
NeuroImage 60 (2012) 1959–1969

Contents lists available at SciVerse ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r .com/ locate /yn img
The timing of exploratory decision-making revealed by single-trial topographic
EEG analyses

Athina Tzovaraa,b,⁎, Micah M. Murraya,b,c, Nicolas Bourdaudd, Ricardo Chavarriagad,
José del R. Millánd, Marzia De Luciaa,b

a Electroencephalography Brain Mapping Core, CIBM: Center for Biomedical Imaging of Lausanne and Geneva, Switzerland
b Radiology Department, Vaudois University Hospital Center and University of Lausanne, Switzerland
c Department of Clinical Neurosciences, Vaudois University Hospital Center and University of Lausanne, Switzerland
d Chair in Non-Invasive Brain-Computer Interface, Ecole Polytechnique Fédérale de Lausanne, Switzerland
⁎ Corresponding author at: Electroencephalography B
Biomedical Imaging of Lausanne and Geneva, Switzerlan

E-mail address: athina.tzovara@chuv.ch (A. Tzovara)

1053-8119/$ – see front matter © 2012 Elsevier Inc. All
doi:10.1016/j.neuroimage.2012.01.136
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 21 August 2011
Revised 25 January 2012
Accepted 30 January 2012
Available online 8 February 2012

Keywords:
Decision-making
Timing
EEG
Single-trial
Exploration–exploitation
Decision-making in an uncertain environment is driven by two major needs: exploring the environment to
gather information or exploiting acquired knowledge to maximize reward. The neural processes underlying
exploratory decision-making have been mainly studied by means of functional magnetic resonance imaging,
overlooking any information about the time when decisions are made. Here, we carried out an electroen-
cephalography (EEG) experiment, in order to detect the time when the brain generators responsible for
these decisions have been sufficiently activated to lead to the next decision. Our analyses, based on a classi-
fication scheme, extract time-unlocked voltage topographies during reward presentation and use them to
predict the type of decisions made on the subsequent trial. Classification accuracy, measured as the area
under the Receiver Operator's Characteristic curve was on average 0.65 across 7 subjects. Classification accu-
racy was above chance levels already after 516 ms on average, across subjects. We speculate that decisions
were already made before this critical period, as confirmed by a positive correlation with reaction times
across subjects. On an individual subject basis, distributed source estimations were performed on the
extracted topographies to statistically evaluate the neural correlates of decision-making. For trials leading
to exploration, there was significantly higher activity in dorsolateral prefrontal cortex and the right supra-
marginal gyrus; areas responsible for modulating behavior under risk and deduction. No area was more ac-
tive during exploitation. We show for the first time the temporal evolution of differential patterns of brain
activation in an exploratory decision-making task on a single-trial basis.

© 2012 Elsevier Inc. All rights reserved.
Introduction

In various situations humans are faced with the need to make de-
cisions in order to maximize their potential outcome. Often decisions
have to be made in an uncertain environment and are therefore driv-
en by the need to either explore the alternative options or to exploit
any acquired information. Subjects need to alternate between these
two behaviors as information gathering alone does not necessarily
lead to the optimal decision, whereas simple exploitation of the ac-
quired knowledge may leave unexplored other options. This kind of
behavior has been studied in the context of reinforcement learning
theory through the n-armed bandit paradigm (Cohen et al., 2007;
Suton and Barto, 1998), where subjects need to repeatedly decide
among n-different options, each providing a different reward, chosen
from a probability distribution.
rain Mapping Core, Center for
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Neuroimaging evidence based on the n-armed bandit task has
highlighted the role of anterior frontopolar cortex and anterior intra-
parietal sulcus in exploratory decisions (Daw et al., 2006). More
generally, the prefrontal cortex and the anterior cingulate cortex
have been repeatedly reported to be involved in decision-making
under uncertainty (Hampton and O'doherty, 2007; Hsu et al., 2005;
Rushworth and Behrens, 2008; Seo et al., 2009; Yoshida and Ishii,
2006). Discrimination between exploratory/exploitatory decisions
has also been documented using alpha and beta band EEG activity
(Bourdaud et al., 2008).

However, the temporal aspects of decision-making still remain
under-explored. In the present study we aim at identifying how
early in time the relevant generators start differentiating their re-
sponses in order to eventually lead to an exploratory or exploitatory
decision. It is known that EEG responses start differentiating accord-
ing to the subjects' decisions already from the presentation of reward,
at an average across trials and subjects level (Cohen and Ranganath,
2007). Modulations of the EEG responses following reward presenta-
tion are also present at a single-trial level (Philiastides et al., 2010),
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allowing to discriminate between switch/stay decisions, although the
temporal aspects of this discrimination are not yet explored.

In the present study, in order to investigate fine-grained temporal
information, we carried out an EEG experiment while subjects were
facing the 4-armed bandit problem (Bourdaud et al., 2008; Daw et
al., 2006). In such a high-level cognitive task, inter-subject variability
cannot be neglected as individual subjects employ different strategies
(Daw et al., 2006), an effect also linked to genetic polymorphisms
(Frank et al., 2009).

We therefore carried out analyses at the single-subject level, using
a classification scheme, which allows to discover the neural correlates
underlying decision-making that can best predict subjects' behavior
(see Hampton and O'doherty, 2007 and Bourdaud et al., 2008, for
similar approaches based on functional magnetic resonance imaging
—fMRI- and EEG, respectively). The main difference here is that pre-
diction is not the goal of the study per se as in Bourdaud et al.,
2008, but rather a strategy for evaluating statistically when enough
information is available for accurately classifying future decisions, as
measured by EEG. Without making explicit assumptions about the
neural underpinning of decision-making, we consider voltage topo-
graphies that best discriminate exploratory and exploitatory behav-
iors in a time-unlocked manner.

