-slices MR
sequences, such as Half Fourier Acquisition Single-Shot Turbo Spin
Echo (HASTE) or Single-Shot Fast Spin Echo (ssFSE) (Levine et al.,
1996) to avoid as much as possible motion. In practice, these sequences
are acquired as several stacks of thick slices, often in different orthogo-
nal views (Fig. 1 b) in order to provide the in-vivo 3D fetal anatomy in a
short acquisition time. This procedure has allowed amore regular use of
IBM BH 07-081, Rue du Bugnon
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fetal MR imaging in clinics, with an excellent in-plane spatial resolution
(around 1mm in-plane resolution with a slice thickness between 3 and
5 mm), very good tissue contrast and anatomical detail within the im-
ages while reducing motion artifacts (Fig. 1 a).

Although fetal anatomy can be adequately viewed in newmulti-slice
MR images, many critical limitations remain for quantitative data
analysis. Despite these fast acquisition techniques, motion remains
and mostly generates inter-slice artifacts (see top row, coronal view,
in Fig. 1 b) but also in-plane degradation. This limits the use of
computer-assisted methods for large-scale studies. To this end, several
research groups have recently developed advanced image processing
methods, often denoted by super-resolution (SR) techniques, to recon-
struct from several clinical stacks, low-resolution (LR) images, a high-
resolution (HR) motion-free volume (Rousseau et al., 2006; Jiang
et al., 2007; Gholipour and Warfield, 2009; Gholipour et al., 2010; Kim
et al., 2010; Rousseau et al., 2010; Rousseau et al., 2013;
Kuklisova-Murgasova et al., 2012; Fogtmann et al., 2012). Such HR vol-
ume facilitates early and precise diagnosis (see Fig. 1 c) and offers, to the
neuroscientist, the possibility of an automated quantitative study of the
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Fig. 1. Fetus of 25weeks of gestational age: (a) Sagittal viewofwhole volume scan, (b) orthogonal stacks in brain region. Acquisitionswere donewith a Siemens Aera 1.5 Tesla, T2wHASTE
sequence (TR 1200 ms, TE 90 ms, slice thickness 3.6 mm, in-plane resolution 1.13 mm), and (c) HR image of the fetal brain reconstructed by SR technique.
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first stages of brain development (Gholipour et al., 2011; Corbett-Detig
et al., 2011; Scott et al., 2011; P. A. Habas et al., 2012).

In the last years, SR algorithms have been successfully applied toMR
imaging data (Van Reeth et al., 2012) and their advantage over single
HR acquisition has beenproven in terms of higher SNR for a given acqui-
sition time (Plenge et al., 2012). SR techniques were initially dedicated
to static subjectswhere scanning protocol can be adapted to addnew in-
formation of the scene under controlled motion conditions. More re-
cently, focus has been applied to SR of moving subjects, where motion
is not controlled. In these cases, the need of advanced post-processing
techniques to enhance spatial resolution is of great importance. Most
of these works assumed a rigid motion and they are dedicated to the
through-plane resolution improvement of fetal MRI images, providing
us a fully isotropic 3D image only limited by the in-plane resolution of
the acquisition (Rousseau et al., 2006; Jiang et al., 2007; Gholipour and
Warfield, 2009; Gholipour et al., 2010; Kim et al., 2010; Rousseau
et al., 2010; Rousseau et al., 2013; Kuklisova-Murgasova et al., 2012;
Fogtmann et al., 2012). Thus, these methods consist of two common
image processing steps: image registration (for motion compensation)
and super-resolution1 (for image recovery), that solves the so-called in-
verse problem (see Fig. 2 and Two-step reconstruction algorithm).

An objective of this work is to provide a short review of SR tech-
niques in the case of fetal MRI. Along this line, our contribution differs
from the recent review of Van Reeth et al. (2012) that aimed at
discussing SR MRI techniques in various contexts. Here we focus on
the literature of SR fetal MRI algorithms in order to emphasize the sim-
ilarities and differences between the successful Bayesian and variational
formulations for this specific problem. We built on this overview of SR
techniques and recent advances in convex optimization to recall our op-
timization algorithm introduced in (Tourbier et al., 2014a) that offers si-
multaneously fast, accurate and robust solutions to the fetal image
recovery problem.

Contributions of this work

• A short overview of existing SR reconstruction algorithms for fetal
MRI within a unified mathematical formulation.
1 All through the paper we will denote this step indistinctly by super-resolution, image
recovery and restoration. Let us note that this stephas to bedifferentiated from reconstruc-
tion that, in this work, refers to both motion estimation and image recovery steps.
• An automatic process that estimates a near-visually optimal value for
the regularization weight.

• An extensive validation of our SR algorithm introduced in Tourbier
et al. (2014a) on simulated fetal data and on a set of ten clinical fetal
datasets of normal and pathological brains under various acquisition
conditions, including:

– a developed comparison between our model, the baseline Tikhonov
model and the open-source state-of-the-artmethod (Rousseau et al.,
2013) and

– a study of robustness of regularization terms w.r.t. motion error
residuals.

The paper is organized as follows. The 2nd section provides A short
review of fetalMRI reconstruction algorithms, startingwith the descrip-
tion of themost generic observationmodel used in this context. The 3rd
section Our Total Variation algorithm recalls our TV algorithm present-
ed in (Tourbier et al., 2014a) and it describes the design and implemen-
tation of our reconstruction pipeline. The 4th section Results and
Fig. 2. General paradigm for direct and iterative fetal brainMR image reconstruction. Two
iterative steps are considered until convergence: 1) a registration process for motion pa-
rameters estimation; 2) a restoration process for HR image recovery.

Image of Fig. 1
Image of Fig. 2
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validation develops an extensive validation of our algorithm, using sim-
ulated fetal data and clinically acquired fetal data. Finally, the
Conclusion is presented in the 5th section.

A short overview of fetal MRI reconstruction algorithms

Notations and definitions

We consider the following discrete setting throughout the paper. Let
X denotes the high-resolution (HR) image desired, Xkl

LR be the l-th
observed slice of the k-th LR image, nk is the observed noise in the
k-th LR image. Let Sx, Sy be two finite-dimensional real vector spaces
with inner product 〈⋅, ⋅ 〉, norm ‖ ⋅ ‖ := 〈⋅, ⋅ 〉1/2, dimSx = N where N is
the total number of pixel voxels and dimSy = m = N ⋅ d where d =
{2, 3} for 2D3D images. Let HR imagesX∈ Sx andDX∈ Sy their gradients.
The gradient operator D : Sx → Sy is a continuous linear operator with
norm ‖D‖ :=max{‖DX‖ | X ∈ Sx, ‖X‖ ≤ 1}. Let ∂

∂xi
denotes the derivative

operator w.r.t. dimension xi.

A generic observation model

Given the literature, the most accepted image acquisition model in
the context of fetal MRI is the linear model:

XLR
kl ¼ HklXþ nk; ð1Þ

where Hkl are linear operators that supposedly model the acquisition
distortions such as noise, blurring, aliasing, intensity bias and motion
(Fig. 3). In this process, the MR scanner acquires several LR stacks of
2D slices, referred as LR images, which are downsampled, degraded,
and aliased from the HR original scene. A typical acquisition model ac-
counting for motion, blurring and downsampling processes has been
considered in (Rousseau et al. (2006), Jiang et al. (2007), Kim et al.
(2008), Kim et al. (2010), Rousseau et al. (2010), Rousseau (2010) and
Fogtmann et al. (2012)). In those formulations, the matrix Hkl is
decomposed into three matrices accounting for motionMkl, blurring ef-
fects Bkl, and a basic downsampling aliasing operator Akl, i.e.:

Hkl ¼ AklBklMkl; ð2Þ

whereBkl is the 3D Point-Spread-Function (PSF) of the system andMkl is
assumed to be 6-DOF 3D rigid motion. Typically, a good approximation
of the PSF is a 3DGaussian functionwith the full width at halfmaximum
(FWHM) equal to the slice-thickness in the slice-select direction and
1.2× voxel size in-plane (Jiang et al., 2007; Kuklisova-Murgasova
et al., 2012). In Gholipour and Warfield (2009) and Gholipour et al.
(2010)), the slice acquisition process is fully modeled by decomposing
Bkl into two matrices, that simulate (1) the in-plane 2D PSF (Pkl) and
(2) the slice profile (Skl):

