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The scenario considered here is one where brain connectivity is represented as a network and an experi-
menter wishes to assess the evidence for an experimental effect at each of the typically thousands of connec-
tions comprising the network. To do this, a univariate model is independently fitted to each connection. It
would be unwise to declare significance based on an uncorrected threshold of α=0.05, since the expected
number of false positives for a network comprising N=90 nodes and N(N−1)/2=4005 connections
would be 200. Control of Type I errors over all connections is therefore necessary. The network-based statistic
(NBS) and spatial pairwise clustering (SPC) are two distinct methods that have been used to control family-
wise errors when assessing the evidence for an experimental effect with mass univariate testing. The basic
principle of the NBS and SPC is the same as supra-threshold voxel clustering. Unlike voxel clustering,
where the definition of a voxel cluster is unambiguous, ‘clusters’ formed among supra-threshold connections
can be defined in different ways. The NBS defines clusters using the graph theoretical concept of connected
components. SPC on the other hand uses a more stringent pairwise clustering concept. The purpose of this
article is to compare the pros and cons of the NBS and SPC, provide some guidelines on their practical use
and demonstrate their utility using a case study involving neuroimaging data.

© 2012 Elsevier Inc. All rights reserved.
Introduction

There has been a shift in imaging neuroscience from brain activa-
tion to brain connectivity (Friston, 2009; Sporns, in press). Central to
this shift in focus has been an emphasis on studying large-scale brain
networks composed of nodes and connections (Bullmore and Sporns,
2009; Habeck and Moeller, 2011; He and Evans, 2010; Kaiser, 2011;
Sporns, 2011; Wig et al., 2011). Nodes represent brain regions and
the connections formed between pairs of nodes represent some mea-
sure of interaction between them, as inferred from neuroimaging
data (Rubinov and Sporns, 2011).

Brain networks have been found to exhibit various nontrivial to-
pological features, such as small-world organization, modular struc-
ture and highly connected hubs (Achard et al., 2006; Bassett and
Bullmore, 2006; Hagmann et al., 2008; van den Heuvel et al., 2008).
The goal of numerous studies has been to elucidate differences in
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these topological properties over developmental stages (Fair et al.,
2009), in clinical conditions (e.g. Lynall et al., 2011; He et al., 2008;
van den Heuvel et al., 2010) and in relation to different experimental
conditions and cognitive states (e.g. Bassett et al., 2011; Fornito et al.,
2011a; Kitzbichler et al., 2011) as well as genetic influences (Fornito
et al., 2011b).

The interpretation of topological differences found in brain net-
works is not always straightforward, however. Topological properties
derived from the characteristic path length in functional brain networks
(Wang et al., 2010) are particularly difficult to interpret because func-
tional networks are intrinsically fully connected. Therefore, the “path
length” between a pair of regions is already explicitly captured by the
strength of the direct connection (Rubinov and Sporns, 2010). Negative
functional connections complicate the interpretation of path length as
well (Chen et al., 2011).

Furthermore, topological differences can in some circumstances
be a complex manifestation of simple differences in connectivity
strength. Steps taken to disambiguate topological differences from
simple differences in connectivity strength are equivocal and typically
require the selection of arbitrary thresholds to transform connectivity
strength from a continuous to a binary scale (Ginestet et al., 2011; van
Wijk et al., 2010) (see Fig. 1).

http://dx.doi.org/10.1016/j.neuroimage.2012.01.068
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Fig. 1. Is there a topological difference between networks A and B, or do the networks
simply differ in connectivity strength? If the networks are analyzed as weighted
graphs, then they are topologically different. For example, cA=0.5 whereas cB=0.8,
where cx denotes the average clustering coefficient (Onnela et al., 2005) for network
x. On the other hand, the networks are topologically indistinct if they are analyzed as
binary graphs that are matched in terms of connection density.
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Elucidating differences in the strength of connectivity is therefore
an important undertaking in and of itself. Differences in connectivity
strength are more basic than topological differences and as such are
more straightforward to interpret.

This article considers exploratory methods for assessing the evi-
dence of an experimental effect at each of the typically thousands of
connections comprising a brain network. The experimental effect
may be, for example, an association between connectivity strength
and diagnostic status in a case-control study or contextual changes
during performance of a cognitive task (Bressler and Menon, 2010).