Classification based on voltage topographies has been reported in
lower-level tasks in the visual and auditory domains (De Lucia et al.,
2007; Murray et al., 2009; Tzovara et al., 2011). Here, we show in a
more challenging context that EEG topographies can accurately
predict behavior with the advantage of being neuropysiologically in-
terpretable: any change in them is the result of a change in the under-
lying brain generators.
Materials and methods

Experimental paradigm

Participants
Seven healthy individuals (2 females), aged from 25 to 27 years

(mean age 26.4 years), participated. Data from these individuals
have been previously published in an investigation on the role of
EEG oscillatory activity on single electrodes during the exploration–
exploitation task (Bourdaud et al., 2008). In the present study we
further analyze the temporal aspects of these data, in association to
reward evaluation.
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Fig. 1. (a) Experimental protocol. Each trial is comprised of three phases. First the four ma
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Procedure and task
The experimental protocol was adapted from a similar fMRI study

(Daw et al., 2006). Participants were sitting in front of a computer
screen where four squares were displayed representing four slot
machines (Fig. 1a), where each machine corresponds to a bandit
arm. They were instructed to fixate on a red dot at the center of the
screen to reduce ocular artifacts. On each trial participants had to
choose one machine by pressing a key with their index or middle fin-
ger on the corresponding hand (left hand for machines 1 and 3, and
right hand for machines 2 and 4). The payoff of the selected machine
was displayed one second after the key press and remained on dis-
play for another second, followed by the beginning of a new trial. Par-
ticipants were asked to select the machines so as to maximize their
total gain (i.e., sum of individual payoffs) over a session of 400 trials.
Three sessions were recorded for each participant.

The payoff of each machine, a numerical value between 0 and 100,
was drawn from a Gaussian distribution whose mean changed slowly
across the experiment. Before the experiment, nine random but
common across participants examples of the payoff evolution for all
the machines were shown to each of them (for such an example see
Fig. 1b). Participants, knowing that the machines' payoffs were not
static, had to regularly update their knowledge about them and
were therefore encouraged to explore.

EEG acquisition
Continuous 64-channel EEG was acquired through a Biosemi

Active II system with a sampling rate of 2048 Hz and was referenced
to the CMS-DRL ground, which functions as a feedback loop driving
the average potential across the electrode montage to the amplifier
zero. EEG recordings were not performed inside a faraday cage, so
as to ease reproducibility of any findings for possible future online
applications in real-life conditions. The acquired signal was filtered
offline by an eighth-order low-pass Chebyshev Type I filter with a
cutoff frequency of 205 Hz and down-sampled to 512 Hz. The filters
were applied in both the forward and reverse directions to remove
all phase distortion, effectively doubling the filter order. In addition,
electrooculogram was recorded using two electrodes located below
and at the outer canthus of the right eye.

Preprocessing
Trials were extracted with respect to the display of payoff, span-

ning 100 ms before the display and 780 ms post-stimulus onset
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chines are presented and participants have 1 s to select one of them by pressing a key
or 1 s (delay phase). Finally the payoff for the selected machine is displayed for 1 s (dis-
extracted with respect to the display of reward, spanning 100 ms before the display and
sion on the next trial.(b) Example of the payoff evolution across the experiment for the
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(Fig. 1a, red thick line). Trials with blinks or eye movements were
rejected off-line. An artifact criterion of ±70 μV was applied at all
electrodes, and each EEG epoch was also visually evaluated. Data
from noisy electrodes from each subject and condition were interpo-
lated using three-dimensional splines (Perrin et al., 1987). Each sub-
ject's data were 40 Hz low-pass filtered. No baseline correction was
applied. Data at all time-instances were normalized by their instanta-
neous Global Field Power (GFP; Lehmann and Skrandies, 1980;
Koenig and Melie-García, 2010) to eliminate any strength influence.

Behavioral model
A behavioral model is required to label each trial as corresponding

to either an exploratory or exploitative decision. Here, we use the
same behavioral model proposed in Daw et al., 2006 and Bourdaud
et al., 2008, involving two steps for every trial: First, it provides an
estimation of the payoff that users expect to receive from each
machine and in a second step it estimates which machine subjects
are supposed to choose. In the latter step each subject is considered
separately in order to account for inter subject variability.

Specifically, for the payoff tracking we use a Bayesian linear
Gaussian rule (Kalman filter) whose parameters are computed using
the available data from all subjects, while for the machine selection
we use a softmax rule, separately applied for each of the subjects. In
both steps, we estimate the required parameters by maximizing the
model likelihood with respect to the subjects' choices.

In order to label the subjects' decisions as exploration or exploita-
tion, we use the estimated payoffs of all the machines. When sub-
jects choose the machine corresponding to the highest estimated
payoff, their decision is labeled as exploitation. However, when they
choose the machine that did not correspond to the one with the high-
est estimated payoff the decision is labeled as exploration, but only if
this reward differs from the highest one by a threshold value (set to
4). Only exploratory trials corresponding to a machine change and
exploitatory corresponding to a machine stay are kept for further
analyses, in a similar way as was applied in another EEG study
using the same task and subjects (Bourdaud et al., 2008). We used
here exactly the same behavioral model in order to obtain compara-
ble results.

In the following, we use EEG activity during reward evaluation of
trial n−1 to predict the subject's choice in trial n. For that reason,
we split the trials in conditions based on the label of the following
decision. For example, trials referring to the exploration condition in-
clude the period of reward evaluation from trials preceding the actual
exploratory decision. Overall the two categories (exploration and ex-
ploitation) were highly unbalanced and in order to avoid overfitting
one of the two, we consider the same number of trials for both condi-
tions by randomly selecting exploiting trials so as to cover the whole
time-course of the experiment.

Average ERP analysis

We first examine whether there are any time-locked temporal
periods, common across subjects, during which the relevant neural
generators differentiate their responses between exploration and ex-
ploitation. To this aim, we compute event-related potentials (ERPs)
by averaging peri-stimulus epochs. We then calculate the global
dissimilarity (Lehmann and Skrandies, 1980), time-point by time-
point, between exploratory and exploitatory trials. Global Dissimilar-
ity computes configuration differences between two electric fields,
independent of their strength and is statistically analyzed by applying
a Monte Carlo bootstrapping analysis procedure, colloquially known
as topographic ANOVA (TANOVA; Murray et al., 2008). Electric field
changes forcibly follow changes in the underlying brain generators,
so the TANOVA analysis is a way of determining whether and when
the generators of the two types of decisions differ statistically.
Moreover, we examine the relevance of the temporal intervals
identified from the TANOVA for predicting the subjects' decisions on
a trial-by-trial level. We use an analogous approach to our single-
trial analysis (that will be described bellow), by computing the
spatial correlation of the voltage topographies observed at the aver-
age ERPs for exploration and exploitation with the topographies ob-
served at the same latency at the single-trial level. Each trial is
classified as belonging to exploitation if across the time interval
identified by the TANOVA its topographies correlate more with the
topographies observed on the exploitation condition; otherwise it is
classified as exploration.