Hkl ¼ AklPklSklMkl; ð3Þ

where Pkl is a 2DGaussian functionwith FWHMequal to 1.2× voxel size
in-plane, Skl corresponds to a 3D rotation operator that defines the ori-
entation of the slice plane. In Kuklisova-Murgasova et al., 2012, the au-
thors proposed to unify SR, regularization, robust statistics and intensity
matching within a common expectation maximization framework. The
model (1) is modified to consider intensity inhomogeneities (bias field
and slice-dependent scaling factors) as follows:

XLR�
kl ¼ HklXþ nk; X

LR�
kli ¼ sklexp −Iklið ÞXLR

kli; ð4Þ

where Xkl
LR ⁎ represents the l-th scaled, denoised and bias-corrected slice

of the k-th LR image, Xkli
LR ⁎ is the intensity of the i-th voxel of Xkl

LR ⁎, Xkli
LR is

the intensity of the i-th voxel of the l-th slice of the k-th original LR
image, skl is the corresponding intensity scaling factor, and Ikli the corre-
sponding bias field factor.

Finding the original HR image in Eqs. (1) and (4) that generated the
LR images XLR under the MRI acquisition is carried out with an inverse
problem strategy, where Eqs. (1) and (4) are known to be the forward
models. This means that the given measures XLR are used to generate
the original unknown HR image X. The most natural way to combine
the LR images is through a standard least-square problem:

min
X

X
kl

HklX−XLR
kl

��� ���2: ð5Þ

However, due to the presence of noise and insufficient number of ac-
quired LR images, the above inverse problem is said to be ill-posed,
meaning that it has generally no meaningful solutions. A natural solu-
tion of this issue is to add priors aboutX, i.e.make use of known proper-
ties that X holds such as intensity smoothness.

Two-step reconstruction algorithm

Let us now introduce the most generic algorithm for fetal brain MRI
reconstruction (Rousseau et al., 2006; Jiang et al., 2007; Gholipour and
Warfield, 2009; Gholipour et al., 2010; Kim et al., 2010; Rousseau
et al., 2010; Rousseau et al., 2013; Kuklisova-Murgasova et al., 2012;
Fogtmann et al., 2012). The algorithm consists in iterating the following
two steps until convergence:

Step 1: Motion estimation

Mmþ1
kl ¼ arg min

Mkl

X
kl

AklBklMklX
m−XLR

kl

��� ���
M

; ð6Þ

where :k k
M

is a distance function that can be based on l2-
distance (Gholipour and Warfield, 2009; Gholipour et al.,
2010; Kim et al., 2010), cross-correlation (Jiang et al., 2007),
and NMI (Rousseau et al., 2006; Rousseau et al., 2010;
Rousseau et al., 2013; Kuklisova-Murgasova et al., 2012).

Step 2: Image restoration

Xmþ1 ¼ arg min
X

λ
2

X
kl

AklBklM
mþ1
kl X−XLR

kl

��� ���2 þ R Xð Þ;

where R(X) is a prior introduced to regularize the solution, the
first term relates to data fidelity. The parameter λ balances the
trade-off between R(X) and data fidelity. The general recon-
struction scheme is illustrated in Fig. 2. Our presentwork focus-
es on the image restoration step. It is beyond the scope of this
paper to also tackle the motion compensation problem but we
briefly summarize in the next section what the fetal MRI litera-
ture offered to solve this problem. We refer to (Malamateniou
et al., 2013) for a detailed discussion about motion correction
strategies in fetal applications.

Motion estimation algorithms

The motion estimation problem is addressed through an image reg-
istration task that aims at compensating mainly for motion occurring
between slices of the LR images, typically generated by short and fast
movements of the fetal head. All existing methodologies (Rousseau
et al., 2006; Jiang et al., 2007; Gholipour and Warfield, 2009;
Gholipour et al., 2010; Kim et al., 2010; Rousseau et al., 2010;
Rousseau et al., 2013; Kuklisova-Murgasova et al., 2012; Fogtmann
et al., 2012) have addressed the problem using voxel-based registration
methods where fetal motion is modeled as a full 6 degree-of-freedom
rigid 3D transformation (3 translations and 3 rotations). Typically,
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they consist in (1) globally co-registering the LR images (volume-to-
volume registration) and (2) hierarchically aligning every slice of the
LR image to the reconstructed HR image (slice-to-volume registration),
that is built using the current estimate of slice positions.

In practice, most registration methods differ only as regards their
choice of similarity metric, the distance :k k

M
in Eq. (6), and the corre-

sponding optimization algorithm used to estimate the spatial transfor-
mation. When the assumptions of similar levels of blur and identical
contrasts between LR volumes are made, themean square intensity dif-
ference (MSD) is adopted (Gholipour and Warfield, 2009; Gholipour
et al., 2010). In order to force similar intensity values in the images
being registered, a weighted MSD (Kim et al., 2010) and cross-
correlation (CC) (Jiang et al., 2007) measures have also been proposed.
To not be based on strong assumptions between the two images and to
be less sensitive to changes in overlap, the NormalizedMutual Informa-
tion (NMI) as cost function has also been used (Rousseau et al., 2006;
Rousseau et al., 2010; Rousseau et al., 2013; Kuklisova-Murgasova
et al., 2012). In all methods, a classical hierarchical strategy is applied
in order to incorporate the interleaved aspect of acquisition and to re-
duce the risk to fall into localminima. Such hierarchical implementation
involves decreasing step sizes of the optimization algorithm at the dif-
ferent stages of registration.

Rather than single slice-to-volume registration, the Slice Intersection
Motion Correction (SIMC) (Kim et al., 2010) aims at solving a slice mo-
tion correction registration by seeking the collective alignment of all
slices simultaneously, and considering the matching structure along
all intersecting slice pairs.

While all approaches dealwith themotion compensation as an inde-
pendent step, a unified formulation formotion estimation and SR recon-
struction was recently presented in Fogtmann et al. (2012). Their major
contribution is a regularization term for the motion estimation that en-
codes the high correlation between temporal neighboring slices, in-
creasing the robustness when large motion occurs.

Despite these motion compensation efforts, the HR image may still
be corrupted by remaining registration errors and other types ofmotion
artifacts not well-modeled by a 6 DOF transformation.2 To treat these
cases, outlier detection and rejection schemes are used, either imple-
mented as a separate module preceding the SR (Rousseau et al., 2006)
(Kim et al., 2010), or incorporated in the energy formulation of the
restoration algorithm (Gholipour et al., 2010; Kuklisova-Murgasova
et al., 2012).
Fetal MRI restoration algorithms

Original restoration algorithms were designed in the frequency
domain, using the shifting and aliasing properties of the Fourier
Transform in order to increase the image resolution. But these frequen-
cy approaches have shown to have an observation model limited to
translation only. Nowadays, researchers in fetal MRI address this prob-
lem in the spatial domain, which allow models taking into rotation
(Yang and Huang, 2011). Besides, desired edge-preserving properties
are easier to deal with in the spatial domain.
Interpolation models
Pioneerworks on fetal HR restoration are based on the interpolation

SR model (Rousseau et al., 2006; Jiang et al., 2007; Kim et al., 2008; Kim
et al., 2010). They consist in performing an iterative reconstruction pro-
cedure, interleaving rigid co-registration of the LR images and Scattered
Data Interpolation (SDI) (interpolation onto an HR grid) steps.
2 For instance,when fetus is displaced from the region being imaged and, due to the loss
of signal, LR images have dark slices.
Based on the acquisition model Eq. (2), the development of such
approaches have beenmotivated by assuming that Bkl is linearly spa-
tial invariant and is the same for all slices andMkl considers only rigid
6 DOF motions (translations + rotations). Thus, Bkl andMkl can com-
mute in Eq. (2), and after injection in Eq. (1), the acquisition model
becomes:

XLR
kl ¼ AklMkl BklXþ nk|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Z

¼ AklMklZ: ð7Þ

A composite image on non-uniformly spaced sampling points is first
obtained with the registration of LR images. Then, nonuniform interpo-
lation is performed to get Z, an image with uniformly spaced sampling
points.

