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WSPM: Wavelet-based statistical parametric mapping
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Recently, we have introduced an integrated framework that combines
wavelet-based processing with statistical testing in the spatial domain.
In this paper, we propose two important enhancements of the
framework. First, we revisit the underlying paradigm; i.e., that the
effect of the wavelet processing can be considered as an adaptive
denoising step to “improve” the parameter map, followed by a
statistical detection procedure that takes into account the non-linear
processing of the data. With an appropriate modification of the
framework, we show that it is possible to reduce the spatial bias of the
method with respect to the best linear estimate, providing conservative
results that are closer to the original data. Second, we propose an
extension of our earlier technique that compensates for the lack of
shift-invariance of the wavelet transform. We demonstrate experi-
mentally that both enhancements have a positive effect on perfor-
mance. In particular, we present a reproducibility study for multi-
session data that compares WSPM against SPM with different amounts
of smoothing. The full approach is available as a toolbox, named
WSPM, for the SPM2 software; it takes advantage of multiple options
and features of SPM such as the general linear model.
© 2007 Elsevier Inc. All rights reserved.
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Introduction

Statistical parametric mapping (SPM) (Friston et al., 1995;
Frackowiak et al., 1997) is probably the most popular parametric
hypothesis-driven method for the analysis of fMRI data. To control
the multiple testing problem, SPM considers the data as a lattice
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representation of a continuous Gaussian Random Field (GRF). To
conform with this hypothesis, the data are pre-smoothed with a
Gaussian filter with fixed size (Worsley et al., 1996; Poline et al.,
1997). The user has the option to adjust the smoothing strength for
optimal detection (compromise between SNR enhancement and
spatial definition).

The discrete wavelet transform (DWT) has also been applied to
the analysis of fMRI data for parametric hypothesis testing. Three
important properties justify the use of wavelets in this application.
First, they typically encode activation patterns with a small set of
wavelet coefficients; this is referred to as the DWT's sparsifying
property. Second, an orthogonal DWT leaves the noise evenly
distributed in the wavelet domain; it therefore increases the SNR.
Third, the DWT acts (approximately) as a decorrelator. Therefore,
a conservative Bonferroni correction for multiple hypothesis
testing is closer to optimal in the wavelet domain than in the
spatial domain. Basically, the standard wavelet approach to
parametric hypothesis testing consists in statistical testing the
wavelet domain representation of the parameter map (Ruttimann et
al., 1998; Turkheimer et al., 2000). The remaining difficulty is
how to fully exploit the reconstruction of the parameter map after
thresholding in the wavelet domain. Several approaches have been
proposed, such as variance reconstruction or estimation of the
residual in the spatial domain (Desco et al., 2005; Aston et al.,
2005), Bayesian modeling (Turkheimer et al., 2006; Flandin and
Penny, 2007), optimizing statistical power while controlling false
discovery rate (Sendur et al., 2005; Srikanth et al., 2006), or
considering the wavelet processing as a alternative preprocessing
step (Wink and Roerdink, 2004). Recently, we have proposed a
variation of the wavelet-based framework (WSPM) that performs
the model-fitting and processing in the wavelet domain, but
transfers the statistical testing back into the spatial domain (Van
De Ville et al., 2004).

Most parametric hypothesis-driven approaches that have been
proposed so far fall within the general conceptual framework that is
summarized in Fig. 1. In SPM, the initial smoothing with a
Gaussian filter can be seen as a denoising procedure to increase the
SNR of the data. The subsequent detection procedure is applied on
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Fig. 1. Conceptual view of a parametric hypothesis-driven approach to fMRI data analysis. First, the original time-series data are fitted according to a general
linear model, resulting in a so-called parameter map. This operation is voxel-wise. Next, the parameter map is denoised to increase the SNR. This can be done
using assumptions for the activation patterns. Finally, an activation map is obtained by statistical testing of the denoised parameter map.