Single-trial analysis

Our first goal through the single-trial analysis is to identify those
features of the EEG signal that best account for the subjects' decisions
on a trial-by-trial basis. For this purpose we use a classification
scheme based on single-trial voltage topographies, requiring minimal
a priori assumptions (De Lucia et al., 2007; Murray et al., 2009;
Tzovara et al., 2011; De Lucia et al., in press). We hypothesize that
there exists at least one set of underlying generators (or voltage to-
pographies) per experimental condition (i.e. exploration or exploita-
tion) responsible for the subsequent decision. However, although
there could exist more than one set of generators, our analysis is re-
fined so as to detect exactly one.

We develop an algorithm that extracts the two voltage topogra-
phies that best predict the subjects' decision based on modeling
their statistical distribution of the entire set of single trials of each
of the two conditions (see Model estimation). Due to the nature of
decision-making phenomena, these discriminant topographies are
rather unlikely to be detected locked in time across trials, therefore
our algorithm operates independently of the time point at which a
given topography occurs. We select these voltage topographies by
splitting the entire dataset for each subject in ten subsets of single-
trials. We carry out voltage topography estimation using nine splits
of the data (on average 113 trials per subject; Training dataset),
and test their prediction accuracy on the split that was left aside
(on average 12 trials per subject; Test dataset). This procedure pro-
vides an estimation of the best discriminant topographies and an
indication of the average prediction accuracy based on the test data-
sets. Finally, we further validate the prediction algorithm on a valida-
tion dataset. Trials used for the validation were kept separate from
those used for estimating the two discriminant voltage topographies
(on average 12 trials per subject). This validation dataset provides
an indication of whether it is possible to generalize our findings not
only on the test trials, but also on completely new data with similar
levels of accuracy.

At a second stage we aim at detecting, for each subject separately,
the time-period along which the underlying generators have been
sufficiently activated to lead to a correct prediction of the subsequent
decision, across trials. This analysis gives an indication of the time-
period by which the decisions have already been made across trials.

Model estimation
The first step in the single-trial analysis comprises a modeling of

the ensemble of topographies in the training dataset, for each ex-
perimental condition separately. All available topographies are
pooled together, without taking into account their temporal order
and are modeled using a Mixture of Gaussians Model (GMM) in a
64-dimensional space (since EEG was recorded using 64 electrodes).
The technical details of the GMM implementation have been reported
elsewhere (De Lucia et al., 2007; Murray et al., 2009; Tzovara et al.,
2011). Through this modeling procedure we can cluster all the
recorded topographies in Q Gaussians in total. The mean of each
Gaussian is a topography itself. Therefore, using the Gaussians we
can extract a few representative topographies for the whole dataset.
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In the following, we will refer to the means of the Gaussians as tem-
plate maps. The modeling of the data is performed separately for the
two conditions, and we therefore obtain one set of template maps per
experimental condition. We make an a priori hypothesis about the
total number of Gaussians in the model and we then optimize it so
as to achieve the best prediction accuracy (a point to which we will
return below).

In order to assess the degree to which each topography is rep-
resented by the template maps within one model we use the pos-
terior probabilities:

P ckð jmÞ ¼ P mð jckÞ⋅pk
p mð Þ ð1Þ

Where m refers to a recorded topography, ck to a particular tem-
plate within the GMM, p(m) to the unconditional density function
and pk to the prior probability of the Gaussian k.

Our goal is to identify the pair of template maps that best discrim-
inates between exploratory and exploitatory decisions. For this pur-
pose, we use the Bayes Factor (Raftery, 1995):

BFt;h ¼ Pðcexploitk jmt;hÞ
Pðcexplor

k′
jmt;hÞ

ð2Þ

where BFt,h
1 is the Bayes Factor at latency h, for the t-th trial, and

mt,h is the observed topography of the t-th trial, at latency h. cexploitk
and cexplork′refer to the k-th Gaussian (or template map) within the
GMM generated for exploitation and to the k′-th Gaussian within
the model for exploration condition. k and k′ range from 1 up to
the total number of Gaussians in each of the models. The Bayes Fac-
tor is computed in the same way for topographies belonging to
both conditions (see Fig. 2 for an example).

For all possible combinations of the template maps in the two
models, we compute the Bayes Factor at every latency of every trial.
Thus, we obtain a measure of the confidence with which we can
assign a specific observation to the template map of the model for ex-
ploration or to the one for exploitation. A value of Bayes Factor at a
specific latency and trial greater that 1 suggests that the topography
recorded at that latency/trial is more likely to be represented by the
template map of exploitation, and a value lower than 1 by exploration
(see Eq. (2)).

As discriminant function we consider the average of the BFt,h
values along the trial:

DFt ¼
1
L

XL

h¼1

BFt;h
� �

ð3Þ

where L is the length of the trial in time-points. DFt provides informa-
tion about the relative degree of presence in time of two topographic
maps, no matter at which specific latency within the trial they occur.
At this stage the discriminant function is only computed for the
overall trial, (for L equal to the trial's length). However, at a later
stage we compute an analog of this function for varying values of L,
in order to investigate the temporal aspects of decision-making (see
Relevant time-periods for decision-making).

Our first goal is to identify two template maps, one that reflects
the neural correlates of exploratory decisions and one of exploitatory.
For this purpose we select within the computed GMMs those two
maps that provide the highest levels of discrimination in the training
dataset, using DFt as a discrimination function. The selection is done
in the training dataset and then confirmed in the testing dataset, by
only using those two maps for performing classification (see below).
1 For simplicity we do not include k and k′ in the notation of the left side of the
Eq. (2).
Model selection and classification accuracy based on the overall trial
In order to classify new trials from the test dataset, we com-

pute their DFt for the two maps that have been identified from the
training. In general, we measure classification performance as the
area under the Receiver Operator Characteristic Curve (AUC; Green
and Swets, 1966). The selection of the maps and the classification
are repeated ten times, for every split of the data and the final values
of AUC reported are the average values across the ten splits.