The first interpolation method that tackles the SR problem in fetal
MRIwaspresented in (Rousseau et al., 2006). Themethodused an inter-
polation SR approach that comprises slice-to-volume registration inter-
leaved with Scattered Data Interpolation (SDI). Once motion
parameters are estimated, a bias field correction step is performed to
correct the local relative intensity distortion between LR images. Finally,
a computationally efficient local neighborhood Gaussian kernel SDI is
employed for reconstruction but this reduces spatial frequency content
and thus results in excessive blurring. In Jiang et al. (2007), SDI is im-
proved with the use of cubic B-spline kernel SDI.

Introduction of spatial priors has been later adopted. They are
reviewed in the next section.

Bayesian and Variational models
Two main categories of algorithms that introduce spatial

regularizations in the restoration task can be distinguished: (1) Deter-
ministic variationalmodels and (2) stochastic Bayesianmodels. Typical-
ly, stochastic approaches rely on the formulation of the problem in a
Bayesian framework such asMaximum a Posteriori (MAP), while deter-
ministic approaches are based on the formulation of Constrained Least
Squares (CLS) energy with functional space-based regularization. In
both approaches, the HR image and motion among LR images can be
considered as either stochastic or deterministic variables, relating the
SR reconstruction steps stochastically or deterministically toward an
optimal reconstruction.

Let us express the SR reconstruction problem into a full Bayesian for-
mulation. Let Hkl = AklBklMkl be the matrix modeling the MRI acquisi-
tion. Let suppose nk to be Gaussian. Then, SR reconstruction can be
formulated as:

X̂ ¼ argmax
x

∏
kl
Pr XjXLR

kl

� �
ð8Þ

where Pr(X|Xkl
LR) refers to the posterior probability. In fetal MRI, X and

Hkl are assumed to be statistically independent and, if we suppose that
Hkl is estimated beforehand, denoted asĤkl, Eq. (8) can be reformulated
(using the Bayes rule) as:

X̂ ¼ argmax
X

∏
kl
Pr XLR

kl jX; Ĥkl

� �
Pr Xð Þ: ð9Þ

where probability Pr(Xkl
LR|X, Ĥkl) corresponds to the data likelihood,

Pr(X)is the prior probability on the HR image desired. Eq. (9) describes
the popular stochastic MAP formulation of SR. When no prior distribu-
tion over the image is incorporated, the Maximum Likelihood (ML) for-
mulation could be obtained from Eq. (9). Such ML formulation has
been adopted in the pioneer work presented in (Gholipour and
Warfield, 2009; Gholipour et al., 2010), which aims at providing an op-
timum solution throughmaximizing the conditional probability density
function Pr(Xkl

LR|X) of the acquired sliceXkl
LR given the reconstructed vol-

ume X. Standard stochastic optimization techniques, such as Monte
Carlo (Metropolis et al., 1953; Hastings, 1970), Simulated annealing
(Kirkpatrick et al., 1983), Iterated Conditional Modes (Besag, 1986) or



Fig. 3. Theobservationmodel of a realMR imaging system relating the low-resolution (LR)
image Xk

LR (observed images) to an high-resolution (HR) image X. The SR reconstruction
step corresponds to the inverse problem, i.e., finding X given the observations Xk

LR.
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stochastic Partial Differential Equations (Zabaras, 2010) can be used to
find a solution to (9). However, using the assumption of independent
slice acquisition, the stochastic formulation (9) can be cast into a deter-

ministic optimization framework. If we suppose that Pr XLR
kl jX; Ĥkl

� �
¼

e−λ ĤklX−XLR
klk k2

; Pr Xð Þ ¼ e−R Xð Þ, when the noise residuals are presumed
to be drawn from a Gaussian distribution, and using the logarithmic
function, then (9) becomes

X̂ ¼ −log arg max
X

∏
kl
Pr XLR

kl jX; Ĥkl

� �
Pr Xð ÞÞ

� �

¼ arg min
X

X
kl

−log Pr XLR
kl jX; Ĥkl

� �h i
−log Pr Xð Þ½ �

¼ arg min
X

λ
X
kl

HklX−XLR
kl

��� ���2 þ R Xð Þ;

ð10Þ

where R(X) corresponds to the regularization term and λ controls the
trade-off between regularization strength and data fidelity. As a result,
it is equivalent to solve (9) and (10) under the slice independence hy-
pothesis. Several proposed methods (Gholipour and Warfield, 2009;
Gholipour et al., 2010; Rousseau et al., 2010; Rousseau et al., 2013;
Kuklisova-Murgasova et al., 2012; Fogtmann et al., 2012) used this
equivalence to formulate the problem in a Bayesian framework and
compute a solution with variational optimization techniques. However,
non-Gaussian noise and outliers might be present in the data due to
possible intensity inhomogeneities and inaccurate slice motion estima-
tion. In this case, the ‘2-norm is not robust and it has led to the develop-
ment of modified versions of Eq. (10). They will be reviewed in the next
section.

Variational terms
A more general formulation of Eq. (10) is:

X̂ ¼ arg min
X

λF Xð Þ þ R Xð Þ; ð11Þ

where F(X) is a function that represents the data fidelity term. The
choice of appropriate terms aswell as an adequate optimization scheme
is crucial for high reconstruction quality.

Data fidelity terms. In fetalMRI acquisition,motion estimation errors and
intensity inhomogeneities usually occur. This is critical as these errors
influence the quality of the restored image. Consequently, several
error norms for the data fidelity term have been considered for dealing
with outliers.

As noise might not be Gaussian, they have considered in (Gholipour
and Warfield (2009) and Gholipour et al. (2010)) a modified error
weight functionΩk (based on theHuber error function) to take into con-
sideration more generic outliers such that:

F Xð Þ ¼ Ωk HklX−XLR
kl

h i��� ���2: ð12Þ

Such a formulation has shown to be a good balance between the
most precise estimation in a Gaussian environment (‘2-norm) and the
most robust estimation in a non-Gaussian environment.

Alternatively in Kuklisova-Murgasova et al., 2012 the authors pro-
posed to simultaneouslymaximize thefit between the estimated recon-
struction, the estimated intensity inhomogeneities and the data

acquisition s.t. X̂ ¼ minXminIkl F X; Iklð Þ, where Ikl is the underlying inten-
sity inhomogeneity. They introduced probability density function in
order to model outliers, where they consider the inlier class posterior
probability pkl

slice of the l-th slice of k-th LR image and the posterior prob-
abilitypklj

voxel of a voxel j being classified as an inlier. This corresponds to a
hybrid approach, where probabilities are integrated in a deterministic
energy minimization problem as weight functions:

F Xð Þ ¼
X
kl j

pslice
kl pvoxel

kl j e2kl j; ð13Þ

where ekl j ¼ Hkl jX̂ j−XLR�
kl j is the estimation error of the j-th voxel of the

l-th slice of the k-th intensity-corrected LR image. It has been demon-
strated that this method performs better than the method with Huber
statistics and exclusion of either intensity matching or robust statistics
results in drop of performance compared to their full method.

Finally, the authors in Fogtmann et al. (2012) suggested reducing
outliers by optimizing F with respect to both the underlying image X
and the underlying slice motions Mkl. They also propose a unified for-
mulation that simultaneously maximizes the fit between the estimated
reconstruction, the estimatedmotion and the data acquisition data such
that:

X̂ ¼ arg min
X

min
Mkl

F X;Mklð Þ: ð14Þ

This method has been compared against different formulations
using different estimators and penalty terms for registration as well as
different approaches such as the SIMC. On simulated data, the method
designedwith a ‘2 estimator and a Huber penalty has proved to provide
the best overall performance.