1206 D. Van De Ville et al. / NeuroImage 37 (2007) 1205–1217
the parameter map obtained from the smoothed data using the
GLM; it is based on GRF theory. The temporal processing by the
GLM and the spatial processing by the Gaussian filter are both
linear and separable (time×space) operations and therefore can be
interchanged; i.e., SPM's parameter map can also be obtained by
filtering the parameter map obtained from unsmoothed data. In our
wavelet-based framework, we can also separate the different
processing steps according to Fig. 1: temporal modeling by the
GLM followed by (non-linear) denoising in the wavelet domain.
The subsequent statistical testing takes into account the influence
of the wavelet processing but remains in the spatial domain, which
has obvious advantages.

In this paper, we further investigate and extend the integrated
WSPM framework in two important aspects:

(1) Reduction of spatial bias: Although the framework takes into
account the statistical effect of denoising, it can still manifest
spatial bias. For instance, weak activations in the parameter
map may resemble the underlying pattern poorly if only a
limited subset of wavelet coefficients is retained. Notice that
a similar effect can be observed with SPM: the data are
denoised by the Gaussian filtering and so is the parameter
map as well, which potentially introduces spatial bias. We
extend the wavelet framework to reduce this effect.
Consequently, the final detected parameter map can be
considered as more closely related to the measured data with
respect to spatial bias.

(2) Better shift-invariance: The fact that the DWT is shift-variant
is often recognized as a major disadvantage. We show how to
incorporate results of multiple non-redundant DWTs, for
different shifts of the data, which essentially make the
analysis shift-invariant.

The proposed framework has been integrated into SPM2 as a
“WSPM toolbox”, allowing the user to have the usual SPM-based
analysis and the wavelet-based framework side by side. With
respect to temporal domain modeling, the full GLM fitting as
provided by SPM (including compensation for serial correlation) is
used.

In what follows, we briefly review the standard wavelet-based
method, and then introduce the enhanced framework with bias
reduction and the shift-invariant extension. We illustrate and
discuss the concept with several examples. First, we present a 1D
synthetic data set to demonstrate the main effect of the proposed
enhancements. Then, we analyze an experimental multi-session
data set using a reproducibility study to estimate the sensitivity
and specificity of WSPM and SPM at different smoothing
settings. We extend the typical receiver-operating-characteristics
(ROC) curves by a third dimension that measures the bias of the
methods with respect to the best-linear-unbiased estimated of the
non-smoothed data. These tri-variate plots allow us to evaluate
the trade-off that is provided by the various methods and settings.

Background

We start this section with a brief review of the DWT. We then
present the integrated framework for fMRI analysis.

The discrete wavelet transform

The discrete wavelet transform (DWT) is a powerful tool for
multi-resolution signal analysis (Mallat (1989, 1998)). The trans-
form of a multi-dimensional signal v(x) is a decomposition into a
sum of shifted and scaled versions of (bandpass) wavelet functions
(typically 2d-1 different wavelets in d dimensions) and shifted
versions of a (lowpass) scaling function. We introduce the
shorthand notation

vðxÞ ¼
X
k

vw½k�wkðxÞ; ð1Þ

where vw[k] can be both lowpass or wavelet coefficients at all
different scales and orientations, for which ψk are the correspond-
ing basis functions.

A review of the integrated framework for wavelet-based statistical
analysis of fMRI data

We denote an fMRI data set as v½n; t�;naZ3;taZ, where n and
t=1,…, Nt are the 3D-spatial and temporal indices, respectively.
The non-redundant spatial 3D DWT of a volume, v[n; t], yields the
coefficients vw [k; t]. As in Eq. (1), we compactly denote the
wavelet decomposition as

v½n; t� ¼
X
k

vw½k; t�wkðnÞ: ð2Þ

Since each volume v[n; t] is transformed to the wavelet domain,
we can introduce a time-series vector of length Nt for each wavelet
coefficient: vw[k]= [vw[k;1]…vw[k;Nt]]

T. Next, the temporal beha-
vior of the wavelet coefficient is described by a GLM (Friston et
al., 1995; Van De Ville et al., 2003; Mueller et al., 2003), so we put
forward

vw½k� ¼ Xyw½k� þ ew½k�; ð3Þ



1 ξτw follows a truncated normalized Gaussian distribution, and ς and χ-
distribution with J degrees of freedom, see Van De Ville et al. (2004).
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where X is the Nt×L design matrix, and ew[k] a (random) error.
The matrix X contains L signal regressors.