To define chance levels, we randomly shuffle the true labels of
the test trials and then perform classification. This is repeated 100
times and chance levels are defined as the average AUC over
these randomizations.

We remind the reader that our algorithm requires an initial as-
sumption about the total number of Gaussians in the models. To
select this value we generate multiple models for each condition,
with varying total number of Gaussians, ranging from three up to
eleven. The whole procedure described above is repeated for every
possible combination of models between the two conditions, provid-
ing us different values of classification accuracy. Finally, we select the
pair of models that maximizes the mean AUC across the ten splits of
the data.

Finally, in order to obtain a more realistic measure of the perfor-
mance of our method we perform one class classification on com-
pletely new trials, not used in any point (training/testing) so far.
Due to the limited amount of trials for exploration we were obliged
to use all of them for training the models. Therefore, the validation
dataset consists only of exploitative trials. Using the DFt of the trials
of the training datasets, we define the optimum threshold for dis-
criminating between the two conditions for every data split. We com-
pute the average ratio of true positives in the validation and in the
test dataset and we compare the two for estimating a general classi-
fication performance.

Relevant time-periods for decision-making
Using the same number of Gaussians that has been selected as

explained above, we further investigate the temporal behavior of
the extracted topographies. For each trial, we consider the expanding
average of the Bayes Factor (ABF; Eq. (4)):

ABFt;h� ¼
1
h�

Xh�

i¼1

BFt;i ð4Þ

where t refers to the t-th trial and h* to a generic latency within the
trial. We compute ABFt,h*for every time-point h* within a trial, or
the average of the Bayes Factor from the beginning (time-point 1)
up to h*, across trials. The ABF value is the equivalent of DFt
(Eq. (3)), but computed only up to a time-point h*, with h*≤L.

Based on the ABF, we now compute the classification time-point
by time-point, for all possible values of h* (with 1≤h⁎≤L) and obtain,
for each subject separately, the time-course of AUC values. This allows
identifying, in a data-driven way, the time-periods that are relevant
for the subjects' decisions while taking full advantage of the fine
temporal resolution of the EEG signal.

This expanding average, ABF, is used as a way to examine the tem-
poral patterns of discriminatory activity between exploration and
exploitation at the single-subject level. This is an alternative to similar
approaches employing fixed sliding windows for finding the period
of interest (Philiastides et al., 2010), with the advantage that there
is no bias induced by selecting the length of the window.

As will be shown in the Results section, the classification accura-
cy typically increases over time, as we consider more and more
time-points for computing the ABF. We aim at identifying whether
it is possible to predict the subjects' decisions at some point prior
to the end of the trial and with similar levels of accuracy. We seek
for every subject the earliest latency h* for which: (1) the AUC
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value computed at h* does not differ significantly from the AUC
value computed at the end of the trial and (2) the AUC value at h*
is significantly above chance-levels. This allows identifying, at the
single-subject level, the typical time-period along which decisions
across trials are already made.

Time-locked discrimination
As an alternative to the abovementioned procedure, we also per-

form classification at every time-point. This is done in order to assess
whether the extracted topographies start to differ at some specific,
time-locked point in time (but potentially varying across subjects).
Using the already-selected models and the selected template maps
within them, we compute for every time-point the Bayes Factor for
all trials, time-locked and use it as discrimination function.

Source estimations
Intracranial sources are estimated using a distributed linear in-

verse solution and Low Resolution Electromagnetic Tomography
(LORETA) regularization approach (Michel et al., 2004; Pascual-
Marqui et al., 1994). The sources' current distribution is calculated
in a discrete grid of 3005 solution points, regularly distributed within
the gray matter of the cerebral cortex and limbic structures of the
average brain provided by the Montreal Neurological Institute
(MNI). The source estimations are performed on the average of the
template maps that were extracted from all subjects. Paired t-tests
are calculated at each solution point using the variance across sub-
jects. Only points with values of pb0.05 (t(6)>2.61) and clusters of
at least 9 contiguous nodes are considered significant. This spatial cri-
terion is determined using the AlphaSim program (available at http://
afni.nimh.nih.gov). The 10,000 Monte Carlo permutations performed
on our current distribution matrix revealed a false positive probabili-
ty of b0.05 for a cluster greater than 9 nodes. The results of the
source estimations are rendered on the MNI brain with the locations
named using the convention of Talairach and Tournoux (1988).

Disentangling exploratory decision-making from other
confounding factors

Due to the nature of the task, several factors can affect the sub-
jects' decisions and influence their behavior. It is therefore important
to disentangle decision-making from reward evaluation (in terms of
wins/losses) and machine switching.

More specifically, we expect that the subjects' decisions on trial n
are influenced by the received reward on trial n−1. It is not clear
however whether our results are truly based on a prediction of the
subsequent decision or are a reflection of the neural processes of
reward evaluation. Using the same training phase and the same
models as before, we split the test trials in terms of wins and losses,
with respect to the reward prediction error. In general, those trials
in which the received reward is lower than the expected one (losses)
are more likely to lead to exploration and those where the received
reward is higher than the expected (wins) to exploitation (see also
Behavior). Therefore, we treat those trials accordingly and perform
classification to examine whether the extracted template maps can
also account for differences between wins and losses.

Moreover, we assessed the influence of machine switching in our
results. Because of the way we computed our behavioral models,
exploration forcibly corresponds to a machine switch and exploita-
tion to a machine stay, for all the trials we used for training and test-
ing the GMMs. We now only include trials corresponding to switch
and stay that were never used before during training and testing.
For defining validation trials corresponding to switch and stay, we
dropped the constraint that forced all our exploitation trials to be
stays (see Behavioral model). Consequently, the ‘switch’ trials were
part of those exploitation trials which were previously labeled as
unknown. We use this validation dataset to assess to which extent
we can generalize our models also to these specific categories of trials
and to examine the extent to which machine switching is influencing
our results. Staying with the same machine is inherent to our defini-
tion of exploitation, so we expect to obtain high sensitivity but low
specificity for this case.