Image of Fig. 3
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Regularization terms.Due to the ill-posedness of the restoration problem
it is essential to introduce regularization terms to constraint the solution
to hold prior knowledge of the desired image. If the regularization term
is not appropriate, SR could result in too blurry images or artifacts can be
produced. Several local regularization terms have been considered in
the literature s.a. Tikhonov regularization (Gholipour et al., 2010;
Fogtmann et al., 2012), Total-Variation based regularization (Rousseau
et al., 2010; Kuklisova-Murgasova et al., 2012), and non-local regulari-
zation terms such as non-localmeans (Rousseau et al., 2013). In general,
TV energies can been seen as a measure of signal variability that penal-
izes only the total amount of gradient in the image, preserving edges
during reconstruction, as opposed to Tikhonov which penalizes its dis-
tribution. For these reasons, they have been more widely adopted by
the community.

Optimization via gradient descent
Let F(X) be the simple l2 error norm. The fetal brain reconstruction

problemcan be formulated as afirst order convex optimization problem
such that:

min
X∈Sx

λ
2

X
kl

HklX−XLR
kl

��� ���2 þ Xk kTV s:t:X ≥ 0 ð15Þ

where ‖X‖TV := ‖DX‖1 is the TV semi-norm (Rudin et al., 1992). Prob-
lem (15) is a convex but also non-smooth optimization problem. Non-
smooth minimization has been challenging since the introduction of
TV in imaging problems in the 90s. The most common methodology
that optimizes TV consists in using a smooth ε-regularization of TV
such that:

Xk kTVε
:¼

X
i; j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jDXi; jj2 þ ε

q
→ Xk kTV for ε → 0: ð16Þ

The naturalmainmotivation to introduce a quadratic approximation
of TV is to apply smooth optimization tools like gradient descent or con-
jugate gradient schemes. In the context of fetal reconstruction, this ap-
proach was considered with ε = 1 in Kuklisova-Murgasova et al.,
2012; Rousseau et al. (2010) based on the edge-preserving technique
introduced in Charbonnier et al. (1997). In Gholipour et al. (2010), the
authors considered large ε that links to the Dirichlet Laplacian energy,

i.e. Xk kTVε
→ Xk kDir ¼ DXk k2 for ε→∞. Standard optimization techniques

for ε-TV have been carried out with the calculus of variation followed by
a forward explicit steepest gradient descent scheme, such as in
Kuklisova-Murgasova et al., 2012 and Rousseau et al. (2010), or follow-
ed by a quasi-Newton optimization scheme, such as in Fogtmann et al.
(2012). The non-local reconstruction approach suggested in Rousseau
et al. (2013), is solved by iteratively performing a basic image restora-
tion algorithm, based on the Dirichlet energy, and a NLM denoising al-
gorithm, as in Manjón et al. (2010). The energy is optimized using the
Fletcher–Reeves form of conjugate gradient descent algorithm.

TV energies have been largely adopted in the literature because of
their powerful ability in edge preservation. However, only standard
steepest gradient techniques have been applied to optimize fetal-
based TV energies. But, such standard PDE-based optimization schemes
may be slow because they are restricted by the Courant–Friedrichs–
Lewy's condition (Courant et al., 1967), that basically sets an upper
bound on the time step of the iterative flow s.t. Δt ≤ εΔx/maxi,jELi,j,
where EL corresponds to the Euler–Lagrange equations (speed of the
flow) and Δx is the spatial step. It is known that the asymptotic rate of
convergence of forward steepest descent techniques for smooth energy
is 0(1/n) where n is the number of iteration steps and the iterative rate
isO(1/ε), see e.g. (Beck and Teboulle, 2009). Besides the speed, there are
two other limitations with ε-TV: (1) the TV term is not exactly solved
because we compute an ε-solution, which does not preserve as well
image contrasts and small-scale structures as the exact TV, and
(2) there is an extra parameter, ε, to select (unlike exact TV).

Our total variation algorithm

Algorithm description

In the last years, fast TV-based algorithms based on convex optimi-
zation theory have been developed to solve sparse reconstruction prob-
lems such as Compressed Sensing. Major classes of TV optimization
methods are (1) Alternating Direction Method of Multipliers (ADMM)
(Glowinski and Tallec, 1989; Goldstein and Osher, 2009), (2) -
Forward–Backward algorithms (Nesterov, 2005; Combettes and Wajs,
2006; Combettes and Pesquet, 2011; Beck and Teboulle, 2009), and
(3) Uzawa-based Primal-Dual methods (Arrow et al., 1958; Zhu and
Chan 2008; Chambolle and Pock, 2011a). For the sake of clarity, we re-
call in this section our contribution (Tourbier et al., 2014a) where we
reformulated Eq. (15) by using an accelerated primal-dual hybrid gradi-
ent (PDHG) method based on (Chambolle and Pock, 2011b) to design a
fast, robust algorithm that offers accurate solutions and is guaranteed to
converge to a global solution for Eq. (15) (i.e. solution is independent of
the initialization). Specifically, PDHG consists in introducing the dual
variable P in Eq. (15) that splits our initial complex problem on the pri-
mal variable X into two simpler problems easy to solve. It corresponds
to rewrite Eq. (15) as the saddle point problem or equivalently as a
primal-dual optimization problem:

min
X∈SX

max
P∈SY

DX;Ph i−F� Pð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Xk kTV

þ G Xð Þ þ δC Xð Þ|fflffl{zfflffl}
X≥0

ð17Þ

where X corresponds to the original primal variable and P corresponds

to the dual variable introduced,G Xð Þ ¼ λ
2∑

K
k¼1 HkX−XLR

k

��� ���2, the convex
function F★ denotes the barrier function of the ‘∞ unit ball, that is
F★(P) = 0 if |Pi| ≤ 1 for 1 ≤ i ≤ n, otherwise F★(P) = + ∞ and δC(X) is
a barrier function of the convex set C := {X ≥ 0}. As G is uniformly con-
vex, we may therefore apply (Chambolle and Pock, 2011b) to solve
Eq. (17). The proposed algorithm consists in iterating

Pnþ1 ¼ proxσn F★ Pn þ σnDX
n

� �
ð18Þ

Xnþ1 ¼ proxτnGþδC Xn−τnDtPnþ1
� �

ð19Þ

θnþ1 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ρτn

p
; τnþ1 ¼ θnþ1τn;

σnþ1 ¼ σn=θnþ1 ð20Þ

X
nþ1 ¼ Xnþ1 þ θnþ1 Xnþ1−Xn

� �
ð21Þ

where proxE the proximal operator of E defined as proxE Xð Þ :¼
arg minY E Yð Þ þ 1

2 Y−Xk k2 . Solution of the inner problem Eq. (18) is

given by proxσn F★ Zð Þ	 

i ¼ Zi=max 1; jZijf g where Z ¼ Pn þ σnDX

n
. The

solution of the least-square problem Eq. (19),

minX≥0
λ
2∑

K
k¼1 HkX−XLR

k

��� ���2 þ 1
2τn X−Wk k2 withW=Xn− τnDtPn + 1

can be computed with several approaches. We use a semi-implicit gra-
dient descent scheme that provides fast good approximate minimizing
solutions. More specifically, the Euler–Lagrange solution of Eq. (19) is
λτn(HX − XLR) + X − W = 0 where H := ∑k = 1

K Hk
tHk and XLR :=

∑k = 1
K Hk

tXk
LR (note that H and XLR are computed only once) and the it-

erative semi-implicit scheme is defined as Xlþ1 ¼
PC Xl−Δtλτn HXl−XLR

� �
þ ΔtW

� �
= 1þ Δtð ÞwherePC is the projection

operator onto the set X ≥ 0 and Δt = 0.1 in all experiments.
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Algorithm defined by Eqs. (18)–(21) is guaranteed to converge to a
saddle point (X★, P★) to Eq. (17) (where P★ is themaximizer of the dual
problemandX★ is theminimizer of the primal problem) and therefore a
solution X★ of the fetal reconstruction problem Eq. (15) as long as the
initial time steps are chosen to be σ0τ0 ≤ 1/‖D‖2, see (Chambolle and
Pock, 2011b) for more details.

