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Discriminating complex sounds relies on multiple stages of differential brain activity. The specific roles of
these stages and their links to perception were the focus of the present study. We presented 250 ms duration
sounds of living and man-made objects while recording 160-channel electroencephalography (EEG). Subjects
categorized each sound as that of a living, man-made or unknown item. We tested whether/when the brain
discriminates between sound categories even when not transpiring behaviorally. We applied a single-trial
classifier that identified voltage topographies and latencies at which brain responses are most discriminative.
For sounds that the subjects could not categorize, we could successfully decode the semantic category based
on differences in voltage topographies during the 116–174 ms post-stimulus period. Sounds that were
correctly categorized as that of a living or man-made item by the same subjects exhibited two periods of
differences in voltage topographies at the single-trial level. Subjects exhibited differential activity before
the sound ended (starting at 112 ms) and on a separate period at ~270 ms post-stimulus onset. Because
each of these periods could be used to reliably decode semantic categories, we interpreted the first as
being related to an implicit tuning for sound representations and the second as being linked to perceptual
decision-making processes. Collectively, our results show that the brain discriminates environmental sounds
during early stages and independently of behavioral proficiency and that explicit sound categorization
requires a subsequent processing stage.

© 2012 Elsevier Inc. All rights reserved.
Introduction

We are constantly immersed in environments where accurate and
quick sound identification is essential for daily activities such as
communicating and navigating. We recognize, for example, whether
the sound was emitted by a machine (i.e. telephone ringing) or
produced by a living source (i.e. a dog barking) even in the absence
of visual cues and in noisy contexts. Correct sound identification
depends on the amount of available sensory evidence, on the ability
to compare different options within a range of possibilities and
often implies making a choice, i.e. a perceptual decision.

Investigating how sensory information is gathered and used to form
a decision variable represents an active field of research in both
monkeys and humans (reviewed in Gold and Shadlen, 2007;
Heekeren et al., 2008). In both visual and somatosensory domains,
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several studies emphasize a causal link between sensory evidence accu-
mulated in low-level cortices and perceptual decision-making. The idea
is that even if the actual decision is made by higher-level cortices by
integrating accumulated sensory evidence, stimulus identification can
already be inferred from activity in low-level sensory areas. During a
vibrotactile discrimination experiment, single-unit recordings in
somatosensory cortex predicted whether monkeys could perceive a
difference in the stimulation frequency (Salinas et al., 2000). In the
same kind of tasks, Romo et al. (Romo et al., 2003) demonstrated the
role of medial prefrontal and premotor cortices in forming the
decision initially driven by evidence in somatosensory areas (see also
de Lafuente and Romo, 2005; Hernandez et al., 2002). The same pattern
of sequential stages has been repeatedly shown in the visual domain.
Here, a popular paradigm involves discriminating the direction of mo-
tion of a field of moving dots (Bennur and Gold, 2011; Britten et al.,
1992; Kim and Shadlen, 1999; Newsome et al., 1989; Shadlen and
Newsome, 1996) duringwhich activity in areaMT could predictmotion
discrimination, whereas activity in the lateral intraparietal area (LIP),
the frontal eye-field (FEF) and the dorsolateral prefrontal cortex
(DLPFC) was directly related to forming the decision. More recently,
perceptual decision-making in the visual domain has been investigated
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with complex stimuli and tasks involving perceptual and semantic cat-
egorization (Murphy et al. 2011; Philiastides and Sajda, 2006;
Philiastides et al., 2006; Ratcliff et al., 2009; Simanova et al., 2010).

To date, few studies have examined perceptual decision-making in
the auditory domain and were mainly based on the discrimination of
phonemes (Binder et al., 2004; Kaiser et al., 2006). Binder et al. car-
ried out a functional magnetic resonance imaging (fMRI) experiment
where participants were asked to identify speech sounds masked by
varying levels of noise (Binder et al. 2004). Activity within a cortical
region anterior to primary auditory cortex predicted performance ac-
curacy, whereas activity in the inferior frontal cortex was related to
response time. With more emphasis on the temporal dynamics of
perceptual decision-making in the auditory domain, Kaiser et al.
(2006) showed differential activity in the gamma frequency band
starting at 120 ms post-stimulus onset when comparing different
sounds patterns, and differential activity between easy and difficult
decisions at later stages of sound processing. However, localizing or
at least distinguishing the cortical regions underlying these sequen-
tial stages in humans remains still unexplored in speech identification
and even more in the context of complex sound identification.

Recently, the analysis of auditory event-related potentials (AEPs) in
response to complex stimuli revealed that sound processing starts
unfolding at 70 ms post-stimulus onset for living/man-made categori-
zations (Murray et al. 2006) and that finer semantic analysis takes
place along later discontinuous temporal periods including the discrim-
ination between human and animal voices (De Lucia et al. 2010a), and
musical and other man-made sounds (De Lucia et al. 2009). These
results show that latencies of sound processing and discrimination
can depend critically on the level of semantic categorization. Given
that the participants were not explicitly asked to identify sound subcat-
egories in these studies, the specific functional role of each of these
differential stages and their link to perception remains unresolved.

Here, we apply a multivariate analysis to AEPs in response to sounds
of living and man-made objects while participants were explicitly
instructed to categorize (and identify) the sound. The ability to catego-
rize sounds was challenged by manipulating the sound duration. In a
preliminary psychophysics experiment we evaluated the duration for
which the number of recognized and unrecognized sounds was roughly
counterbalanced. This sound duration was then used for the main
experiment. In the analysis, we separately considered those trials corre-
sponding to sounds that subjects could correctly categorize and those for
which subjectswere not able to provide an answer. Ourmain goalwas to
evaluate whether differential activity to the living and man-made
semantic categories manifests irrespective of behavioral outcome and
to uncover the electrophysiological response linked to subjects' ability
to perceive the sound's category. We hypothesized that living and
man-made categorization is still detectable in the EEG response even
when subjects do not categorize the sounds and that a second (later)
modulation is present only for correctly categorized sounds. This
hypothesis stems from the abovementioned works on perceptual
decision-making showing the existence of at least two stages in stimulus
processing; thefirst one related to a coarse level stimulus representation,
the second (later in time) to integration of available sensory information.
We based our analyses on amultivariate decoding approach revealing at
which latency it is possible to accurately decode the semantic category of
the sounds in presence or not of correct categorization. Importantly, our
method is based on modulation in voltage topographies (Bernasconi
et al., 2011; De Lucia et al., 2007, 2010b; Murray et al., 2009; Tzovara
et al., 2012; Tzovara et al., in press) which takes advantage of the overall
voltage configuration at the scalp without a priori selection of specific
electrode locations.