The scenario considered is one in which connectivity is measured
between every pair of many distinct brain regions. Connectivity in-
cludes anatomical connectivity inferred from fiber tracking methods
(Bassett et al., 2010; Li et al., in press) and cortical thickness/volume es-
timates (Bassett et al., 2008; He et al., 2007) as well as functional con-
nectivity inferred from functional imaging (van den Heuvel and
Hulshoff Pol, 2010) or electromagnetic tomography (Schoffelen and
Gross, 2011). To enable inferential statistics, the same connectivitymea-
surements are repeated for each subject comprising a case-control
study or in the same subject during different experimental conditions.
A univariate model is then independently fitted to each connection to
assess the evidence of an experimental effect. This involves computing
a test statistic and corresponding p-value for the contrast of interest.

The total number of connections is typically in the thousands.
Control of Type I errors among all connections is therefore essential.
The network-based statistic (NBS) (Zalesky et al., 2010a) and spatial
pairwise clustering (SPC) (Hipp et al., 2011; Zalesky et al., in press)
are two distinct methods that have been used to control family-
wise errors when assessing the evidence for an experimental effect
with mass univariate testing. The family-wise error rate refers to
the likelihood of committing one or more Type I errors among all
connections (Nichols and Hayasaka, 2003).

The basic principle of the NBS and SPC is the same as supra-
threshold voxel clustering in traditional task-based functional-MRI
activation studies (Bullmore et al., 1999; Nichols and Holmes,
2001). Whereas voxel clustering pertains to mass univariate testing
of brain activation, the NBS and SPC pertain to mass univariate testing
of brain connectivity. Unlike voxel clustering, where the definition of
a voxel cluster is unambiguous, ‘clusters’ formed among supra-
threshold connections can be defined in different ways. The only obvi-
ous way to form voxel clusters is to cluster supra-threshold voxels
that share at least one common face, edge or corner. Supra-threshold
voxels refers to voxels having a test statistic that exceeds a chosen
cluster-forming threshold.

In contrast, there is not one obvious way to form ‘clusters’ among
supra-threshold connections. The NBS defines clusters using the
graph theoretical concept of connected components. SPC on the
other hand uses a more stringent pairwise clustering concept. With
the development of these two complimentary methods, experi-
menters face a choice: NBS or SPC?
This choice is addressed by comparing the pros and cons of the
NBS and SPC, providing some guidelines on their practical use and
demonstrating their utility using a case study involving connectivity
measurements inferred from electroencephalography data. Note
that the NBS is freely available as part of the Brain Connectivity Tool-
box (http://www.brain-connectivity-toolbox.net/) and Connectome
Mapping Toolkit (http://www.connectomics.org).

Methods

Assume brain connectivity is measured between every pair of N
distinct brain regions. To assess the evidence for an experimental
effect, a univariate model is independently fitted to each connection
and a test statistic is computed for the contrast of interest (e.g.
F-statistic, t-statistic). Each connection is therefore endowed with
a test statistic and corresponding uncorrected p-value.

A typical value of N is 90 (Zalesky et al., 2010b), in which case the
total number of connections is N(N−1)/2=4005, since each node can
form a connection with every other node, apart from itself. It would be
unwise to declare significance based on an uncorrected threshold of
α=0.05 because the expected number of false positives would be
200. Control of Type I errors among all connections is therefore essential.

The most conservative approach is to control the family-wise error
rate with the Bonferroni correction or the Holm–Bonferroni method
(Holm, 1979). However, the Bonferroni correction is generally too
conservative, particularly given that the number of multiple tests,
N(N−1)/2, grows quadratically with the number of nodes, N. For
N=90, a true positive must have a p-value that is less than approxi-
mately α/4005≈0.00001 if it is to survive the Bonferroni correction
using a family-wise error rate of α=0.05. A less conservative ap-
proach is to control the false discovery rate (Genovese et al., 2002),
but it too can be underpowered when N is large (Zalesky et al.,
2010a).

To increase statistical power, a simple strategy is to reduce the total
number of connections, and thereby reduce the number of multiple
tests. The number of multiple tests can be reduced by excluding certain
nodes or connections a priori based on case-specific assumptions. For
example, it may be desirable to explicitly exclude short-range connec-
tions to alleviate spurious connectivity induced by volume conduction
effects in the case of electroencephalography (Nolte et al., 2004;
Schoffelen andGross, 2009), or smoothing in the case of functional-MRI.