We observe that TV-based models have been proposed in the litera-
ture for the fetalMRI reconstruction problems such as Charbonnier et al.
(1997), Rousseau et al. (2010) and Kuklisova-Murgasova et al., 2012.
However, these works have considered a smooth approximation
of the TV semi-norm, that is Eq. (16). Although our technique and
the ones in (Charbonnier et al., 1997; Rousseau et al., 2010;
Kuklisova-Murgasova et al., 2012) target at optimizing the TV energy,
there is a subtle but essential difference between our approach and
the other published TV-based techniques. If one wants the exact TV
for best image edge recovery in ε-TV approaches, then taking ε as
small as possible is required, but the smaller ε, the slower the conver-
gence to the steady state solution (and ε = 0 can never be chosen).
More importantly, our approach solves the exact TVwith a new optimi-
zation scheme that is optimal for this class of problems as proved by
Nesterov in (Nesterov, 2005), as the asymptotic speed of convergence
of the algorithm is quadratic, i.e. O( 1

n2), while optimization techniques

based on ε-TV are restricted to O(1n). We will carry out a numerical ex-
periment in section Numerical comparison of optimization schemes:
ε-TV v.s. exact TV to validate these asymptotic speeds of convergence.
Adaptive regularization parameter λ

Determination of an appropriate weight λ that controls the strength
of the regularization terms is the key for successful regularized image
reconstruction. Intuitively, the amount of regularization would depend
on the image resolution and the number of LR images. In this sense,
the more the number of available LR images is increased, the less ill-
posed the problem will be, and thus, a lower level of regularization
will be required. To our knowledge, existing SR techniques in fetal
MRI set the amount of regularization arbitrarily based on visual percep-
tion (Gholipour and Warfield, 2009; Gholipour et al., 2010; Rousseau
et al., 2010; Rousseau et al., 2013; Kuklisova-Murgasova et al., 2012;
Fogtmann et al., 2012). However, many regularization parameter choice
methods have been proposed in image restoration and reconstruction
problems (Galatsanos and Katsaggelos, 1992; Karl, 2005). In general,
they can be classified into twomajor categories.Methods in thefirst cat-
egory s.a. those based the discrepancy principle (Galatsanos and
Katsaggelos, 1992; Karl, 2005) seek to estimate the optimal value
based on a priori knowledge of the image and/or statistics of the noise
while methods in the second category s.a. those based on L-curve
(Hansen and O'Leary, 1993), generalized cross-validation (GCV)
(Mersereau and Reeves, 1990) and estimation of mean squared error
(MSE) (Stein, 1981; Ramani et al., 2012) search to estimate the optimal
value directly from the data available. We refer to (Galatsanos and
Katsaggelos, 1992; Karl, 2005) for more details about regularization pa-
rameter choice. In this section, we propose a first attempt for adaptive
regularization parameter setting in fetal MRI SR reconstruction. Two
data-driven strategies are presented here to perform a fair comparison
between different regularization terms carried out in section Results
and validation.

In fetal MRI, quantitative evaluation of the quality of the reconstruc-
tion is challenging as a priori knowledge about the ground-truth HR
image is not known. To overcome this limitation, previous works on
fetal brain SR reconstruction adopted two different approaches. On
one side, the authors in (Gholipour et al. (2010) and Rousseau et al.
(2010) and Kuklisova-Murgasova et al., 2012) simulated fetal data
from a known HR image to evaluate their algorithms under controlled
conditions. On the other side, the authors in Kuklisova-Murgasova
et al., 2012 suggested to evaluate their algorithms on clinical fetal data
by performing a leave-one-out analysis. For all experiments, a standard
evaluation of the quality of the reconstructed images in fetal MRIwas to
use either the normalized rootmean squared error (NRMSE) (Gholipour
and Warfield, 2009; Kuklisova-Murgasova et al., 2012; Tourbier et al.,
2014a) or the peak signal-to-noise ratio (PSNR) (Rousseau et al., 2010;
Gholipour et al., 2010; Kuklisova-Murgasova et al., 2012), related
through PSNR = 10 * log(1/NRMSE2). Therefore, we have developed
two strategies, as regards as the kind of experiments, where the PSNR
is considered as the criterion for determining the optimal regularization
weight, namely λPSNR, for comparison between different regularization
terms.

For simulated experiments in section Quantitative analysis of
simulated fetal images, we propose a strategy which automatically
sets the optimal value of the regularization parameter using the
ground-truth HR image XGT. Specifically, for each regularization term,
we select λ that provides the best reconstruction quality in terms of
the highest PSNR with respect to XGT:

λPSNR ¼ arg max
λ

PSNR X̂;XGT
� �

ð22Þ

For in-vivo fetal experiments in section Quantitative analysis of real
fetal images, aswe do not know the ground truth HR image, we propose
a strategy which automatically sets the optimal regularization weight
using the set of available ground-truth LR images. Specifically, for each pa-
tient and for each regularization term, wewill select λ that provides the
best reconstruction quality in terms of the highest mean PSNR over the
set of acquired LR images:

λPSNR ¼ arg max
λ

1
N

X
k

PSNR X̂k
LR;XLR

k

� �
ð23Þ

where X̂LR
k ¼ HX̂k and X̂k corresponds to theHR image reconstructed in a

leave-one-out fashion by excluding Xk
LR from the reconstruction. For

both strategies, an exhaustive search is performed. To validate the qual-
ity of the estimate, we present in section Perceptual evaluation of the
adaptive regularization a perceptual evaluation of our adaptive regular-
ization parameter in clinical practice using a multiple-alternative
forced-choice approach, as in where a radiologist expert was required
to choose one image as his preference from a set a reconstructed images
with different levels of regularization in a range around λPSNR.

Practical implementation

Data preprocessing
A first manual reorientation step is performed with Slicer (Pieper

et al., 2004) (Step 1 in Fig. 4). Then, we perform semi-manual brain
masking (aided by region growing segmentation algorithm) to ensure
good results of the subsequent image processing steps, as maternal tis-
sue surrounding the brainmay changes and could consequently corrupt
them (Step 2 in Fig. 4). Note that few works have addressed this prob-
lem automatically in the last past years, either through template-
based segmentation (Anquez et al., 2009; Taleb et al., 2013; Tourbier
et al., 2014b) or through machine learning (Ison et al., 2012;
Keraudren et al., 2014). Finally, we standardize intensities of the LR
stacks through N4 bias field correction, intensity scale standardization
(Nyúl et al., 2000), and rescaling intensities into [0,255] (Step 3 in
Fig. 4).

Motion estimation
The estimation ofmotionparameters is donewith BTK. Firstly, global

stack registration is used for initialization of the transforms. Then, rigid
6 degrees-of-freedom slice-to-volume registration is performed where
normalized correlation is used as metric for optimization. Prior to mo-
tion estimation, LR images are filtered by NLM denoising. This reduces
the chance of the registration process to fall into local minimas. Finally,



Fig. 4. Summary of the overall fetal brain HR reconstruction pipeline. Softwares, libraries
and programming languages used are listed on the right-hand side in italic.
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an initial HR image is estimated using SDI, as in Rousseau et al. (2006). It
corresponds to Step 4 in Fig. 4.

Super-resolution
Our Total Variation algorithm is implemented in C++with Insight

Toolkit (Yoo et al., 2002). A first step is the computation of matrices
Hk in Eq. (15). It consists of positioning and orienting Gaussian kernels
according to the transformation between each slice and the HR image
followed by sampling to the grid of the HR image. Calculations and op-
erations inherited from our TV formulation are implemented using the
numerical library VNL for algebra purposes. Note that input LR images
to the SR algorithm are not filtered by NLM denoising. In addition, we
prefer to not update motion estimation during super-resolution. We
know that motion estimation updated during SR can further improve
the quality of registration and consequently, the quality of image resto-
ration. However, we noticed that the running timewas dramatically in-
creased. We decided to focus only on the optimization of the image
restoration problem, which is the scope of this work. It corresponds to
Step 5 in Fig. 4.