Results

Behavior

Overall, subjects were more likely to exploit than to explore:
61% of the trials were labeled by the behavioral model as exploitation
and 13% exploration, the rest were unknown. The validity of the
behavioral model employed here has already been demonstrated
(Bourdaud et al., 2008) by comparing its results with the actual statis-
tical parameters of the machines.

There was no significant difference between the subjects' reaction
times between exploratory and exploitatory decisions (paired t-test;
t(6)=2.17; p=0.07), in accordance to what has been reported in
similar tasks (Jepma and Nieuwenhuis, 2011).

Through the behavioral model we extracted the reward that the
subjects expected to receive for each machine. When subjects experi-
enced a loss (i.e. the actual reward was lower than the expected
one) they were most likely to explore on the next trial (probability
across subjects: 0.75 versus 0.16 for exploitation) and when they

http://afni.nimh.nih.gov
http://afni.nimh.nih.gov
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experienced a win (i.e. the actual reward was higher than the
expected one) they were most likely to exploit (probability: 0.84
versus 0.25 for exploring instead).
Chance levels
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Fig. 4. Classification performance for each subject based on the overall trial (light gray
bars), and chance levels (dark gray bars). The mean AUC value across subjects was 0.65.
Chance levels were determined by randomly shuffling 100 times the true labels of the
test trials and then classifying them. On average, chance AUC values were 0.5. Asterisks
show the subjects whose AUC values were significantly above chance levels (all but
S5).
Average ERPs

Fig. 3 displays the group-average ERPs from a central midline elec-
trode (Cz) for exploitation (blue line) and exploration (green line).
ERPs refer to reward evaluation and are time-locked to the appear-
ance on the screen of the payoff of the selected machine (time
zero). The average waveform exhibits characteristic features of re-
ward evaluation, the so called feedback-related negativity, peaking
at 135 ms post-stimulus, with a baseline-to-peak amplitude of −0.6
and −0.68 μV for exploitation and exploration, respectively. Another
component, with a positive amplitude over Cz (2.5 and 2.9 μV for
exploitation and exploration respectively), peaks at 225 ms, corre-
sponding presumably to a P300. At the same latencies the average
scalp topographies are also displayed (Fig. 4, blue frame for exploita-
tion and green for exploration). Both components have been reported
to be relevant with the evaluation of the displayed reward (Frank
et al., 2005; Wu and Zhou, 2009).

The TANOVA analysis was performed on an average, across sub-
ject's level. It revealed three distinct periods of topographic differ-
ences between exploration and exploitation: the first starting at
221 ms and lasting up to 252 ms, the second at 283–299 ms and the
third at 676–713 ms, post-stimulus onset (Fig. 3, red periods).

We further tested the relevance of these three intervals for the
trial-by-trial decision-making. Only those intervals that were found
in at least 8 out of ten training datasets are reported here. The accu-
racy of classification was computed for each of them separately,
according to the spatial correlation of single-trials with the voltage
topographies observed on the average level. Across the ten splits of
the data and across the seven subjects, we obtain average AUC values
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Fig. 3. Average ERP waveforms across subjects of electrode Cz and characteristic scalp
topographies at 135 and 225 ms for the two conditions (blue line exploitation, green
line exploration). The periods of topographic difference between the two conditions
identified by the TANOVA are highlighted in red on the x-axis. Only periods identified
in at least 8 out of 10 splits of the data are displayed here.
of 0.55±0.02, 0.56±0.03 and 0.55±0.02 (±s.e.m.), for each of the
identified intervals, respectively. The low values of prediction accura-
cy demonstrate that even though topographic differences exist on
an across subjects level, neither the identified intervals, nor the aver-
age ERP topographies carry enough information for predicting indi-
vidual subjects' decision at the single-trial level, possibly due to
crucial single-trial information that is lost when averaging. We spec-
ulate that these, relatively early, time-locked periods of difference are
more specific to reward evaluation than to decision-making.

Time-unlocked prediction

The total number of template maps in the optimal GMMs was in
the range of three to six for exploitation and three to eleven for explo-
ration, across subjects. Within all the maps of the GMMs we extracted
one template per condition (Fig. 2a, for one exemplar subject) and
computed the BF across trials (Fig. 2b).

Classification was based on the average of the BF across the
whole trial (Eq. (3)). The average AUC values across the ten splits of
the data are shown for each subject in Fig. 4 (light gray bars). On
average across subjects the AUC was 0.65, ranging from 0.55±0.01
(±standard error across ten splits of the data) for the worst in
terms of AUC performing subject (S6 in Fig. 4) and up to 0.75±0.08
for the best (S4 in the same Figure). Importantly, the AUC was sig-
nificantly higher than chance levels for six out of seven subjects
(Fig. 4, all but S5; t-test; t(9)>3.2; pb0.05). S5 (Fig. 4) had a ten-
dency to be above chance, but when tested was not significant
(t-test; t(9)=2.1; p=0.07).

The ratio of true positives, on average across subjects and shuffles
was 63±2% for exploitation trials of the test datasets and 61±2% for
trials belonging to the validation dataset. The two accuracies did
not differ significantly across subjects (paired t-test, t(6)=0.99;
p=0.36) showing that our models can be generalized with compara-
ble accuracy to new trials.

Relevant time-periods for decision-making

Based on the expanding average version of the BF, we
also computed the classification across time (Fig. 5). In general, the
AUC vales increase over time (Fig. 5, solid red lines), as we consider
more evidence in the ABF. Note that the AUC values reported
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Fig. 5. Time-course of AUC values based on the expanding average version of the BF. In solid red we show the temporal evolution of the AUC values if, for every time-point, we take
into account activity from the beginning of the trial up to that time-point. Accuracy appears to increase over time as we add more evidence. The gray lines indicate at what point in
time the AUC values are above chance levels and do no longer increase significantly by considering more evidence. The red dashed lines correspond to the AUC values computed
over a permuted version of the BF. In that case, a ‘fake’ critical time-period is detected much earlier (at ~72 ms on average) confirming the importance of the temporal order of
critical information for decision-making prediction. AUC values are at chance levels when computed time-point by time-point (green lines).
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jects' reaction times, averaged across the experiment (rho=0.68, pb0.05).
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previously (Time-unlocked prediction; Fig. 4), correspond to what
was obtained at the end of the AUC time-courses, when the classifica-
tion is based on the overall trial.