Another strategy is to use a coarser parcellation template to subdi-
vide the brain into distinct nodes (Hayasaka and Laurienti, 2010;
Wang et al., 2009). Fewer nodes mean fewer connections. However,
using a coarser parcellation template is detrimental to the spatial
resolution at which focal effects can be localized. A focal effect is likely
to encompass a proportionally small volume of the larger node within
which it is encapsulated. Therefore, a focal effect may be obscured
once averaging is performed over the entire volume of the larger node.

These limitations have led to the development of two new
methods for controlling Type I errors. The two methods are called
the network-based statistic (NBS) and spatial pairwise clustering
(SPC). Both methods exploit the tendency for experimental effects in-
volving brain connectivity to exhibit specific spatial/topological char-
acteristics that would not be expected as a matter of chance alone in
the absence of an effect.

Connections with a test statistic exceeding a chosen threshold are
first admitted to a set of supra-threshold connections. Supra-threshold
connections essentially represent uncorrected effects that survive the
application of a primary, uncorrected cluster-forming threshold. The
NBS and SPC search for distinct spatial/topological patterns, referred
to as clusters, in the set of supra-threshold connections that provide
evidence of an experimental effect. Permutation testing is then used
to ascribe a family-wise error corrected p-value to each cluster.

The NBS and SPC assess the evidence for an experimental effect at
the cluster level, rather than at the level of each connection. In this

http://www.brain-connectivity-toolbox.net/
http://www.connectomics.org
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way, they control the family-wise error rate in the weak sense (Maris
and Oostenveld, 2007; Nichols and Holmes, 2001). This means that
the null hypothesis cannot be rejected individually for particular con-
nections comprising a cluster, but only for the cluster in totality.

What has led to the development of two distinct methods? Unlike
voxel clustering, where the definition of a voxel cluster is unambigu-
ous, ‘clusters’ formed among supra-threshold connections can be de-
fined in different ways, which has given rise to distinct methods.
Spatial pairwise clustering

SPC is described here for situations where nodes can be repre-
sented as discrete points in three-dimensional space. Let xi denote
the coordinate of node i. Two nodes xi and xj are considered neighbors
if the distance by which they are separated is less than a predefined
threshold, d. Furthermore, if xi is a neighbor of xj and yi is a neighbor
of yj, then the two connections (xi, yi) and (xj, yj) are said to be pair-
wise neighbors and form a pairwise cluster. Pairwise clusters can
comprise more than two connections. If xk is a neighbor of xi or xj
and yk is a neighbor of yi or yj, then the three connections (xi, yi),
(xj, yj) and (xk, yk) form a pairwise cluster.

Pairwise clusters provide evidence of an experimental effect. In
the absence of a localized effect, supra-threshold connections are
likely to be randomly distributed (see Fig. 2). SPC operates by system-
atically searching over all supra-threshold connections for pairwise
clusters.

This search is performed by initializing an N(N−1)/2×N(N−1)/2
adjacency matrix, denoted A, where each row/column corresponds to
a unique connection, and thus each element of A corresponds to a
unique pair of connections. Assume an ordering where row/column
i corresponds to connection (xi, yi) and row/column j corresponds
to connection (xj, yj). Set A(i, j)=A(j, i)=1 if and only if (xi, yi)
and (xj, yj) are pairwise neighbors and both reside in the set of
supra-threshold connections; otherwise set A(i, j)=A(j, i)=0.
Specifically, A(i, j)=A(j, i)=1 if ‖xi−xj‖bd and ‖yi−yj‖bd, or
equivalently, ‖xi−yj‖bd and ‖yi−xj‖bd. These two conditions are
equivalent due to symmetry. In this way, each unity element in A
represents pairwise neighbors. A breadth first search can then be used
to identify any connected components in A, where each connected
component defines a unique pairwise cluster. An efficient algorithm
for computing connected components is provided as part of the Boost
Graph Library (Gleich, 2009).