Results and validation

As described in section Variational terms, most published works in
the literature of fetal brain MRI have focused and stayed to these three
most important regularizers, i.e. Tikhonov, TV and NLM. In our
Table 1
Clinical datasets.

Patient GA Diagnostic

P1 22 weeks Normal
P5 22 weeks Important malformation
P2 25 weeks Agnesis of the Corpus Colossum
P4 26 weeks Limited Gyration
P10 30 weeks Bilateral ventriculomegaly + kyste + hemorrhage
P3 32 weeks Normal
P7 32 weeks Normal but small
P8 33 weeks Asymmetrical ventriculomegaly
P6 34 weeks Normal
P9 36 weeks Bilateral ventriculomegaly + Cornes frontales
knowledge, evaluations between different ε-TV formulations have
been performed by the authors in (Rousseau et al., 2010) showing
that they led to similar results in terms of PSNR. However, there is no
existing comparison either with a classical Tikhonov as used in the pio-
neer work (Gholipour et al., 2010), which is very fast to converge, or
with NLM as provided by the open-source toolbox BTK (Rousseau
et al., 2013) (considered as one of the state-of-the-art method freely
available).

In this section, we present an extensive validation of our algorithm.
First, the convergence speed of our optimization scheme is validated as
regards ε-TV optimization scheme on a 2D brain image of a mature
newborn (section Numerical comparison of optimization schemes: ε-
TV v.s. exact TV). Then, we carry out quantitative evaluations on 1) sim-
ulated fetal acquisitions from a newborn data and 2) normal and patho-
logical fetal brain MRIs, where we compare our TV with Tikhonov
and NLM. We study the robustness of the proposed TV reconstruction
algorithm to different amounts of residual motion error (section
Quantitative analysis of simulated fetal images). We also evaluate the
ability of our algorithm to be conformed with the MRI stacks acquired
(section Quantitative analysis of real fetal images). Eventually, we
qualitatively evaluate the proposed algorithm on fetal MRIs (section
Perceptual evaluation of the adaptive regularization).

As BTK, the Tikhonovmethod is implemented in C++with Insight
Toolkit (Yoo et al., 2002), where the Fletcher–Reeves version of the con-
jugate gradient is used for optimization. Projection onto the set {X ≥ 0} is
also applied to guarantee positive intensities. Global rigid stack registra-
tion is used for the newborn dataset (section Quantitative analysis of
simulated fetal images). Global rigid stack registration followed by
slice-to-volume registration is employed in the case of the clinical
datasets (section Quantitative analysis of real fetal images). Tests are
run on a 3.4 GHz Quad-core i7-3770 CPU. Reported running times cor-
respond to the computational time of the SR problem optimization
without motion estimation.

Material

Simulated fetal dataset
We use a T2-weighted TurboFLASH image of a mature newborn

to simulate fetal brain MRIs, as in (Gholipour et al., 2010;
Kuklisova-Murgasova et al., 2012). The imagewas acquired on a 3 T Sie-
mens Tim Trio with TR = 4000 ms, TE = 3.7 ms, slice thickness of
1.2 mm and in-plane resolution of 0.78 mm. We consider the ground-
truth image as the original image that was bias field corrected
(Tustison and Gee, 2009) and isotropically interpolated to a resolution
of 1 mm using B-splines. Six LR images, two per acquisition direction,
with in-plane resolution of 1mm, slice thickness of 3mm,were simulat-
ed from the ground-truth image by applying downsampling and blur-
ring operations. Shifts of 1 mm were also introduced for images with
the same acquisition direction. Note that a number of six LR images
were adopted in compliance with previous works Rousseau et al.
(2010) and Kuklisova-Murgasova et al., 2012 showing that the
Brain Volume Sequence Stacks Resolution Mfactor

112643 mm3 HASTE 6 1.13 × 1.13 × 3.6 3.2
118169 mm3 HASTE 4 1.13 × 1.13 × 3.6 3.2
204882 mm3 HASTE 6 1.13 × 1.13 × 3.6 3.2
290421 mm3 HASTE 4 1.13 × 1.13 × 3.6 3.2
275914 mm3 SSFSE 4 1.09 × 1.09 × 5.5 5.1
470108 mm3 HASTE 5 1.13 × 1.13 × 4.8 4.3
324868 mm3 SSFSE 8 1.09 × 1.09 × 5.5 5.1
503682 mm3 SSFSE 7 1.09 × 1.09 × 5.5 5.1
344547 mm3 SSFSE 5 1.09 × 1.09 × 5.5 5.1
612998 mm3 SSFSE 4 1.09 × 1.09 × 5.5 5.1

Total 53

Image of Fig. 4


Fig. 5. Numerical comparison of optimization schemes: ε-TV vs exact TV.

592 S. Tourbier et al. / NeuroImage 118 (2015) 584–597
reconstruction quality marginally improves whenmore than 4–5 stacks
LR images are used, in similar acquisition conditions.

Clinical fetal dataset
Our clinical fetal dataset is formed by 53 LR images coming from the

acquisition of 10 fetus, aged between 22 and 36 weeks GA (see Table 1).
The acquisition of each fetus consists of a set of 4 to 8 stacks, where at
least one stack is available in each anatomical direction. Stacks were
acquired using two different MRI scanners, including 1) a 1.5 T
Siemens Aera using a T2-weighted HASTE sequence with a resolution of
1.13 × 1.13 × 3.6 mm3 (TE TR = 90/1200 ms), 1.13 × 1.13 × 4.8 mm3

(TE TR = 89/1000 ms) and 2) a 1.5 T Philips with a resolution of
Fig. 6. Impact of the choice
1.09 × 1.09 × 5.5 mm3 (TE TR= 180/7000 ms). Our dataset is thus het-
erogeneous as acquisitions come from fetuswith different age, performed
on different MRI scanner, and with different slice-thickness-to-in-plane-
resolution ratio, also known as magnification factor (Mfactor). It was
shown by the authors in Lin and Shum 2004 on 2D images that when
Mfactor is an integer, the sufficient number of LR images is Mfactor2. A
similar number of required LR images was found in Rousseau et al.
(2010); Tourbier et al. (2014a) in the case of fetal 3D MRI.

This study has been approved by the Cantonal Research Ethics
Committee of Vaud, Switzerland. The patient information from all
data used in our study was anonymized and de-identified prior to
our analysis.
of ε in ε-TV algorithms.

Image of Fig. 6
Image of Fig. 5


Fig. 7. Robustness of SR algorithms to motion error residuals when , , and of the slices are affected. ★ denotes results obtained using the classical Tikhonov algorithm. ▲ denotes
results obtained using the BTK algorithm based on NLM. ● denotes results obtained using our TV algorithm.
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Numerical comparison of optimization schemes: ε-TV v.s. exact TV

The goal of this section is to show that (i) for small ε (here we take
ε = 1e − 4), ε-TV produces the same quality for reconstructed SR im-
ages than exact TV but it requires more time to converge, and (ii) for
large ε (here we take ε=1), ε-TV does not produce good image quality
as the TV approximation is too smooth to recover sharp image disconti-
nuities, i.e. edges.