Materials and methods

In the following we first present a pilot study whose aim was to
select the sound duration at which the number of sounds identified
was roughly equal to that unidentified. We then present the main
experiment of this study that used the same sounds from the pilot
study (and the duration estimated based on the pilot study results)
in combination with the recording of EEG.

Pilot study

Subjects
Fifteen healthy subjects (all men aged 20–26 years old) participat-

ed in a psychophysical test. All subjects were right-handed and
provided written, informed consent to participate in the study, the
procedures of which were approved by the Ethics Committee of the
Centre Hospitalier Universitaire Vaudois and University of Lausanne.
No subject had a history of neurological or psychiatric illness, and
all reported normal hearing and vision (or corrected-to-normal).

Stimuli
Auditory stimuli were complex, meaningful sounds (16 bit mono;

44,100 Hz digitalization) of living and man-made objects, including
108 sounds (53 sounds of living objects) (Supplemental Material 1).
Sounds of living items included human non-verbal vocalizations
and animal vocalizations (15 and 38, respectively). Within the
man-made category there were 12 sounds of musical instruments.
We prepared three sound sets each including 108 stimuli, which
differed in the sound duration: 100 ms, 250 ms, and 500 ms.

Each subject was tested using one fixed duration of the sounds to
avoid any priming effects. Initially, we planned to test 5 subjects for
each duration. However, as detailed below, it was immediately
evident from the first 3 subjects that the 100 ms duration was too
short for accurate performance. Consequently, 3 subjects were tested
with 100 ms duration sounds, 7 subjects were tested with 250 ms du-
ration sounds, and 5 subjects were tested with 500 ms duration
sounds. Sounds were presented via insert earphones (model ER-4P;
Etymotic Research) at an individually adjusted volume, and subjects
were asked to categorize the sound as living or as man-made.

Results
With the 100 ms duration the first three subjects were unable to

categorize or identify the majority of the presented sounds. We
decided therefore to exclude the 100 ms sound duration from further
testing. With the 500 ms duration sound bank, the five subjects
categorized the overwhelming majority of the sounds. Finally, we ob-
served that the best sound length was 250 ms. In this case we tested
seven subjects (five subjects initially planned plus those that we did
not test with 100 ms sound duration). With 250 ms sound duration,
five of the seven subjects could correctly categorize 75 sounds
(within which 38 were also correctly identified) and could not cate-
gorize 33 sounds. We concluded that 250 ms duration was optimal
within the three tested durations for obtaining a balanced number
of identified and unidentified sounds.

EEG experiment

Subjects
Nine healthy subjects (4 women), aged 20–30 years participated

in the EEG study. All subjects provided written, informed consent to
participate in the study, the procedures of which were approved by
the Ethics Committee of the Centre Hospitalier Universitaire Vaudois
and University of Lausanne. All subjects were right-handed
(Oldfield, 1971). No subject had a history of neurological or psychiat-
ric illness, and all reported normal hearing and vision (or corrected-
to-normal).

Procedure and task
Subjects listened to each sound and, after a 700 ms intervening

period, they were first asked to indicate via a 3-alternative-forced-
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choice button press its category (living, man-made, or unknown) and
second indicated via a 2-alternative-forced-choice button press if
they were able to identify the object (yes vs. no). After one second,
an image was presented on the screen for 1000 ms. This image repre-
sented or not the same object as the initially presented sound. After
800 ms subjects listened to the same sound and were asked to answer
to the same questions as after the first presentation. Subjects were
asked to answer each question with the maximum of confidence
(the speed of the answer was not emphasized, but we limited the
time to answer to 5 s). During the EEG recording, the stimuli were di-
vided into 14 blocks, each block was about 6 min long and included
50 sequences of sound, image and sound presentation. Sounds were
randomly selected from the complete list of sounds and therefore
some sounds were sometimes repeated within each block and across
blocks. Between each block a break was proposed. In the following,
we consider only the first part of the experiment; that is to say the
initial sound presentation and the behavioral outcome of the catego-
rization task only.

EEG acquisition and preprocessing
Continuous 160-channel EEG was acquired through a Biosemi sys-

tem (1024 Hz sampling rate, offline band-pass filtered 0.1–40 Hz).
Peri-stimulus epochs of continuous EEG (−100 to 400 ms) were
extracted for each subject and for each living/man-made condition.
Trials with blinks or eye movements were rejected off-line. An
automated artifact rejection criterion of ±100 μV was applied at all
electrodes, and EEG epochs were also visually evaluated. Data from
artifact electrodes from each subject and condition were interpolated
using three-dimensional splines (Perrin et al., 1987). On the basis of
the behavioral outcome for each subject, we separately considered
three possible subgroups of trials: those in response to sounds that
subjects correctly categorized as living or man-made, trials for
which subjects could not guess (i.e. answered ‘unknown’) and those
in response to sounds for which subjects gave a wrong answer (i.e.
categorize as living a man-made sound or vice versa). Because this
trial selection was performed for each subject and depending on
his/her specific behavioral output, epochs in response to different
sounds where included in the same subcategories across subjects.
Artifact-free trials in response to man-made sounds that subjects mis-
judged as living were relatively fewer than those in response to
sounds of living items that subjects categorized as man-made. We
therefore decided to ignore this subgroup of trials in the following
analysis. In summary, we considered only two subgroups of re-
sponses: those in response to sounds whose category was correctly
categorized and those for which subjects could not say whether the
sound was living or man-made (hereafter termed uncategorized).

Datasets definition
For both the uncategorized and correctly categorized stimuli, we

first considered two sets of single trials, one in response to sounds
of living items and one in response to man-made sounds. We used
part of these trials for training and testing the classifier as explained
in Classification procedure section. In addition, for both the uncate-
gorized and correctly categorized sounds, we considered an indepen-
dent dataset (validation dataset) that we used to have a final
evaluation of the classification performance (see next two sections
for details on the number of trials for training/testing and validation).
Keeping separate the datasets used for optimizing the classifier's
parameters and the one used for estimating the classification perfor-
mance is essential for assessing how well the classifier generalizes to
previously unseen data (Kriegeskorte et al., 2009). For both catego-
rized and uncategorized cases, we randomly selected the trials
included in the training/testing dataset and the validation dataset
within the whole set of artifact-free single trials available. This
random selection is fixed once before all the analyses.
As will be clear in the following, we ran the analysis at the group
level, finding a common spatio-temporal pattern across all subjects
(for similar approaches see Shinkareva et al., 2011). This analysis is
performed separately for uncategorized and categorized sounds.