To identify the critical time-periods for decision-making, we asked
whether it would be possible to accurately classify single-trials
already at some latency h*, before the end of the trial. For this pur-
pose, we detected the earliest latency h* for which (1) the AUC values
obtained across the ten splits of the data did not differ significantly
from the values we obtained using the whole trials (t-test; t(9)b
1.8; p>0.053) and (2) the AUC values at h* were significantly above
chance level (one-tailed t-test; t(9)>1.8; pb0.05).

We found this latency h*, for each subject separately on average
at 516 ms after the presentation of the payoff (Fig. 5, gray vertical
lines), or at ~880 ms before the subsequent button press. The average
AUC values across subjects when considering activity from the begin-
ning of the trial and up to the latencies h* were 0.6±0.02.

Please note that when taking into account the whole trial, the AUC
value for one subject was not significantly different from chance (S5
in Fig. 4). However, for the same subject we were able to detect a crit-
ical time-point h* before the end of the trial (at 714 ms, Fig. 5, gray
line for S5), yielding an AUC value significantly above chance levels
(t-test; t(9)=2.3; pb0.05). This suggests that decisions for this sub-
ject have already been made at some point before 714 ms. However,
when taking into account activity over a larger period (up to the
end of the trial, or up to 780 ms), we also average activity irrelevant
to the decision and the AUC value is no different from chance (t-
test; t(9)=2.1; p=0.07).

The abovementioned results suggest that decisions across trials
have already been made at some point before the detected h*. Inter-
estingly, these detected periods for each subject significantly correlat-
ed with the subjects' average reaction times on the task (Fig. 6;
Spearman correlation; rho=0.68, pb0.05). Similar correlation be-
tween reaction times and activations in brain regions have been dem-
onstrated in auditory perceptual decision-making paradigms (Binder
et al., 2004).
Moreover, we examined whether the detected time-periods
simply reflect the amount of time-points over which one needs to av-
erage in order to obtain significantly above chance level results,
irrespective of the temporal order of the BF. We therefore randomly
permutated the BF within each trial, keeping the same random per-
mutations across trials, but different across the ten test datasets. We
then computed the ABF on the permuted trials and performed classi-
fication time-point by time-point (Fig. 5, red dashed lines). In this
case the AUC values were above chance levels on average already at
72 ms post-stimulus onset. The difference between classification
based on the expanding average of ABF and each permuted version
provides striking evidence that the results obtained by keeping the
original temporal order within a trial is not a mere consequence of
statistical power; accurate discrimination is a result of which points
we average over, not how many.
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Time-locked discrimination

When classification was performed at every time-point separately
within the trial (Fig. 5, green lines), the AUC was never higher than
the AUC computed by averaging evidence over time (Fig. 5, red
solid lines). This was the case for all subjects except those that had
an AUC close to (but above) chance levels (S3 and S6 of the same
figure). This highlights the necessity of considering time-unlocked
activity in order to establish an accurate prediction.

Source estimations

Source estimations were performed on the extracted template
maps (one per subject and per experimental condition) and averaged
across subjects. Both conditions included prominent sources along
the frontal gyrus (BA 11) and middle temporal gyrus (BA 37 for
exploitation and BA 21 for exploration; Figs. 7a,b). Statistical contrast
of these source estimations identified no region more active during
exploitation (Fig. 7c), further supporting the theory that exploration
overrides exploitatory tendencies (Daw et al., 2006). Regions that
were significantly more activated during exploration included the
right suppramarginal gyrus and the dorsolateral prefrontal cortex
(DLPF; BA 9, 46, 47; Fig. 7c), known to be involved in decision-
making and responsible for task-switching as well as in modulating
behavior under uncertainty and deriving conclusions (Christopoulos
et al., 2009; Hampton and O'Doherty, 2007; Reverberi et al., 2007).
In particular, the role of the right DLPF in risk-taking (Ernst et al.,
2002; Gianotti et al., 2009) and strategic decision making (Knoch
a. Exploitation

b. Exploration

c. Statistical Difference

Fig. 7. Source estimations on the template maps across subjects for exploitation (a) and ex
tivations for each of the two conditions in correspondence to the maximal t value at 48, −
ploration and exploitation (paired t-test, pb0.05).
et al., 2006) has been argued, here our results suggest that it is in-
volved in risk taking during exploratory decisions.

It is also worth noting that the source estimations were per-
formed on the extracted template maps and not on the actual voltage
topographies, as it is usually done in ERP analyses (Michel et al.,
2004). As these template maps were extracted from the single-trials
irrespective of the time of their appearance it is not possible to assign
them to any specific latency. However, through the Bayes Factor
(Fig. 2b) we can have an estimate for each trial separately of when
in time it is more likely to observe one template map instead of
the other.
Disentangling exploratory decision-making from other
confounding factors

To exclude the reward-related confounding factor, we separated
the test trials according to wins and losses, but classified them using
the exploration/exploitation models. Naturally, wins lead to exploita-
tion and losses to exploration (see also Behavior) and we considered
the ‘true’ labels for this control accordingly. Classification accuracy
was on average 0.55 and at chance levels for all but two subjects
(Table 1, second row). We remind the reader that the AUC values
when classifying the same trials according to exploration–exploita-
tion were on average 0.65 and above chance levels for all but one sub-
ject. Moreover, the AUC values when classifying wins/losses were
significantly lower than when classifying exploration/exploitation
(paired t-test, pb0.05), for four out of seven subjects.
0.00015 µA/mm3

0.00025 µA/mm3

Exploitation > Exploration

Exploration > Exploitation

3.67

-3.67

T-val

ploration (b). Results are rendered on the average MNI brain. Axial slice shows the ac-
50, 27 mm. (c) Results of the statistical contrast of the source estimations between ex-



Table 1
Summary of the classification results, on average across subjects. The columns display
AUC values, sensitivity, specificity, the number of trials per condition that entered the
comparison and the number of subjects for which we obtained above chance levels re-
sults. The first line corresponds to discriminating between exploration and exploita-
tion. The second line shows classification results when keeping the GMMs from
exploration/exploitation but splitting the test trials according to wins/losses. In the
third line we only consider exploitatory validation trials and keeping the GMMs from
exploration/exploitation we classify switch/stays.