For (i), we carry out a standard numerical experiment on Fig. 5 to
validate the theoretical asymptotic rates of convergence for ε-TV with
ε = 1e − 4 (using an explicit forward gradient flow algorithm as in
(Rousseau et al., 2010; Kuklisova-Murgasova et al., 2012)) and exact
TV (using the proposed algorithm Eqs. (18)–(21) in section Our Total
Variation algorithm). In order to speed up the computational time, we
test both algorithms on a 2D HR image corresponding to an axial slice
of the T2-weighted TurboFLASH image of the mature newborn (simu-
lated fetal dataset). Four LR images were generated by applying sub-
sampling operations and introducing noise but without adding any
motion, see Fig. 4. The numerical asymptotic convergence rates are
given in Fig. 4. The computed slope of our optimization algorithm,
−1.99, is close to the theoretical one, i.e. −2, and the slope of ε-TV,
− 0.82, is also close to the theory, i.e. − 1. To illustrate the impact of
the difference of convergence rates, we present Figs. 4 and 4. At the
20th iteration, we can see that the solution given by our algorithm,
Fig. 4, is very close to the final steady state solution with a PSNR value
Fig. 8. Optimization of the regularization parameter λ for: a) patient P3 (5/18.5), b) patient P6 (5
number X of stacks of slices and to the slice-thickness-to-in-plane-resolution ratio Y =Mfactor2

problem. denotes the optimal regularizationweight for Tikhonov. denotes the optimal regular
optimal values are further used for the leave-one-out analysis presented in Table 2.
of 25.21 dB. However, the solution provided by the ε-TV algorithm,
Fig. 4, is far away at the 20th iteration of its final solution as the PSNR
value is 6.60 dB. It illustrates the fact that more iterations are required
for the ε-TV algorithm to converge. Eventually, at convergence, both so-
lutions have the same reconstruction quality, around 25.21− 25.23 dB.
This confirms that ε-TV for small ε offers same solution as exact TV, but
at a higher computational cost.

For (ii), we present Fig. 6 that compares ε-TV for large ε (Fig. 5), ε-TV
for small ε (Fig. 5), and exact TV (Fig. 5). The solution provided by small ε
and exact TV have almost the same PSNR value of 25.23 dB, while the
PSNR of large ε is lower at 20.34 dB. A lower PSNR for large ε is expected
as a smoother version of TV is less able to recover image edges.

Quantitative analysis of simulated fetal images

We assess the performance of our algorithm w.r.t. the residual mo-
tion error by randomly affecting 1/5, 2/5, 3/5 of the slices in each LR im-
ages. Different amounts of residual motion errors are randomly added
to one of the transform parameters (translation only and rotation
only), following (Rousseau et al., 2006; Jiang et al., 2007; Gholipour
et al., 2010). Translation errors are selected in [− t, t] for t =
[0.1, 0.2, …, 1.5 mm] and rotation errors are selected in [−r, r] for
r = [0.1, 0.2, …, 2.0∘]. The amount of the overall residual motion error
is measured by computing the mean square error of the transform
parameters. The reconstruction quality is evaluated with the Peak-
/26), and c) patient P7 (8/26). Numbers in parenthesis (X Y) correspond respectively to the
(defined in section Material). Both numbers indicate the “degree” of ill-posedness of the SR
izationweight for BTK. denotes the optimal regularizationweight for our TV. The estimated

Unlabelled image
Unlabelled image
Unlabelled image


Fig. 9. Illustration of the leave-one-out analysis results for fetus P3 (row 1) and fetus P7 (row 2); a) Original LR Image Xk
LR left for evaluation; b) X̂

LR
k using BTK; b) X̂

LR
k using our TV.
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Signal-To-Noise Ratio (PSNR). Parameters for Tikhonov, BTK and our
algorithm are selected to have the best reconstructed HR image in the
sense of the highest PSNR with respect to the original isotropic image
of the newborn.

Results are presented in Fig. 7. We observe that the reconstruction
quality always degrades independently of the regularization term as
error motion residual is important. In addition, the TV regularization
of our algorithm is less sensitive to residual errors of themotion estima-
tion than the Tikhonov regularization and the NLM regularization
employed in BTK. Finally, we observe that for similar MSE, the restora-
tion quality of all methods decreases as the number of affected slice
increases.

Quantitative analysis of real fetal images

We also assess the performance of our algorithm on clinical fetal
brain MRI in terms of both fidelity with the original LR images and
contrast in the reconstructed HR image. To do so, we perform a
leave-one-out analysis, as in Kuklisova-Murgasova et al., 2012 that
evaluates the ability of estimating the LR volume left out from the
SR reconstruction based on all the other available LR volumes. We
use the strategy described in section Adaptive regularization
parameter λ to automatically set, for each patient, an optimal regu-
larization weight in terms of PSNR. Fig. 8 illustrates the PSNR curves
obtained for three different patients and for Tikhonov, BTK and TV.
Obviously, λ is selected for each patient as the one providing the
best reconstruction quality in terms of the highest mean PSNR
(over the set of LR images). For adaptive regularization setting, ex-
haustive searches on the λ parameter are performed between the
Table 2
Leave-one-out analysis: similarity w.r.t. the original LR images.

PSNR (dB)

Patient Tikhonov BTK Our TV

P1 53.64 ± 1.12 53.71 ± 1.29 53.85 ± 1.1
P5 42.32 ± 2.45 43.44 ± 2.44 44.64 ± 2.5
P2 48.31 ± 2.31 48.56 ± 2.44 48.90 ± 2.3
P4 45.91 ± 3.21 46.38 ± 3.44 47.14 ± 3.5
P10 53.35 ± 4.47 54.22 ± 4.46 54.84 ± 4.4
P3 57.93 ± 1.11 58.39 ± 1.16 58.47 ± 1.1
P7 57.91 ± 8.23 58.07 ± 8.30 57.94 ± 8.1
P8 57.40 ± 3.06s 57.72 ± 3.19 57.74 ± 3.0
P6 53.04 ± 4.24 53.39 ± 4.15 53.91 ± 4.0
P9 52.90 ± 1.49 54.52 ± 1.11 54.94 ± 1.0
range of [0.001, 0.002, …, 0.01, 0.02, …, 0.1, 0.2, …, 0.5] for TV and
between the range of [2/0.01, 2/0.02, …, 2/0.1, 2/0.2, …, 2/1.0, 2/
2.0, …, 2/5.0] for BTK and Tikhonov.

Once λPSNR is set, for each patient and each regularization term, we
assess both quality and speed of reconstruction with a leave-one-out
analysis. Qualitative results on one left-out ground-truth LR volume
and its estimation by BTK and TV regularization are shown in Fig. 9.
Reconstruction results in terms of PSNR and running time are reported
in Table 2. In terms of fidelity to the original LR stacks, both BTK and TV
outperform Tikhonov and our TV algorithm performs better than BTK
(0.34 dB in average for all subjects). In terms of speed, Tikhonov regular-
ization is the fastest. TV regularization is about 4 times slower in average
than Tikhonov (due to an extra inner problem optimisation), and TV is
about 2–3 times faster than BTK. We also notice that BTK uses a parallel
implementation of the non-local means algorithm, while the proposed
TV algorithm has no such speed-up here. A parallel implementation of
TV optimization may reduce the presented computational time.

It was observed that some reconstructed HR images suffer from re-
ducedwithin-tissue contrast despite a high PSNR. Consequently, we de-
cide to also measure the sharpness in the reconstructed HR image in
complement to the PSNR. Sharpness validation was carried out using
the energy of the gradient magnitude image (M2), as proposed in
(Gholipour and Warfield, 2009). We computed M2 by integrating the
magnitude of the gradient of the HR reconstructed image at all voxels.
The rational behind this study is that sharper structures would be ob-
served if the motion-corrected images are more accurately fused in
the restoration process. Sharpness results are summarized in Table 3.
In most of all the patients, the HR images reconstructed by our
TV-based restoration algorithm obtained higher M2 values. Supported
Run Time (s)

Tikhonov BTK Our TV

9 3.21 ± 3.89 10.76 ± 0.36 4.85 ± 0.06
2 4.17 ± 0.60 14.54 ± 0.60 4.66 ± 0.08
7 6.66 ± 2.82 21.52 ± 1.71 8.68 ± 0.11
0 12.14 ± 5.45 43.04 ± 5.04 15.08 ± 0.30
0 2.79 ± 0.48 36.53 ± 2.41 12.76 ± 0.16
8 4.31 ± 0.67 82.61 ± 6.80 30.21 ± 0.91
3 4.23 ± 0.62 52.56 ± 4.51 23.79 ± 0.39
6 4.92 ± 0.60 104.74 ± 5.45 39.05 ± 0.46
9 2.83 ± 0.40 44.99 ± 1.91 15.88 ± 0.17
0 4.09 ± 0.21 76.33 ± 9.40 7.91 ± 0.18

Image of Fig. 9


Table 3
Leave-one-out analysis: sharpness of the reconstructed HR images.M2method corresponds
to the energy of the gradient magnitude image of the HR image reconstructed by the
respective method.