Datasets in response to uncategorized sounds
Only five of the subjects (one woman) had at least 10 artifact-free

trials in response to uncategorized sounds for each of the two seman-
tic categories (living and man-made). All the analyses described in
the following refer therefore to these 5 subjects only. The whole list
of uncategorized sounds is shown in the Supplemental Material 2
(see also behavioral results for the EEG experiment). The dataset in
response to sounds that subjects could not guess and that we used
for training and testing the classifier included 50 trials from the living
category and 50 trials from the man-made category overall. Collaps-
ing data across subjects was necessary to include a sufficient number
of trials for the classification analysis. The remaining single-trials
were used to validate the classification performance. Specifically we
consider as validation dataset a total of 77 single-trials in response
to sounds of living items (that were not categorized). These data
were extracted from all the 5 subjects ranging from 1 to 29 trials
from each of them. By contrast the single trials in response to man-
made sounds that we could use for the validation were too few (14
in total across the 5 subjects). We therefore decided to validate the
classifier performance on responses to sounds of living items.

Datasets in response to correctly categorized sounds
For the same cohort of five subjects, we considered a total of 40

single trials for each subject and each semantic category for training
and testing the classifier. This number of single trials was chosen so
as to limit the computational time required for training and testing
the classification performance at the group level (that is to say
when collapsing single-trial data across subjects and therefore
including 200 single-trials per condition).

In addition, we considered a validation dataset that included a
total of 40 trials across subjects for each category, living and
man-made.

Sound acoustic analysis
We analyzed the sets of living and man-made sounds whose

single-trial EEG responses were included in the datasets as described
above. The goal was to assess whether the sets of living and
man-made sounds (the uncategorized and correctly categorized
were analyzed separately) differed acoustically.

For both uncategorized and correctly categorized sounds, we
first considered living and man-made sounds for each subject sepa-
rately including only those sounds that were used in the training
and testing phase. In addition, for the correctly categorized sounds,
we considered the set of sounds collapsed across subjects whose
single-trial EEG responses were included in the validation datasets.
This analysis was not possible in the case of the uncategorized
sounds because the validation datasets included only EEG responses
to living sounds.

The acoustic analysis between living and man-made sounds
consisted in statistically comparing the spectrograms (defined with
Matlab's spectrogram function with no overlapping and zero pad-
ding), using a time–frequency bin width of 5 ms and 74 Hz. Statistical
contrasts entailed a series of nonparametric t tests based on a boot-
strapping procedure with 5000 iterations per time–frequency bin to
derive an empirical distribution against which to compare the actual
difference between the mean spectrograms from each sound category
(De Lucia et al., 2009, 2010a; Knebel et al., 2008). A significant differ-
ence at a given time–frequency bin was only considered reliable if all
eight of its immediately adjacent bins also yielded values of pb0.05
(i.e., a 3×3 bin spatial threshold was applied). This constitutes a
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minimal level of correction for multiple contrasts and time–frequency
autocorrelation.

As a result of these analyses, we found minor statistically reliable
differences at the single subject level for uncategorized sounds
(Fig. 1, panels S1–S5). It is worth noting that each of the ten test data-
sets included single trials belonging to one single subject only.
Therefore in the training/testing phase, the classifier discriminated
between trials in response to living and man-made sounds that
exhibited minor acoustical differences.

By contrast we found statistical differences at the single subject
level in the case of correctly categorized sounds (not shown). Finally
there were only minor statistically reliable differences between the
sets of correctly categorized living and man-made sounds of the val-
idation dataset (Fig. 1, bottom left panel).

Classification procedure

The aim of the study was decoding the semantic category of each
sound presented to the subjects both when the sound was correctly
categorized and when subjects could not indicate the sound's catego-
ry. Decoding was here based on a classification algorithm that identi-
fied at a single-trial level the sound's semantic category. The
classification analysis was run separately for correctly categorized
and uncategorized sounds.

For each subject and semantic category, we partitioned the training/
testing dataset into ten splits. Training was performed based on nine
Fig. 1. Statistical comparison between spectrograms of living and man-made sounds. For eac
frequency bin (~5 ms and ~80 Hz); on the right we show in red the bins meeting the follow
results (non-parametric t-test; pb0.05 equivalent to a cluster-level value of pb0.00625). (B
training and testing datasets of uncategorized sounds for each subject separately (numbered
of living and man-made sounds that were correctly categorized and whose single-trial EEG
splits; the remaining (independent) split was used to test the classifier.
Training and testing were repeated ten times using different splits and
in a way that testing was always run on an independent partition of
the data. Classification performance was assessed based on average
classification accuracy (ratio of correctly classified single-trials) across
the ten test datasets and on the validation dataset. However, only the
classification performance obtained on the validation dataset is a reli-
able estimation the classification accuracy. Indeed, this set of trials had
not been used at any point for training and for selecting the parameters
of the classifier.
Method for single-trial classification

Preprocessing
For each experimental condition (living and man-made), we con-

sidered the concatenation of peri-stimulus EEG epochs (trials). At
each time point, we represent the data across the electrode montage
as a vector of voltage measurements m={m1,m2,…,mN}, where N is
the total number of electrodes (Fig. 2a). We refer to this vector as to-
pography. These trials were pre-processed by normalizing each to-
pography m by its total EEG power time point by time point. The
aim of this normalization is to minimize the difference between volt-
age topographies due to the strength of the field evoked on the scalp
(and to emphasize instead differences due to the overall shape of the
topography). In the following, we refer to m as a generic normalized
h panel we show on the left the p values of the results of this comparison at each time–
ing statistical criterion: eight spatially contiguous bins exhibit statistically significant
lack-framed panels) Results of the analyses conducted on the sounds included in the
from 1 to 5). (Blue-framed panel) Results of the comparison between the spectrograms
responses were included in the validation dataset.