Given the observed data vw[k], the least-squares estimate of
the parameters of the GLM is given by ȳw[k]= (X

TX)−1XTvw[k].
This estimate is optimal provided that the error component is
independently and identically Gaussian distributed. The corre-
sponding residual is ew[k]=vw[k]−Xȳw[k]. Next, the informa-
tion of interest is extracted from ȳw[k] by a contrast vector c.
At this stage, we obtain two scalar values for the k-th wavelet
coefficient:

uw½k� ¼ cT ȳw½k�; ð4Þ

s2w½k� ¼ ēw½k�T ēw½k�cTðXTXÞ�1c; ð5Þ

where uw[k] and sw
2 [k] /J, under the null hypothesis, follow a

Gaussian and a χ2 distribution (with J=Nt-rank(X) degrees of
freedom), respectively (Jezzard et al., 2001; Worsley et al.,
2002). At this point, we introduce the unprocessed parameter
map as the reconstruction of the raw wavelet coefficients uw[k]
without any processing:

u½n� ¼
X
k

uw½k�wkðnÞ: ð6Þ

Notice that the same u[n] would be obtained by fitting the
GLM directly in the spatial domain.

The wavelet processing of the integrated framework consists of
thresholding the parameter map uw [k] based on the corresponding
t-values, which are determined as

tw k½ � ¼ uw½k�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2w½k�=J

p : ð7Þ

This operation requires a threshold τw. In WSPM, this threshold is
not obtained as the result of a statistical test, but kept as a general
parameter of the algorithm. The wavelet coefficients uw[k] that
survived the thresholding ∣tw[k]∣Nτw are then reconstructed as

ũ½n� ¼
X
k

Hðjtw½k�j−τwÞuw½k�wkðnÞ
︸

ũw½k�
; ð8Þ

where H (t) is the Heaviside step function defined as

HðtÞ ¼ 0;when tb0;
1;otherwise

�
ð9Þ

In other words, the term H (∣tw [k]∣−τw) in Eq. (8) acts as an
indicator function which is equal to 1 for ∣tw[k]∣≥τw and 0
otherwise.

Finally, we perform a hypothesis test in the spatial domain to
determine whether the voxel n is activated and thus has a non-zero
mean:

H0 : E ½ ũ½n�� ¼ 0; ð10Þ

H1 : E ½ ũ½n�� > 0: ð11Þ
Notice that we opt for a one-sided test as it is also SPM's
convention. The main result of our integrated framework (Van De
Ville et al., 2004) states that the statistical test amounts to checking
whether or not ũ[n]≥τsΛ[n], where τs is the threshold in the
spatial domain and Λ[n] is the reconstruction of the values
sw½k�=

ffiffiffi
J

p
by a modified inverse DWT algorithm:

L n½ � ¼
X
k

sw½k�ffiffiffi
J

p jwk nð Þj: ð12Þ

The result is the detected parameter map

ũ V½n� ¼ Hð ũ½n� � ssL½n�Þ ũ½n�; ð13Þ
for which the probability of a false detection under the null
hypothesis can be bound as

P½ ũ½n�zssL½n�� V x ðsw;ssÞ ¼ aB; ð14Þ
whereϒ(τw, τs)=minaN 0E [(1+a(ξτw−τsς))+] is a data-independent
function of the parameters τw and τs, with ξτw and ς being known
reference random variables1 and (t)+=max(0, t). This bound can be
chosen equal to αB, the desired confidence level after Bonferroni
correction; i.e., αB=α/Nc, where Nc is the number of intracranial
voxels. However, there is an infinite number of combinations (τw, τs)
that yield the same probability αB. In Van De Ville et al. (2004), we
looked for the solution that minimizes the worst-case error between
the unprocessed and detected parameter map. This constraint
turned out to be equivalent to minimizing the sum τw+τs, subject
to ϒ(τw, τs)=αB. A closed-form solution can be found for NtN50,
as is typically the case for fMRI:

sw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�W�1ð�2pa2BÞ

q
; ss ¼ 1=sw; ð15Þ

where W−1 is the −1-branch of the Lambert W-function.
In Fig. 2, we show schematically the integrated framework and

its different steps.