AUC Sensitivity Specificity # trials # above chance

Exploration
exploitation

0.65 0.63 0.56 (125/125) 6/7

Wins
loses

0.55 0.54 0.55 (133/109) 2/7

Switch
stay

0.59 0.61 0.51 (40/40) 5/7
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In order to take into account the full range of rewards (which is a
continuous variable) and not only binary wins/losses, we also com-
puted the correlation between the discriminant function for every
trial, t (DFt; Eq. (3)) and the corresponding rewards (expected – re-
ceived payoff) and also the corresponding absolute gain for that
trial (received payoff). The correlation values were computed for
every subject, across all test trials. In the first case, the absolute values
of correlation were bellow 0.07 and not significant for any subject
(Spearman's |rho|b0.07; p>0.38). In the second case, the absolute
values of correlation were bellow 0.09 and not significant for six out
of seven subjects (Spearman's |rho|b0.09; p>0.17). The correlation
for the last subject was 0.17 (p=0.01).

The abovementioned results suggest that the GMMs and the
extracted template maps are specific to decisions and not to reward
evaluation. This is consistent with the poor performance of the classi-
fier when extracting the voltage maps at an average level, where the
time-periods of differences between exploration/exploitation are like-
ly linked to reward estimation.

Finally, for excluding the confounding factor of switching among
different machines we considered exploitation trials of the validation
dataset that forcibly correspond to staying with the same machine
and also an equal number of trials that would correspond to exploita-
tion and a change of machine (part of the trials that were labeled as
unknown by our behavioral model). Using the extracted template
maps for exploration/exploitation we attempted to classify stays as
exploitation and switches as exploration. We obtained AUC values
above chance levels for 5 out of 7 subjects (paired t-test; t(9)>4.6
pb0.01) and an average AUC value of 0.59 across subjects (Table 1,
third row). However, this high AUC value was mainly driven by the
ratio of correctly classified machine stays, which forcibly correspond
to exploitation (Table 1, third row, sensitivity=0.61). The ratio of
machine switches that were classified as exploration (specificity)
was lower than sensitivity for 5 out of 7 subjects and on average
0.51 (Table 1, third row). This shows that there is possibly an over-
lap between exploratory decision-making and switching among
the machines. We therefore cannot fully dissociate exploration–
exploitation from machine switching for all of the subjects, which is
also possibly due to power limitations and to the different strategies
followed by individual subjects.

Discussion

We have shown that it is possible to predict the type of sub-
jects' decision on the next trial using EEG topographic information
during reward evaluation. Classification accuracy, measured as the
AUC, was above chance levels for six out of seven subjects and on av-
erage 0.65. Importantly, our classification results were based on neu-
rophysiologically interpretable features while taking full advantage
of the high temporal resolution of EEG. We detected differences be-
tween exploratory and exploitative decisions measured as voltage
topographies, time-point by time-point. Because different topogra-
phies are forcibly a consequence of a change in the configuration of
underlying neural networks, we could infer the brain regions that
best discriminate between these two types of decisions, while keep-
ing a fine temporal resolution.

For each subject we extracted one representative topography per
experimental condition (exploration/exploitation) and performed
classification by computing over time the probabilities of appear-
ance of one of them with respect to the other. We observed that
time-locked information across trials could not predict the subjects'
decisions at any time-point (Fig. 5, green lines). An accurate predic-
tion was possible only when taking into account activity over a larger
period of time, in accordance to the not time-locked nature of
decision-making (Fig. 5, red solid lines).

Moreover, we could detect, for every subject separately, the
crucial time-period for accurately predicting, above chance levels,
the subjects' decisions (Fig. 5, gray vertical lines). Classification accu-
racy did not statistically increase even when considering more activ-
ity, after this period. This finding provides a strong indication about
the typical time at which the underlying generators of decision-
making start differentiating their responses at the single-subject
level. In addition, we found that these specific latencies positively
correlate with each subject's average reaction times during the exper-
iment (Fig. 6; rho=0.68, pb0.05).

In this high level cognitive task different subjects with varying
levels of risk-taking can employ different strategies for task comple-
tion, and therefore inter-subject variability cannot be neglected. We
assumed that the neural correlates underlying exploratory decision-
making are similar across subjects, but that they are expressed at dif-
ferent time intervals. For that purpose, we computed and extracted
the template maps for each subject separately, but estimated the
underlying sources at the group level, revealing the common mecha-
nisms across subjects and allowing us to derive general conclusions
(see Localization of the relevant generators).

Our results are compatible with what has been shown in similar
EEG and fMRI tasks, both in terms of activation of the underlying
neural networks (overlapping results with Daw et al., 2006) and of
classification accuracy (similar to Hampton and O'Doherty, 2007
based on fMRI and better than Bourdaud et al., 2008 based on EEG,
where discriminating was above chance levels for only four out of
eight subjects). The main added value of the present work relies on
the detection of the relevant time-periods for the decisions; a point
to which we will return below.

Time-locked and unlocked components

The EEG signals were time-locked on the display of reward and
thus average ERPs exhibited characteristic responses of reward eval-
uation, peaking at 135 ms and 225 ms and corresponding to the feed-
back related negativity and a P300 (Frank et al., 2005; Nieuwenhuis et
al., 2004; Wu and Zhou, 2009; Yeung et al., 2005). The trials however,
were not split into conditions according to the prediction error (i.e.
wins/losses), but according to the labels assigned from the behavioral
model. Moreover, the analysis of the subjects' behavior revealed that
the received reward on trial n−1 indeed influences the subjects' de-
cision on trial n.