Fig. 2. Schematic representation of the single-trial classification. a. (left panel) At each time-point, the topography is represented as a vector in N-dimensional space (where
N=#electrodes). (right panel) At this stage we do not take into account the latency and the trial to which it belongs and all the voltage topographies are pooled together in an
N-dimensional space. Only the semantic category information is kept in this representation. Each dataset is modeled as a GMM; in the figure we show two GMMs with three Gauss-
ians in the mixture. b. Based on GMM models' parameters, each topography is assigned a set of posterior probabilities, the number of which equals that of the Gaussians in the
mixture. The set of posterior probabilities values are re-arranged time-point by time-point and re-assigned to each of the original trials. Left and right panels show the average pos-
terior probabilities across trials for each of the two models and datasets, together with the discriminative time-period H where the two conditions are most different. c. Example of
posterior probabilities of a test single-trial. Only those posterior probabilities that appeared during the discriminative time-period are relevant for the classification. This single-trial
is classified as belonging to the X condition because the green posterior probability estimated from the X model (left panel) is higher than estimated from the Y model (right panel),
during the relevant time-period.
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topography at one time point. T indicates the total number of trials in
the training dataset for each condition.

Training phase

Gaussian mixture model (GMM) estimation. The first step of our analy-
sis consisted of modeling the statistical distribution of the ensemble
of topographies in the training dataset (see Tzovara et al., 2012
for more details). At this stage of the analysis, each experimental
condition (living/man-made) was processed separately and all the
available topographies were pooled together disregarding the
latencies at which they were observed and the trial to which they
belonged (Fig. 2a, right panel).

We considered a GMM probability distribution in an N-
dimensional space (Fig. 2a right panel)

P mð jμ;σÞ ¼
XQ
k¼1

pkPk mð jμk;σkÞ ð1Þ

where Pk is the kth Gaussian distribution with mean μk and covari-
ance σk, pk is the prior probability of the class label k and Q is the

image of Fig.�2


Table 1
Response time in milliseconds in response to living and man-made sounds when sub-
jects could correctly indicate the sounds categories and when they could not guess. As-
terisks denote response times to correctly categorized sounds that were significantly
faster than those to uncategorized ones (t-tests; pb0.05). The difference between
these response times was always significant for all subjects and for living and man-
made sounds.

Subject
number

Response time

Living sounds Man-made sounds

Correctly
categorized

Uncategorized Correctly
categorized

Uncategorized

S1 518 ms* 811 ms 517 ms* 1070 ms
S2 559 ms* 1302 ms 577 ms* 1467 ms
S3 690 ms* 2775 ms 853 ms* 2576 ms
S4 793 ms* 1867 ms 1117 ms* 1538 ms
S5 660 ms* 1782 ms 786 ms* 1326 ms
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total number of Gaussians. In the following, we refer to the means
-μk- of the Gaussians as template maps, and for simplicity we replace
the notation “μk, σk” with “ck” to indicate the k-th Gaussian within
the GMM.

The GMM estimation was based on an expectation–maximization
procedure (Dempster et al., 1977; Bishop, 1995) that iterates the es-
timation of the model's parameters (priors, means and covariance
matrices) in order to minimize the error function, or equivalently
maximize the likelihood ℒ:

E ¼ − lnL ¼ −∑
j

ln
XQ
k¼1

P mð jckÞpk
( )

ð2Þ

where the index j spans the total number of topographies in the train-
ing dataset, i.e. the total number of topographies in one trial multi-
plied by the total number of trials in the training dataset for one
condition. The initialization of the expectation–maximization proce-
dure was based on a k-means clustering algorithm (Bishop, 1995)
that provides a first guess of the means and the covariance matrices.
The values for the priors, pk, were obtained by the relative number
of topographies for each cluster. Due to the limited number of train-
ing samples, we reduced the number of free parameters by constrain-
ing the covariance matrix to be diagonal.

Model estimation based on expectation–maximization requires
knowing in advance the total number of Gaussians, Q, in the model
(in the example of Fig. 2a right panel, Q=3). In the following, we ex-
plored many possible values of Q for each condition, and we then se-
lected the optimal values based on maximizing classification accuracy
(see Optimizing the total number of Gaussians).

Evaluating the posterior probabilities of single-trial ERP data. Once the
GMM models had been estimated, we could assign each topography
of the original dataset to one of the Gaussians ck in the model. This
could be done by computing the posterior probabilities (Bishop,
1995: p. 23–27) defined as in the following:

P ckð jmÞ ¼ P mð jckÞ·pk
p mð Þ ð3Þ

where p(m) is the unconditional density function, i.e. the density
function for m irrespective of the Gaussian ck.

In order to investigate stimulus-related information, we rear-
ranged the posterior probabilities to their original temporal order in
the data, providing a new representation of the single-trial ERPs in
time and across trials (see Fig. 1 in Tzovara et al., 2012). For each
trial, this rearrangement generated a time series of the posterior
probability for each template map in the mixture.

The posterior probabilities across trials typically revealed a pat-
tern of presence of a given template map that was structured in
time (Fig. 2b, Figs. 2a–b), where mth is the topography of t-th trial,
at time-latency h. This posterior probability was computed at each la-
tency and for each Gaussian ck in the GMM model for each experi-
mental condition. At this point we could compare the two
conditions by taking advantage of the model estimated on each of
the two conditions, separately.

Identifying discriminative time periods between conditions. In the fol-
lowing m1th and m2th indicate the topographies of Condition 1 and
Condition 2, respectively, appearing at the trial t and latency h; ci
and cj refer to two generic Gaussians in the GMMs for the two condi-
tions. Based on the two models and datasets, we computed P(ci|m1th)
and P(cj|m2th) as shown in Eq. (3).

At each time-point h, we considered only one Gaussian per model,
i.e. the one that yielded the highest posterior probability across trials
within all the Q Gaussians in the model:

ih ¼ argmax
i∈1:Q

ΣT
t¼1 logP cið jm1thÞ

T

( )
ð4Þ

jh ¼ argmax
j∈1:Q

ΣT
t¼1 logPðcjjm2thÞ

T

( )
ð5Þ

Within all the Gaussians in the two models, we expected that only
a subset of them would be informative about the difference between
the two conditions and possibly only along a certain time period (dis-
criminative time period).