Methods

Specificity improvement by spatial bias reduction

We revisit the central idea of the integrated framework: the
separation of denoising and detection. Let us take a closer look at
the schematic overview of Fig. 2. We recognize that u[n] is the
linear estimate of the parameter map, which is the best possible
unbiased estimate under the Gaussian assumption. Unfortunately, a
direct voxel-wise statistical test on u[n] with Bonferroni correction
would show a disappointingly low sensitivity since spatial cor-
relation is not taken into account. This is the primary reason to
exploit the spatial correlation by thresholding in the wavelet
domain: noise is suppressed for a good part, while signal-carrying
wavelet coefficients are essentially preserved. The framework then
relies on a bound for the probability that the denoised parameter
map ũ[n] gets falsely detected under the null hypothesis:

P½ ũ½n�zssL½n�� V x ðsw;ssÞ; ð16Þ
where τsΛ[n] is an appropriate non-stationary threshold adapted
for testing the denoised map ũ[n]. By construction, this result is
conservative with respect to the denoised parameter map ũ[n].
Since this parameter map is obtained by an inverse DWT from
(typically) a subset of wavelet coefficients, the reconstruction can
be spatially biased by the synthesis process.



Fig. 2. Schematic overview of the integrated framework.
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We first recall that checking Eq. (16) corresponds to a one-sided
test; i.e., larger values of ũ[n] increase the probability of detection.
With this in mind, we propose to construct an improved parameter
map û[n] out of ũ[n] with reduced spatial bias. We opt for a
conservative point-of-view; i.e., wewant to correct for the case when
the parameter is overestimated by the reconstruction after thresh-
olding in the wavelet domain. This typically arises when the
thresholding operation keeps isolated wavelet coefficients in which
case the secondary ripples of the wavelet function may survive
spatial thresholding (“ringing” effect). Therefore, we compare the
denoised map ũ[n] against the linear estimate u[n], and we construct
the corrected map as

û½n� ¼ minðu½n�; ũ½n�ÞV ũ½n�: ð17Þ
Basically, this means that we do only follow the denoised map if it is
not higher than the linear estimate. Our choice couldmiss activations
that are underestimated by the linear approach (as the denoised map
will be corrected accordingly). However, the linear estimate is
unbiased and we believe that spatial bias introduced by the basis
functions is important to compensate for.

The conservativeness of the spatial bias reduction (17) follows
from û[n] being obviously closer to u[n] than ũ[n] is; i.e.,
‖û−u‖≤‖ũ−u‖. Because û[n]≤ũ[n], we automatically have that
û[n]≥τsΛ[n] also implies ũ[n]≥τsΛ[n]. Consequently, we have

P½ û½n�zssL½n�� V P½ ũ½n�zssL½n��; ð18Þ

which, in turn, is upper bounded byϒ(τw, τs). We can thus perform
the same test on û[n] as we did on ũ[n], with the same bound.
Finally, the detected parameter map becomes

ûV½n� ¼ Hð ̂u½n� � ssL½n�Þ ̂u½n�: ð19Þ
Another useful interpretation of the improved parameter map û[n] is
illustrated by Fig. 3. Clearly, we would like the denoised version ũ[n]
to be as close as possible to the underlying true activation u0[n].
Since u[n] is the best linear unbiased estimate for E[u[n]]=u0[n],
we can interpret e[n]=u[n]−ũ[n] as an estimate for the difference
u0[n]−E[ũ[n]]. When the denoised map ũ[n] satisfies ũ[n]Nu[n]
Fig. 3. The denoising procedure of the integrated framework has been extend
(where u[n] is close to u0[n], on average), it might survive spatial
thresholding while the true map u0[n] may not, thus leading to
false positives. Therefore, when e[n]b0, we prefer to stick to the
linear estimate by selecting û[n]=u[n]. On the other hand, when
e[n]≥0, we keep û[n]=ũ[n] and take advantage of the powerful
denoising properties of the non-linear operation in the wavelet
domain.