The size of a pairwise cluster can be defined as the number of pair-
wise relations it comprises, or the sum of the test statistic over all
connections comprising the pairwise cluster. Drawing an analogy
with voxel clustering, the number of pairwise relations is loosely
a) Random distribution b) Pairwise cluster

Fig. 2. Each line represents a supra-threshold connection. Circles represent nodes.
Supra-threshold connections can be randomly distributed (a) or arranged into a pairwise
cluster (b). The pairwise cluster provides evidence for an experimental effect between the
pair of distant regions shaded gray. The node pair colored red is not part of the pairwise
cluster because only one of its nodes is a neighbor.
equivalent to the notion of cluster extent, while the sum of the test
statistic over all connections corresponds to cluster intensity. A
weighted combination of these two measures is also possible
(Hayasaka and Nichols, 2004).

The data is permuted K times using appropriate exchangeability
criteria. The size of the largest pairwise cluster, denoted s(k), is
recorded for each permutation k. This results in an empirical null dis-
tribution for the largest pairwise cluster. A family-wise error cor-
rected p-value for an observed pairwise cluster of size sz is then
given by the total number of permutations for which the largest pair-
wise cluster is greater than or equal to sz divided by the total number
of permutations considered.

SPC is described in pseudo-code in Algorithm 1 for the case of a
one-sided test. For a two-sided test, t(i, j) at line 4 is replaced with
its absolute value, |t(i, j)|.

SPC has been used to elucidate between-group connectivity differ-
ences in a case-control study of schizophrenia (Zalesky et al., in press)
as well as to localize connections modulated by the performance of an
audiovisual task (Hipp et al., 2011). In the latter study, a space-, time-
and frequency-resolved measure of connectivity was used (source-
level coherence inferred from electroencephalography), which enabled
localization of connectivity differences not only in space, but also in the
dimensions of time and frequency (Maris and Oostenveld, 2007).

Algorithm 1: Spatial pairwise clustering
Inputs: xi= coordinate of node i; T= cluster-forming threshold; d= neighbor
distance threshold; K= number of permutations
1:
 Measure connectivity between every pair of nodes (i, j)

2:
 Fit univariate model to each connection (i, j) and compute test statistic t(i, j)

to assess evidence for the contrast of interest

3:
 for all possible pairs of node pairs {(xi, yi),(xj, yj)} do

4:
 if ‖xi−xj‖bd and ‖yi−yj‖bd and t(i, j)>T
then

5:
 Ai, j:=1,Aj, i:=1

6:
 else

7:
 Ai, j:=0,Aj, i:=0

8:
 end if

9:
 end for

10:
 Conduct breadth first search for connected components in A and let szn be the

size of component n=1, …, M

11:
 Generate K samples, s(k), from the null distribution of the largest pairwise

cluster via permutation testing

12:
 Compute p-value for component szn as
pn=#{s(k)≥szn}/K

13:
 return pn, n=1, …, M
Network-based statistic

The NBS is a more established algorithm. It has been used to map
functional (e.g. Fornito et al., 2011a; Zhang et al., 2011) and anatom-
ical (e.g. Verstraete et al., 2011; Zalesky et al., 2011) connectivity dis-
turbances in psychiatric and neurological disorders.

The NBS differs from SPC in the criteria used to define clusters.
With SPC, if (xi, yi) and (xj, yj) are two supra-threshold connections,
they are clustered together if and only if xi is a neighbor of xj and yi
is a neighbor yj. With the NBS on the other hand, they are clustered
together if xi is a neighbor of xj or yi is a neighbor yj.

While this modification might seem rather inconsequential, it can
lead to a substantial improvement or worsening in statistical power
(see Fig. 3). Whether or not the modification leads to an improve-
ment depends on many factors (see Discussion). However, in general,
the NBS is suited to an effect spanning multiple interconnected re-
gions, whereas SPC is suited to an effect between an isolated pair of
regions.