For identifying discriminative periods between single-trials in re-
sponse to living and man-made sounds, we compared time-point by
time-point whether the posterior probabilities P(cih|mth) and P(cjh|
mth) were different between conditions by means of non‐parametric
statistical analyses (e.g. Kruskal–Wallis test) in the training dataset
(see Tzovara et al., 2012 for a similar approach based on Bayes Fac-
tor). This strategy could reveal one or more continuous time periods
of differential activity between conditions. We call H the set of
time-points over which the two conditions differed (Fig. 2b). This ap-
proach estimated discriminative time-periods in a data driven man-
ner without a priori selection of the duration of these periods.

Testing phase

Discrimination function and accuracy. During the test phase, we com-
puted the posterior probabilities P(cih|mth) and P(cjh|mth) on the single
trials belonging to the test dataset and along the temporal period H
that had been estimated in the training phase (Fig. 2c). The discrimi-
nation function for the trial t was defined as:

DFt ¼ Σh∈H logP cih

� ���mth

h �
− logP cjh

� ���mth

�i
ð6Þ

The idea was to assign a trial from the test dataset to Condition1 if
the posterior probability of the most likely Gaussian for the first
model (Eq. (4)) was higher than the posterior probability of the
most likely Gaussian for the second model (Eq. (5)), and vice versa.

The classification performance was evaluated by the absolute clas-
sification accuracy (percentage of correctly classified single trials as
living or man-made). We therefore obtained a set of values of classi-
fication accuracy evaluated on ten independent test datasets.

Optimizing the total number of Gaussians and classification perfor-
mance. In order to find the optimum values for the total number of
Gaussians, Q, we generated a set of models for each condition sepa-
rately, with each of these two parameters ranging from three to
nine. Because we had considered ten splits of the data, for each pair



Table 2
Average position index of living sounds (second and third columns for correctly cate-
gorized and uncategorized ones, respectively) and man-made sounds (fourth and
fifth columns for correctly categorized and uncategorized ones, respectively) for each
of the five subjects. Asterisks indicate those position indexes of correctly categorized
sounds that were significantly different from the uncategorized ones in the same
category.

Subject
number

Position order

Living sounds Man-made sounds

Correctly
categorized

Uncategorized Correctly
categorized

Uncategorized

S1 337 294 330* 246
S2 330 328 329 290
S3 349* 242 327 290
S4 291 274 275 223
S5 325 326 331 325
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of models we obtained ten values of classification accuracy. The best
number of Gaussians was determined so as to maximize the mean
classification accuracy across the ten datasets.

We report the mean classification accuracy obtained on the test
datasets and on the validation dataset separately. The classification
accuracy obtained on the validation dataset was compared to the
chance classification performance obtained by randomly shuffling
the labels 100 times in the training and tests datasets. For each shuffle
of the labels, we re-trained the classifier for the previously selected
parameters (i.e. number of maps for each of the two models) and
we evaluated its performance on the validation dataset. We carried
out a paired statistical comparison (Wilcoxon signed-rank test;
pb0.001) between performance of the true classifier and the 100
mean classification results obtained by randomly reshuffling the la-
bels (see Pereira et al., 2009 for general guidelines on comparison be-
tween classifiers' performance and chance-level). This consists in a
single comparison between the true classification performance and
the 100 performances obtained on the permuted data. In practice,
this test entails computing the difference between the values that
the true classifier assigns to each validation trial (1 if correct, 0 other-
wise), and those assigned by the ‘random classifier’. The mean of
these differences across trials in the validation dataset is tested with
a Wilcoxon test to reject the null hypothesis that these 100 mean dif-
ferences have median zero (see also the distribution of these differ-
ences across the 100 permutations in the Supplemental Material 3).

Testing the role of specific temporal period. The ten-fold training and
testing analyses described above could reveal one or more temporal
periods over which the two conditions significantly differ. In order
to establish their contribution to the above-chance classification per-
formance we ran a further analysis in the case when more than one
continuous period of time points was found by the classification algo-
rithm. For each of the latencies that we found significant in the previ-
ous analysis, we tested whether it was possible to decode semantic
Table 3
Number of living and man-made sounds to which subjects correctly or incorrectly answere
sounds, respectively). Average position order of these living sounds (second and third col
sounds (fifth and sixth columns for correctly categorized and uncategorized ones, respecti
were significantly later than the uncategorized ones in the same category.

Subject
number

Living sounds

#
overlapping
sounds

Position order

Correctly categorized Uncategorize

S1 13 82 18
S2 8 82 9
S3 9 77 13
S4 16 76 18
S5 14 61 23
categories using the posterior probability computed along these pe-
riods of time only. As it will be clear in the following, decoding of se-
mantic categories of correctly categorized sounds involved two
separated time-periods. We therefore tested whether each of them
could be informative enough for obtaining above-chance classifica-
tion accuracy in the validation dataset.

Results

Behavioral results

Accuracy and response time
Subjects accurately categorized most of the sounds. The average

percentage (±SEM is indicated for all the average percentages) of
correctly categorized man-made sounds was 88±1%; 5±1% were
misjudged as living and 7±1% of the total number of the presented
sounds were uncategorized. The average percentage of correctly cat-
egorized sounds of living items was 72±3%, whereas miscategorized
sounds was 15±2% and uncategorized was 13±2%.

Response times to uncategorized sounds were significantly longer
than response times of correctly categorized ones (t-test; t>1.66,
pb0.05) (Table 1).

Distribution of correctly categorized and uncategorized sounds through-
out the experiment

We analyzed the possible influence of fatigue and/or a priming ef-
fect on behavior. We first tested whether miscategorization of sounds
was due to a fatigue effect by controlling the presentation order of
sounds that were correctly categorized with respect to uncategorized
ones. Presentation order (indicated as PO in Tables 2 and 3) was ana-
lyzed by assigning an index (from 1 to the total number of presented
sounds) to each sound along the experiment. We tested statistically
whether this index of all the correctly categorized sounds included
in the analysis was different from that of the uncategorized sounds.
This test was performed for each category and each subject separately
(this separation is justified by the same data partition in the single-
trial analysis). We found that there was no statistical difference for
most of the subjects and the semantic category (Table 2); two signif-
icant differences were found (first subject man-made category and
third subject living category) always with the uncategorized sounds
occurring on average earlier than the correctly categorized one.
Therefore, we concluded that we did not have any evidence of a fa-
tigue effect.