At the average ERP level we found three distinct intervals of topo-
graphic difference between trials leading to exploration and trials
leading to exploitation, similar to what has been previously reported
in other decision-making studies (Cohen and Ranganath, 2007).
However, none of these intervals can lead to an accurate prediction
of the subjects' decisions on a trial-by-trial basis (Average ERPs), indi-
cating that, the neural correlates of single-trial decision-making
cannot be found strictly time-locked, across subjects and that inter-
trial variability cannot be ignored. We speculate that these time-
locked intervals are in fact related to the reward evaluation;
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especially the two first (~220–250 ms and 280–300 ms post-
stimulus), correspond to the typical latency of characteristic wave-
forms of such processes (Frank et al., 2005).

So far, other studies have also shown a strong relation between
prediction errors and subsequent behavior, either in terms of reaction
times, using EEG oscillatory activity (Cavanagh et al., 2010), or in
terms of switch/stay decisions, using amplitude differences on aver-
age ERPs (Cohen and Ranganath, 2007) or single-trial analysis based
on linear combinations of electrodes (Philiastides et al., 2010).
However, none of them fully analyzes the temporal aspects of
discrimination between the subjects' decisions.

Relevant time-periods for decision-making

The typical time latencies at which we could already accurately
predict the subjects' decisions were on average at 516 ms after the
display of the reward. This does not mean, however, that decisions
are made exactly at 516 ms, but rather that they are already made
at some point before. A stricter statistical threshold could have possi-
bly detected an even earlier point, but this would still be consistent
with our results. The periods detected here appeared much later
than sensory-evoked processing of the displayed payoff, and the
reward-related activity (feedback-related negativity), which typically
peaks around 150–300 ms after feedback presentation (Holroyd and
Coles, 2002). Although these critical time-periods correlated signifi-
cantly with the subjects' average reaction times, they occurred on
average at ~880 ms before the subsequent button presses. Moreover,
due to the task design, subjects were forced to wait for 1 s after the
display of reward so it is unlikely that the detected time-periods are
trivially related to motor responses.

In a previous study using the same subjects and paradigm
(Bourdaud et al., 2008) it was shown that it is also possible to find
discriminating oscillatory patterns of EEG activity of the current deci-
sion within 1000 ms prior to button press. Consistently, we found an
overlap between the time period that was used there with the time
period that is used in the present study. However, our results provide
finer temporal information, estimated at the single-subject level.
Importantly, we showed that it is possible to discriminate between
the two types of decisions already from 516 ms after the presentation
of the reward in the previous trial. We therefore exclude that all the
crucial information for establishing that prediction is found right be-
fore the button-press. This finding provides a strong indication for fu-
ture studies for defining an optimal trial duration when
investigating decision-making.

More generally, assessing the time when decisions are made has
been the subject of previous studies, by means of fMRI (Soon et al.,
2008), or pupil dilation (Einhäuser et al., 2010). In perceptual
decision-making it has been shown that the higher the degree of
uncertainty, the longer it takes for subjects to reach a decision
(Heekeren et al., 2004), similar to what is now known for cost–
benefit-based decision making (Basten et al., 2010). As a future di-
rection, we can directly manipulate decision times by employing a
similar paradigm in reward-based decision making and observe the
effects of such a manipulation on the EEG responses. Moreover,
fMRI activations in relevant regions of interest in perceptual
decision-making are known to correlate with the subjects' response
times (Binder et al., 2004; McKeeff and Tong, 2006) and this correla-
tion is used as a proof for the relevance of the regions of interest
with decision-making processes. In a similar way, we demonstrate
here a correlation between temporal features of the EEG and sub-
jects' reaction times, to further support the validity of our results.

The advantage of the present approach is that we can examine the
variability across subjects, of the relevant time-periods for the deci-
sions, even under identical experimental conditions. To the best of
our knowledge this is the first EEG study to determine with minimal
a priori temporal constraints, at the millisecond time-scale, the single-
subject relevant time-periods for differentiating neural activity for
the following decisions.

Localization of the relevant generators

Source estimations were performed on the extracted template
maps and averaged across subjects. No region was more active during
exploitation when statistically contrasting the two conditions. How-
ever, the right suppramarginal gyrus and the right DLPF were signifi-
cantly more active during exploration. The DLPF has been previously
linked with task-switching, decision-making and behavior under un-
certainty (Christopoulos et al., 2009; Gianotti et al., 2009; Hampton
and O'doherty, 2007; Reverberi et al., 2007).

However, in a similar fMRI study (Daw et al., 2006), it has been
shown that the frontopolar cortex and the intraparietal sulcus were
more active during exploration. The frontopolar cortex has also
been reported to be responsible of evidence integration and to be
functionally connected to parietal and premotor regions, during a
similar decision making task (Boorman et al., 2009). A possible reason
for this discrepancy between our study and fMRI results is that our
sources are estimated relatively early in time and under a substan-
tially different time-scale. We speculate that the regions reported in
Daw et al. and namely the frontopolar cortex, are responsible for
gathering activations from the DLPF and the supramarginal gyrus,
(the regions we obtain here) in order to eventually lead to explo-
ratory decisions.

Disentangling decision-making from other confounds

As expected, when subjects experience a loss they are more likely
to explore on the next trial and when they experience a win they
are more likely to exploit. However, we demonstrated that our re-
sults are not only reflecting the discrimination between wins and
losses, as we were not able to accurately classify wins versus losses
using the trained models for exploration/exploitation for most of
the subjects (5/7).

Our behavioral model was restricted so that exploration always
corresponds to switching machine and exploitation to staying with
the same machine, in order to obtain directly comparable results
with the previous study using the same paradigm and subjects
(Bourdaud et al., 2008). Machine switching and exploration/exploita-
tion appear to be strongly intermixed as it was also clear from the
subjects' behavior, as exploration was combined with a machine
stay in less than nine trials per subject during the whole experiment,
for most of the subjects.

Conclusions

In summary, we show that by using EEG topographic activity
during reward evaluation it is possible to accurately predict subse-
quent decisions. The neural correlates of the subjects' decisions can
be detected as early as ~880 ms before the button press and are local-
ized within the supramarginal gyrus and the right DLPF.
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