The following three modifications to Algorithm 1 give rise to the
NBS: the adjacency matrix A is now of size N×N; at line 3, the for-
loopnowonly needs to traverse all possible connections, not all possible



Fig. 3. Three examples explicating key differences between the NBS and SPC. Each line represents a supra-threshold connection. Circles represent nodes. Connections colored black
correspond to an experimental effect (true positives), while those colored red correspond to false positives that have survived the cluster-forming threshold.
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pairs of connections; and, at line 4, the if-loop condition now becomes
‖xi−xj‖bd or ‖yi−yj‖bd and t(i, j)>T.
Application

Electroencephalographic activity was recorded at 160 scalp elec-
trodes in 11 healthy volunteers. Each volunteer performed a visual
proximity task under different working memory load conditions: no
load, low load and high load (Cocchi et al., 2011). Data were band-
pass filtered from 0.1 to 40 Hz. Sources were estimated using a dis-
tributed linear inverse solution (ELECTRA) applying the local autore-
gressive average (LAURA) regularization approach to address the
non-uniqueness of the inverse problem (Grave de Peralta Menendez
et al., 2005). The space of the inverse solution was sampled with
N=280 discrete nodes uniformly distributed across the cortical
surface.

Using Pearson's correlation coefficient, connectivity (zero lag am-
plitude covariation) was measured between every pair of nodes sep-
arated by a distance of at least 40 mm, resulting in a total of 10,861
connections. Node pairs separated by less than 40 mmwere excluded
to avoid spurious short-range correlations arising from volume con-
duction effects.
For each connection, a repeated measures analysis of variance
was computed to test for a change in the strength of connectivity
across the three conditions in the 160–190 ms post-stimulus peri-
od. This specific post-stimulus period was chosen based on a previ-
ous analysis (Cocchi et al., 2011). Each of the 10,861 connections
was therefore endowed with an F-statistic and corresponding
p-value.

The most significant of the 10,861 p-values was 0.00026. Because
α/10861≈10−6, α=0.05, is two orders of magnitude smaller than
0.00026, controlling the family-wise error ratewith the Holm–Bonferroni
method yielded no significant findings. Control of the false discovery rate
also yielded no significant findings.

The NBS and SPC were separately applied for each of three differ-
ent F-statistic cluster-forming thresholds: T=6.5,7 and 8. For the
purposes of SPC, any two nodes were defined as neighbors if they
were separated by no more than d=7mm. Based on this distance
threshold, each node possessed 5.8 neighbors on average. The size
of a pairwise cluster was defined as the number of pairwise relations
it comprised.

A total of K=5000 permutations were computed for each thresh-
old. For each permutation, the three conditions were randomized
using appropriate exchangeability criteria for a repeated measures
analysis of variance (Suckling and Bullmore, 2004).
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Fig. 4. The NBS and SPC were used to identify regions between which connectivity changed as a function of the working memory load. Each slice is a planar (sagittal) representation.
The threshold refers to the F-statistic cluster-forming threshold. The connections comprising each distinct cluster are colored uniquely. The size (sz) and family-wise error corrected
p-value of each cluster is indicated, where n.s. indicates the cluster is not significant (p>0.05). The size of a pairwise cluster is the number of pairwise neighbors it comprises.
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Fig. 4 shows the regions identified by the NBS and SPC showing
evidence of an experimental effect. SPC identified the same three
pairwise clusters for each of the three thresholds evaluated. The
pairwise clusters are colored orange, green and red in Fig. 4.
Each pairwise cluster represents a pair of brain regions between
which connectivity changed as a function of the working memory
load. The null hypothesis was rejected for each pairwise cluster in-
dividually (pb0.05), except for the threshold of 6.5, where the
green pairwise cluster was no longer significant. When the thresh-
old was reduced to 6.5, the size of the green pairwise cluster
remained unchanged (sz=4), but the likelihood of a larger pair-
wise cluster emerging as a matter of chance in the randomized
data naturally increased with a lower threshold; hence the loss
of significance.

The NBS is better suited to an effect spanning multiple inter-
connected regions. This is exemplified in Fig. 4(c), where the
green and orange pairwise clusters have been interconnected to
form a single network, as well as in Fig. 4(e), where the green, orange
and red pairwise clusters have been interconnected to form a single
all-encompassing cluster. This is to the detriment of localizing power
because the null hypothesis can only be rejected for the cluster as a
whole in Fig. 4(e), but not individually for the three constituent
pairwise clusters. In contrast, SPC preserves the distinction between
the three pairwise clusters.
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It is important to remark that in some cases, but not here, the pair-
wise clusters comprising a network might not be statistically signifi-
cant individually, but the network they comprise may be significant
as a whole. The NBS is clearly advantageous in these cases.
Discussion

Whereas supra-threshold voxel clustering (Bullmore et al., 1999;
Nichols and Holmes, 2001) pertains to mass univariate testing of
brain activation, the network-based statistic (NBS) and spatial pair-
wise clustering (SPC) are analogous methods enabling mass univari-
ate testing of brain connectivity. More specifically, the NBS and SPC
are clustering strategies to control family-wise errors, in the weak
sense, when assessing the evidence for an experimental effect at
each of the typically thousands of connections comprising a brain
network.