Patient M2Tikhonov M2BTK M2TV

P1 1437602 1428423 1501358
P5 959734 963221 1327880
P2 1869633 1696500 2154680
P4 2234225 2277655 3040140
P10 4272910 4291232 4522360
P3 5918378 5791398 5840018
P7 3988919 4053390 4792452
P8 5785973 5441901.43 6407542
P6 4732112 5072980 4757786
P9 4233893 3988113 4247992
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by better PSNR, this suggests that our algorithm with TV regularization
provides the best performance in terms of stronger contrasts between
and within tissues.

Perceptual evaluation of the adaptive regularization

We show in this section the capability of our TV algorithm to restore
HR images for diagnosis purposes in fetal MRI. In order to evaluate the
optimality of the regularization weight λPSNR automatically set in
terms of PSNR, see section Adaptive regularization parameter λ, we
adopted a multiple-alternative forced-choice approach, inspired from
(Reeves and Higdon, 1995). For each patient, a total of 6 HR images
were reconstructed using a regularization weight of λPSNR/8, λPSNR/4,
λPSNR/2, λPSNR, 2λPSNR and 4λPSNR. Then, a radiologist expert proceeded
to a visual evaluation where he indicated the best HR image in terms
of image quality. Here, we consider only the reconstructed HR images
of patients P1, P2, and P6 (diagnosed as normal brain), and the recon-
structed HR images of patients P8 and P10 (diagnosed as abnormal
brain) to minimize the number of images evaluated by the expert.
Reconstruction results, running time for image restoration and the
amount of regularization preferred by the expert are summarized in
Fig. 10. Results for only 3 patients are visually shown due to space
Fig. 10. Illustration of the qualitative
limitation. In general, HR reconstructed images with regularization
weight of λPSNR/4 were selected for a majority of the patients (P1, P2,
P8 and P10), except for patient P6, where an HR image with regulariza-
tion of λPSNR/2 was chosen. This shows that the expert does prefer to vi-
sualize a little more regularized HR image than the one provided by the
optimal PSNR (section Quantitative analysis of real fetal images). Let us
notice that our PSNR image quality measure may be not fully correlated
with the visual image quality. Especially, outliers in the LR images are
still used in the reconstruction process which might emphasize the
noise in the reconstructed HR image. Let us now recall that our PSNR-
based parameter choice method works (on a leave-one-out fashion)
on LR images simulated from the reconstructed HR image to compute
the PSNR w.r.t. the excluded LR image. This simulation process reduces
the noise in the LR image simulated as regards the real noise observed in
the original HR reconstructed image. Therefore when we say “a little
more regularized image” we here talk regularization w.r.t. PSNR and
not w.r.t. visual quality measure. So even if it is more regularized w.r.t.
PSNR, the image may not be regularized w.r.t. visual quality.

This suggests that our method, originally proposed to automatically
set the regularization level for a fair comparison between our TV,
Tikhonov and BTK, could indeed give an upper bound for regularization
setting in clinical practice. This also suggests that the integration of a ro-
bust outlier removal scheme could give even amore optimal estimate of
the regularization visually perceived by the radiologist expert.
Discussion

In this paper, we have revisited the existing SR techniques that ad-
dress the fetal MRI brain reconstruction problem. Concretely, we have
focused on the Bayesian and variational dual formulations with the
goal of reviewing and unifying current state-of-the-art methods. Built
on this formulation, we have recalled our TV-based optimization algo-
rithm (Tourbier et al., 2014a) and we have presented the design and
the implementation of our reconstruction pipeline. We have also
numerically recovered the theoretical speed of convergence of the
proposed algorithm. Precisely, we have shown that the proposed
analysis for fetus P1, P8 and P10.

Image of Fig. 10


Fig. 11. Regularization versus number of input LR images.
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algorithm solves the exact TV problem and outperforms the ε-TV opti-
mization scheme in terms of convergence speed.

The second contribution is the extensive study of the convex TV reg-
ularization in comparison with classical Tikhonov and BTK. Concretely,
we have presented for the first time a quantitative analysis of
robustness of regularization w.r.t. residual registration errors (see
section Quantitative analysis of simulated fetal images). Our experi-
ments have clearly shown that TV is more robust to motion artifacts
than Tikhonov and BTK. Moreover, this experiment confirms that regis-
tration accuracy is very crucial for the success of super-resolution algo-
rithms. It also supports the development of outliers rejection schemes,
as suggested in (Gholipour et al. (2010), Kim et al. (2010) and
Kuklisova-Murgasova et al., 2012). Obviously, our approach would per-
form even better with the inclusion of these schemes. Using the auto-
mated setting of λ for each patient independently and inspired by
(Kuklisova-Murgasova et al., 2012), we have performed a leave-one-
out analysis to compare our TV regularization strategy to classical
Tikhonov regularization and to NLM regularization on real fetal data
(see section Quantitative analysis of real fetal images). We have
shown that TV outperforms Tikhonov and BTK. We have observed that
such improvement is higher in the cases where less LR volumes are
available and where the Mfactor is higher i.e. in the cases where the
problem ismore ill-posed. To validate this hypothesis we have conduct-
ed an experiment that analyzes, for a given subject, the behavior of the
regularization in function of the number of LR volumes (3, 6 and 9) used
in the reconstruction (see Fig. 11). This confirms that TV is more robust
when only few LR volumes are available. Such results go in favor of our
TV, since in a clinical acquisition settingwewill often have few LR avail-
able (between 3 and 6).

The third contribution is the adaptive setting of the amount of regu-
larizationw.r.t. each subject to be reconstructed and thus adapted to the
ill-posedness nature of the reconstruction problem. We propose a first
attempt to automatically select the optimal λ w.r.t. each subject and
each algorithm in terms of PSNR (see section Quantitative analysis of
real fetal images). Note that only an exhaustive search on λ was per-
formed here. This could be improved by the formulation of the problem
in terms of quadratic energy minimization. This will allow a faster con-
vergence towards to optimal value of λ and it will guarantee that the so-
lution is optimal and unique. We could also suggest integrating
information about the sharpness of the reconstructed HR image into
the energy to beminimized. This should even better estimate the appro-
priate regularization for diagnosis purposes. Moreover, we have
adopted a simple heuristic approach as our goal was to fairly compare
different regularization terms but the estimation of the optimal regular-
ization weight could also be performed in a Bayesian framework, at the
price of solving a non-convex optimization problem and computation-
ally more expenses.

A last contribution is to show the capability of TV to reconstruct 3D
volumes for diagnosis. We propose to proceed to a blind qualitative
evaluation of the 3D reconstructed HR images conducted by an expert
radiologist, including subjects diagnosed with both normal and
abnormal brains (see section Perceptual evaluation of the adaptive
regularization). It has been shown that in general, his choice was 4
times smaller than the estimated λ, optimal w.r.t. the PSNR. It demon-
strates that the method, originally developed to determine the optimal
regularization weight used by each algorithm with the leave-one-out
analysis, is able to provide an upper bound to the regularization level
in clinical application. In practice, we can imagine that this value could
still be manually adjusted to fit end user expectations.
Conclusion

In summary, the proposed approach is a simple framework with an
optimal and efficient TV optimization algorithm that has shown to be
well adapted to solve the HR reconstruction problem in fetal MRI. It
has been noticed that TV regularization generally outperforms Tikhonov
and BTK in terms of reconstruction error w.r.t. the original LR images
and in terms of sharpness of the reconstructed HR images. However,
more sophisticated schemes could be integrated into the framework,
such as complete outlier rejection scheme and bias field correction
scheme in order to enhance its robustness to several kinds of clinical
scenarios.
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