For all the subjects, we found a subset of sounds that were some-
times correctly categorized and sometimes uncategorized (indicated
as overlapping sounds in Table 3, first and fourth columns). We inves-
tigated whether this behavioral result was interpretable in terms of a
priming effect. Specifically we checked if uncategorized sounds were
not priming those sounds that were, later in time, correctly catego-
rized. Because each sound was presented many times during the
course of the experiment, we computed the mean index (i.e. mean
d depending on presentation order (first and fourth columns for living and man-made
umns for correctly categorized and uncategorized ones, respectively) and man-made
vely) for each of the five subjects. All position indexes of correctly categorized sounds

Man-made sounds

#
overlapping
sounds

Position order

d Correctly categorized Uncategorized

13 82 8
10 107 8
12 86 7
11 122 11
8 101 8
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presentation order) for each of the sounds when they were correctly
categorized and when they were not. We therefore obtained a set of
mean presentation order for each of the sounds when they were cor-
rectly categorized and when they were not (Table 3, second and third
columns for living category, fifth and sixth columns for man-made
category), considering here only those sounds to which subjects did
not answer consistently. We finally tested statistically whether
these mean values differed (paired t-test; t>1.66, pb0.05). We
found that this difference was always significant, and we therefore
concluded that it was not possible to exclude the presence of a prim-
ing effect.

Classification results

Uncategorized sounds
By training and testing across ten splits of the data, we evaluated

the discriminative time interval between single trials in response to
living and man-made sounds (that were all uncategorized) and the
corresponding classification performance computed as the mean
ratio of correctly classified single-trials (±SEM is indicated for all
the average accuracies). The discriminative time interval between liv-
ing and man-made single trials was found between 116 and 174 ms
post-stimulus onset (thick line in Fig. 3ab) as observed in at least
8 out of ten training dataset (Fig. 4). This differential activity was ob-
served in all the ten training datasets (Fig. 4), therefore demonstrat-
ing a persistent and robust effect across subjects.

The average accuracy across the ten test datasets was 0.62
(±0.05). On a validation dataset (one class of single-trials in response
to sounds of living items) the classification accuracy was 0.68. This ac-
curacy was significantly above chance-level (Wilcoxon signed-rank
test; z=−3.79, pb0.001).

Fig. 3 shows the average posterior probability for the living and
man-made datasets and the corresponding template maps (Figs. 3a,
b). We show here only those posterior probabilities that were on av-
erage higher than all the others at least at one time point during the
discriminative time period. The average posterior probabilities are
highly structured in both cases during the post-stimulus period and
in comparison to the baseline, with some template maps that remain
‘active’ (i.e. higher on average than the others) for up to 50 ms. This is
the case of the blue-framed template maps around 100 ms and the
red-framed template maps starting at around 200 ms.

The discriminative time interval was between 116 and 174 ms
post-stimulus onset (thick line in Figs. 3ab and 4) involved mostly
four template maps for the living condition and the red-framed map
for the man-made condition (Figs. 3 a, b). A visual inspection of the
voltage distributions in each of these template maps and the corre-
sponding average posterior probabilities should clarify the role of
this time-interval in discriminating between the two categories: the
red-framed map of the man-made model shows a frontal positive
polarity; in the same interval and for the living model the most
represented template maps are characterized by different spatial
distributions with the exception of the red-framed one (similar to
the red-framed map of the man-made model). Because of the differ-
ence in the spatial distributions of most of these maps across models,
the difference of the posterior probabilities obtained based by these
two models leads to a robust classification between living and man-
made sounds. From the same figure and following the same reason-
ing, we can observe that other periods are less informative for
discriminating living and man-made objects. For example we can ob-
serve that starting at around 200 ms post-stimulus onset, both data-
sets are on average best represented by the red-framed map of both
models. This time-period is not discriminative because the red-
framed maps have a similar spatial distribution on the scalp.

At the test level (Figs. 3c,d), the posterior probability of living and
man-made single-trials, respectively, offer an intuitive representation
of the classification result: a living sound is represented – during the
discriminative period (thick line) – by both the green-framed and
cyan template maps as it is evident when fitting the single-trial relat-
ed to this sound to the living model (Fig. 3c); vice versa the same re-
sponse when fitted to the man-made model is not providing the same
amount of evidence that the red template map of the man-made
model was actually active (Fig. 3d). An analogous observation can
be derived for a man-made sound, that basically does not activate
any of the template maps shown in panel a (Fig. 3e), while it shows
a similar pattern of red-framed template maps as in panel b when
fitted to the man-made model (Fig. 3f).

Correctly categorized sounds

As we did for the uncategorized sounds dataset, we considered all
the single trials collapsed across subjects for each of the category liv-
ing andman-made (±SEM is indicated for all the average accuracies).
We obtained two intervals of significant difference between 112 and
185 ms post-stimulus onset, and between 270 and 342 ms (Fig. 5,
time intervals evaluated in at least 8 out of the training datasets).
Mean accuracy across the ten test datasets was 0.55 (±0.02). When
classifying based on the two time periods separately, mean accuracy
—across ten datasets was 0.54 (±0.03) and 0.58 (±0.03), respective-
ly. On the validation dataset we obtained 0.56 when taking advantage
of both intervals. This classification accuracy was significantly above
chance-level (Wilcoxon signed-rank test; z=−7.08, pb0.001). We
obtained 0.52 and 0.63 when considering separately the first and
the second interval, respectively. These classification accuracies
obtained on the validation dataset were significantly above chance
level (Wilcoxon signed-rank test; z=−7.84, pb0.001 for the first
time period; z=−8.42, pb0.001 for the second time period). These
significant values are also reflected in the distributions shown in the
Supplemental Material 3. For all these three accuracy estimations,
the fraction of times the true classifier performed better that its per-
muted version was much higher than the opposite. In particular the
classification performance (0.52), obtained by taking into account
only the first time interval, was always higher than its permuted ver-
sions in all but three cases (see Supplemental Material 3, panel c),
demonstrating the high significance of this – albeit relatively low –

performance.