A key advantage of the NBS and SPC is that they enable testing of an
experimental effect at every connection comprising a brain network,
not just those connections between a few select regions-of-interest.
The region-of-interest approach is sensible if an experimenter wishes
to test a single hypothesis relating to a specific connection, but in the
case of exploratory testing, it may introduce biases stemming from
the region-of-interest selection process (Hipp et al., 2011).

Another key advantage of the NBS and SPC is that they are both
nonparametric. This means assumptions are not required on the
probability distribution of connectivity measurements under the
null hypothesis, or the distribution of the measure used to quantify
the extent of an experimental effect. For the case study considered
in this article, the F-statistic was used to quantify the extent to
which connectivity changed as a function of the working memory
load. However, any measure of variation would have been just as
valid, even if it was nonstatistical in origin. In contrast, with paramet-
ric testing, an experimenter is limited to tests that conform to the
sampling distribution (Maris and Oostenveld, 2007).
Table 1
Key features distinguishing the NBS and SPC.

NBS SPC

Complexity Lower Higher
Experimental effect Network Connection

(Coarser) (Finer)
Specificity Lower Higher
Sensitivity Higher Lower
Threshold selection

Both the NBS and SPC require selection of a cluster-forming
threshold to define a set of supra-threshold connections. The choice
of threshold is rather arbitrary. While the arbitrariness of threshold
selection is a shortcoming of supra-threshold clustering methods in
general, it is important to remark that the choice of threshold does
not affect specificity. In particular, weak control of the family-wise
error rate is ensured irrespective of the choice of threshold.

The concern is that the choice of threshold can have a bearing on
sensitivity. For example, consider an experimental effect comprising
relatively many connections, but each of which shows a relatively
weak effect. In this case, if the threshold chosen exceeds the cutoff
value corresponding to this weak effect, both the NBS and SPC will
fail to detect the effect, resulting in a false negative, even though
the effect is ‘significant’ on the basis of its large spatial extent (i.e. it
comprises relatively many connections).

This is analogous to the arbitrariness of threshold selection in
voxel clustering, which has been alleviated to a certain extent with
the threshold-free cluster enhancement approach (Smith and
Nichols, 2009).

Fig. 4 shows that relatively small variations in the F-statistic
threshold (F=6.5, 7 or 8) can have a bearing on the results. Most no-
tably, the cluster colored green was no longer detected with the NBS
when the threshold was increased from F=7 to F=8, while with SPC,
the cluster colored green was no longer significant (p>0.05) when
the threshold was reduced from F=7 to F=6.5. The latter case dem-
onstrates an important point—reducing the cluster-forming threshold
does not necessarily result in improved sensitivity.
NBS versus SPC

In general, the NBS is suited to an experimental effect spanning
multiple interconnected regions (i.e. a network), whereas SPC is suit-
ed to an effect between an isolated pair of regions (i.e. a connection).
This distinction between the two methods stems for a subtle, yet con-
sequential difference in the criteria used to define clusters among the
set of supra-threshold connections.

With the NBS, a supra-threshold connection can join a cluster if at
least one of its nodes is a neighbor of one of the nodes already com-
prising the cluster. This is the minimum requirement necessary to
form a cluster of interconnected connections, which is referred to as
a connected component in the parlance of graphs. In contrast, SPC
uses a more stringent pairwise clustering concept. With SPC, a
supra-threshold connection can join a cluster if and only if both of
its nodes are neighbors of nodes already comprising the cluster.

An advantage of SPC is that effects can be declared at a finer
resolution. In particular, the null hypothesis can be rejected separately
at the level of individual pairs of brain regions, rather than at the level
of a network of many brain regions. This is most clearly demonstrated
in Fig. 4 for the case of F=6.5. In this case, SPC identified three separate
clusters, each corresponding to a different pair of brain regions between
which connectivity changed as a function of the working memory load
(Fig. 4f). The null hypothesis could therefore be rejected/accepted
separately for each of the three clusters. In contrast, the NBS identified
a single cluster representing a network that encompassed the three
smaller clusters identified with SPC (Fig. 4e).