Discussion

We decoded semantic categories at a single-trial level by identify-
ing modulations of the voltage topographies, previously normalized
by the strength of their activity (Bernasconi et al., 2011; De Lucia et
al., 2007, 2010b; Murray et al., 2009; Tzovara et al., 2012). Through
multivariate decoding, we could establish whether specific differen-
tial activity in the EEG response to living and man-made sounds can
be exploited to accurately decode a sound's semantic category. We
carried out this analysis when subjects explicitly and correctly cate-
gorized sounds as living or as man-made, as well as when they
could not provide an answer. We obtained two main findings. First,
we showed that the brain can discriminate semantic categories (liv-
ing and man-made) at early stages (116 ms to 174 ms post-stimulus
onset) of sound processing even when it does not transpire behavior-
ally. Second, perceptual decision-making of environmental sounds
typically relies on two stages of differential processing; during the
first of these periods – overlapping with that observed for uncategor-
ized sounds – enough evidence was accumulated for decoding sound
categories from the EEG signal with an above-chance accuracy; the
second stage of differential processing occurred after the sound
ended. The first of these sets of results shows that even when subjects
could not categorize the sounds, an above-chance decoding accuracy
was obtained at early stages of sound processing. We interpret this
evidence as the effect of a coarse level representation of the semantic
category that is probably not sufficiently accurate for allowing a
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Fig. 4. Time-periods of differences between posterior probabilities assigned to trials of uncategorized living and man-made sounds (trials in response to sounds for all subjects). Red
intervals highlight periods of differential activity between living and man-made trials as identified for each training dataset. Differential activity between 116 and 174 ms post-
stimulus onset is consistently observed despite subjects' heterogeneity.
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confident behavioral response during the categorization task. This re-
sult is particularly interesting in view of the fact that this early differ-
ential activity cannot readily be explained in terms of low-level
acoustic differences between the groups of living and man-made
sounds. Indeed comparisons between the spectrograms of the living
and man-made sounds at the single subject level highlighted only
sparse and minor time-frequency bins exhibiting statistically signifi-
cant differences (Fig. 1). Moreover, because uncategorized sounds
were different across subjects, possibly undetected low-level differ-
ences between living and man-made sounds (see Supplemental Ma-
terial 2) would unlikely occur at the same latency for all the
subjects. We conclude that decoding at this stage of sound processing
is based on its semantic content (at least at a gross categorical level).

Aside from there being a certain degree of semantic representa-
tion that underlies the above-chance decoding accuracy of uncategor-
ized sounds, it is worth noting that this result is based on time-locked
differential activity between living andman-made sounds. One would
expect that the dynamic nature of the presented stimuli would pro-
duce a certain jitter in the timing when accumulated sensory evi-
dence reached a certain level for decoding the semantic content of
the sound. If this were the case, our results indicate that for our sets
of sounds the limit for the evidence accumulation time interval can
jitter between 116 and 174 ms post-stimulus onset.

In the case of correctly categorized sounds, we observed two dis-
criminative intervals. The first can be interpreted as playing the role
of a first level of semantic categorization in a similar way as observed
for uncategorized sounds. Indeed, the latencies of this first differential
activity for categorized and uncategorized sounds were highly over-
lapping (cf. Figs. 4 and 5), despite the fact that these two analyses
were run independently. When considering the first period of
Fig. 3. Panels a and b. Summary of the template maps and average posterior probabilities ob
(panels a and b, respectively). During the discriminative time-period 116–174 ms, (see C
highlighting those values of probabilities that were used to classify test data as living or a
red-framed template map in a relates to red curve in the same panel only; the same holds
sound of a living object. Panels c and d show the posterior probabilities obtained using the liv
maps shown in a and b, respectively). The sum of posterior probabilities along the discrimina
recognized by the classified. Panels e and f. Posterior probabilities of the single-trial respon
obtained using the living and the man-made model respectively (color code in e and f refers
along the discriminative period is higher in panel f than in panel e, that is to say the man-m
differential activity (112–185 ms post-stimulus onset) between living
and man-made sounds, we obtained a relatively lower classification
accuracy for correctly categorized sounds in comparison to uncate-
gorized sounds. This effect can be explained by a higher degree of het-
erogeneity of the first of these two groups. Indeed, correctly
categorized sounds included both sounds whose related object
could be later identified and those for which subjects could only cat-
egorize the sound as man-made or as that of a living item. By contrast,
the uncategorized sounds were forcibly also unidentified.

The analysis of single trials in response to correctly categorized
sounds revealed in addition a discriminative time-period after the
sound ended (270–342 ms post-stimulus onset). Because this second
component is present only when subjects explicitly categorized the
sound as living or man-made, it is likely representing the stage con-
necting the perceptual level to the process of executing a behavioral
response, that is to say directly associated to the decision-making
process. The relatively early latencies of this differential activity sug-
gest that the present effects were not an artifact of motor planning
and preparation, further supporting its role as a perceptual
decision-making component. As for the uncategorized sounds, the
comparison between the spectrograms of living and man-made
sounds lead to minor statistically significant differences. These results
support the conclusion that the above-chance classification accuracy
in decoding single trials in response to living and man-made sounds
cannot be explained in terms of acoustic differences but rather in re-
lation to their semantic content.

It remains an open questionwhether it is possible to predict if a spe-
cific sound will be correctly categorized. In other words, it is presently
unclear which features make a sound ultimately be correctly catego-
rized. Ability to recognize a sound is certainly a function of the
tained when training the GMM model separately on the living and man-made datasets
lassification results section) average posterior probabilities are plotted in thick lines,
s man-made. Color codes between panels a and b should be read independently. (i.e.
for panel b). Panels c and d. Posterior probabilities of the single-trial response to the
ing and the man-made model, respectively (color code in c and d refers to the template
tive period is higher in panel c than in panel d, that is to say the living sound is correctly
se to the sound of a man-made object. Panels c and d show the posterior probabilities
to the template maps shown in a and b, respectively). The sum of posterior probabilities
ade sound is correctly classified.

image of Fig.�4
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accumulated evidence over time, i.e. their duration in time (Bigand et
al.; 2011; see also Bestelmeyer et al., 2011). This is because all the pre-
sented sounds were easily recognized when presented for a longer du-
ration (i.e. 500 ms). However the analysis of subjects' behavior during
the EEG experiment has shown that subjects were also influenced by
the number of times the same sound was repeated during the experi-
ment, at least for part of the presented sounds (cf. Table 3 and Supple-
mental Material 2). Further investigations and experiments are
required to disentangle effects of low-level features of the presented
sounds and possible priming effects in relation to their impact on sub-
jects' behavior (see Murray et al., 2008; De Lucia et al., 2010c for prim-
ing effects induced by environmental sounds repetition).

Behavioral analyses have also shown that we could exclude that the
difference between correctly categorized and uncategorized sounds
was due to an effect of fatigue. Indeed, we did not find evidence of a sys-
tematic deterioration of subjects' ability during the course of the exper-
iment as would be expected if fatigue was influencing behavior.
Comparison to existing literature

Perceptual decision-making both in the visual and somatosensory
domains has emphasized the existence of at least two stages in stim-
ulus processing leading to stimulus discrimination; mainly a bottom
up process followed by higher-level involvement of areas responsible
for perceptual decision-making (Philiastides and Sajda, 2006; Romo
et al., 2003; Salinas et al., 2000). Our results confirm the existence
of at least two stages leading to perceptual decision across sensory
modalities. In addition we show for the first time that discrimination
at early stages of sound processing is not related to low-level features
of auditory stimuli. Rather, semantic categorization can be decoded at
these latencies and in the absence of behavioral proficiency.

Most of the studies focusing on perceptual decision-making are
based on sets of stimuli that differ with respect to their low-level feature
content. Consequently, it was not possible to evaluatewhether early and
time-locked differential activitywas related to the specific physical char-
acteristic of thepresented stimuli ormore generally to its related seman-
tic category. This is the case of studies looking at perceptual decision-
making in the visual domain. Philiastides et al. (Philiastides and Sajda,
2006; Philiastides et al., 2006) found that the N170 component could
Fig. 5. Time-periods of differences between posterior probabilities assigned to trials of corre
jects). Red intervals highlight periods of differential activity between living and man-made t
post-stimulus onset, and between 270 and 342 ms post-stimulus onset is consistently obse
be used to discriminate face versus car stimuli, irrespective of the task
difficulty induced by the noise level in the stimuli. Other common exper-
imental paradigms in the visual domain, such as those involving the dis-
crimination of motion direction also includes differences at the level of
physical features of the presented stimuli (i.e. Bennur and Gold, 2011;
Kim and Shadlen, 1999). Clearly, in both cases the advantage is that it
is possible to control a priori the noise level, and looking at the depen-
dency of neural activity on the degree of task difficulty. By contrast, in
our study we could not determine which sounds were more difficult to
categorize. Our distinction between categorized and uncategorized
sounds is based on behavior and therefore evaluated a posteriori. Despite
these differences, the latencies of our effects are similar to those found in
the visual domain with complex stimuli (Philiastides et al., 2006); the
first processing component occurring around 170 ms post-stimulus,
the second component starting at 300 ms and shifting up to 450 ms
post-stimulus onset depending on task difficulty.

Our results are not readily comparable with the limited extant lit-
erature on perceptual decision-making in the auditory domain. In
previous studies subjects were asked to attribute the presented stim-
uli to one of two possible alternative phoneme ‘categories’, indepen-
dent of the level of noise mask (Binder et al. 2004; Kaiser et al.
2006). The two alternative options were well separated in terms of
their frequency content and therefore likely to be directly related to
the quality of sensory information. In the current study, we consider
environmental sounds that were grouped on the basis of behavioral
outcome (correctly categorized or uncategorized) with different
uncategorized sounds for each subject and each living/man-made
category. Another important difference with respect to previous
works is in the nature of the experimental task. In previous studies
participants had to choose between two possible alternatives after a
pair of sounds had been presented in sequence, therefore implicitly
asking the subject to memorize the sequence before giving an answer.
In the current study the categorization is based on subjects' past ex-
perience not on the direct memory of recent stimuli.
Multivariate decoding

Our multivariate decoding approach is based on the modulation of
the presence of voltage topographies that were previously normalized.
ctly categorized living and man-made sounds (trials in response to sounds for all sub-
rials as identified for each training dataset. Differential activity between 112 and 185 ms
rved despite subjects' heterogeneity.

image of Fig.�5
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This approach is therefore not biased by an a priori selection of the elec-
trodes where one would expect to observe an effect and is informative
about variations in the spatial configurations of the underlying neural
sources. Indeed our multivariate approach is based on differences in
the relative presence of specific voltage configurations that reflect spe-
cific spatial arrangements of neural generators. Other approaches based
on the voltage measurement at multiple electrode sites do not consider
the voltage topographies asmultidimensionalmeasurement, and there-
fore the information about the voltage distribution and its neurophysi-
ologic interpretability is not taken into account (i.e. Philiastides et al.,
2006).With respect to the values of the classification accuracy obtained,
these are in linewithwhat has been shownwith environmental sounds
and multivariate decoding in fMRI (Staeren et al. 2009). Using electro-
physiologic signals, decoding sound categories at the single-trial AEP
level has turned out to be more challenging than in the visual domain.
Simanova et al. (Simanova et al., 2010) attempted at decoding semantic
categories of auditory stimuli at the single-trial level in an experiment
in which subjects were asked to perform a task irrelevant to the catego-
rization. A multivariate pattern analysis based on Bayesian logistic re-
gression performed poorly in comparison to a similar analysis applied
to visual stimuli; and in about half of the subjects they obtained
chance-level classification accuracy. Despite that, in a more challenging
experimental paradigm, Bernasconi et al. (2011) could show that the
same single-trial analysis as applied in the present study lead to an
above-chance prediction of subjects auditory percepts while listening
to acoustically identical auditory stimuli that were erroneously per-
ceived as differing in pitch or duration.

Conclusions

We have shown that the brain is able to discriminate the semantic
category of environmental sounds even when this does not transpire
behaviorally. Two stages of differential activity over the initial 400 ms
post-stimulus onset contribute to perceptual decision-making. An
early stage of sound processing (at ~116 ms) is observed irrespective
of whether or not subjects could explicitly categorize the sound as be-
longing to theman-made or to the living semantic category. Correct cat-
egorization requires a subsequent processing stage (at ~270 ms). To the
best of our knowledgewe provide for the first time an insight into brain
mechanisms of auditory perceptual decision-making of complex envi-
ronmental stimuli. Moreover, using normalized voltage topographies
we could neurophysiologically interpret our classification results in
terms of changes in the underlying neural generators activated in
response to sounds belonging to different semantic categories.

Supplementary materials related to this article can be found
online at doi:10.1016/j.neuroimage.2012.01.131.
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