It is important to note that the finer localizing resolution of SPC
can however be to the detriment of sensitivity. Specifically, a pairwise
cluster in itself may be too small to reach statistical significance with
SPC. However if that pairwise cluster forms a network with other
pairwise clusters, the network may be large enough to declare signif-
icance at the network level with the NBS. The case of F=6.5 in Fig. 4
provides an example of such a scenario, where the pairwise cluster
colored green failed to reach significance with SPC (Fig. 4e), but was
significant at the network level with the NBS (Fig. 4f).

Lower computational complexity is an advantage of the NBS.
With the NBS, the adjacency matrix used to perform the cluster
search is of size N×N, whereas with SPC, the size grows substantially
to N(N−1)/2×N(N−1)/2. Furthermore, the number of neighborhood
relations that must be enumerated is much greater when clusters are
defined in a pairwise manner. For example, a voxel has 26 immediate
neighboring voxels, but a pair of voxels has (26+1)×(26+1)=729
neighboring pairs of voxels. The +1 here represents the original voxel
pair.

The NBS may be advantageous if a coarse parcellation template is
used subdivide the brain into distinct nodes. In this case, it ismore likely
that regions corresponding to an experimental effect are sampled by
only one node, and thus pairwise clusters cannot be formed (e.g. see
third case, Fig. 3). In contrast, the NBS may be able to declare signifi-
cance based on the presence of a network, since network structure
does not require each region to be sampled by multiple nodes.

In many scenarios, an experimenter may not have a strong
hypothesis about the spatial characteristics of an experimental
effect. Therefore, the choice between the NBS and SPC is likely to be
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guided by a tradeoff between factors such as specificity and sensitivity,
computational complexity and the desired resolution at which an effect
is to be localized. In particular, as summarized in Table 1, SPC usually
provides greater specificity, whereas the NBS usually provides greater
sensitivity; the NBS is always less computationally burdensome than
SPC; and SPC enables localization at the higher resolution of individual
connections, whereas the NBS is suited to localizing networks.

Cognitive interpretation

The case study considered in this paper was designed to investigate
brain dynamics involved in concurrent execution of a visual–perceptual
task while maintaining an unrelated visual–spatial working memory
(VSWM) load. Full details of the task paradigm have been presented
elsewhere (Cocchi et al., 2011). Concurrent execution of two unrelated
tasks has been found to result in either enhanced or decreased overall
performance compared to the case of serial execution (Kim et al.,
2005; Rissman et al., 2009). Elucidating the dynamics of functional con-
nectivity associated with this novel effect provides ideal motivation for
the application of methods such as the NBS and SPC.

Three distinct connections were modulated by VSWM load:
occipital–temporal, frontal–temporal and dorsofrontal–orbito-frontal
(Fig. 4). Our findings support the hypothesis that neural networks
encompassing frontal, temporal and occipitoparietal regions are central
in managing dual-task demands. Specifically, our current results are in
line with previous studies suggesting that frontal regions play a central
role in linking sensory-perceptual and motor operations in dual task
contexts (Dux et al., 2006; Sigman and Dehaene, 2008). Indeed, both
the superior- and inferolateral–frontal regions identified were con-
nectedwith regions involved in visual–perceptual andmotor processes.
Our findings are also in linewith theoreticalmodels implicating frontal/
prefrontal regions in cognitive control mechanisms integrating sensory
and motor processes (Badre, 2008).

There is significant scope to further analyze our findings in the
context of dual-task performance. As part of a post hoc analysis, it might
be useful to determine whether connectivity increased/decreased as a
function of VSWM load for each of the three connections identified.
Due to the unsigned nature of the F-statistic, a pairwise cluster can
potentially comprise a mixture of nodes pairs—some between which
connectivity increases as function of VSWM load, while others between
which it decreases. Therefore, it might also be advantageous to replace
the F-statistic with a signed measure of variability that is sensitive to
only an increase or only a decrease in connectivity. Another line
of investigation might be to use a time- and frequency-resolved
measure of connectivity, such as source-localized coherence.
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