We recall that the framework is characterized by the two
threshold values τw and τs. For the original framework, we showed
that minimizing the worst-case difference between the linear fit
u[n] and the detected parameter map ũ′[n], corresponds to
minimizing the sum τw+τs. For the extended framework, we ask
a similar question, but this time for the new end-to-end difference

∣u[n]−û[n]∣. By expressing this difference as

ju½n�� ûV½n�j¼ ju½n�� û½n� þ ̂u½n�� ûV½n�j
V ju½n�� û½n�j þ j û½n� � ûV½n�j
¼ju½n��minðu½n�; ũ½n�Þjþj û½n�jð1�Hð ̂u½n��ssL½n�ÞÞ
V ju½n� � ũ½n�j þ ssL½n�
Vðsw þ ssÞL½n�;

we see that the optimal values of τw and τs remain unmodified; i.e.,
they are obtained by minimizing their sum subject toϒ(τw, τs)=αB.

Shift-invariant wavelet processing

One of the major disadvantages of the non-redundant DWT is its
shift variance; i.e., a shift of the input signal does not simply translate
into a shift of the wavelet coefficients. Consequently, shifting an
activation region could turn out to give different detected patterns. The
potential of the redundant (translation-invariant) DWT has been
suggested before by Turkheimer et al. (2000) in the context of direct
statistical testing in the wavelet domain. At first sight, plugging in the
redundant DWT into our framework looks very tempting since the
threshold values τw and τs would remain unchanged. Unfortunately,
there is a catch. Small activation regions or activations barely detected
would be detected by a few coefficients only, whose energy has been
decreased by the redundancy factor. Therefore, the denoised
parameter map would show lower values than in the non-redundant
ed to obtain a parameter map û[n] after denoising and bias reduction.
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case (assuming the non-redundant transform is located at the “right”
shift), and detection would become less sensitive.

We propose to mitigate this problem by analyzing the data
under M different shifts. The data volumes are shifted by a vector
dm, m=0,…,M−1 analyzed using the normal DWT, and the results
are shifted back by −dm. That way, we obtain for each shift:

P½ ûðmÞ½n�zssL
ðmÞ½n�V x ðsw;ssÞ: ð20Þ

We combine these results by selecting the one that results into the
highest normalized value:

P max
m

ûðmÞ½n�
LðmÞ½n�

 !
z ss

" #
¼ P _M−1

m¼0 û
ðmÞ½n� z ssL

ðmÞ½n�
� �

ð21Þ

V
XM−1

m¼0

P½ ûðmÞ½n� z ssL
ðmÞ½n�� ð22Þ

V M x ðsw;ssÞ: ð23Þ
Clearly, the redundancy factor M increases the threshold values
with respect to the non-redundant case. From this point of view, the
proposed extension is not yet completely optimal, since it does not
take into account the correlation between the different shifted
versions. Despite the higher threshold values, experimental results
will show that the combinations increases sensitivity, although the
threshold values are slightly higher.

To be fully shift-invariant with Jw decomposition levels, we
need M=22Jw shifts in 2D, and M=23Jw in 3D. They can be
constructed easily by considering all possible shifts 0,…, 2Jw−1 in
every dimension. For example, in 3D we have

dm ¼
m

tm=2Jw b
tm=22Jw b

0
@

1
Amodulo2Jw ; m ¼ 0; N ;23Jw−1: ð24Þ

In practice, it is sufficient to keep M low and to be only shift-
invariant at the first decomposition level; i.e., 4 when the wavelet
transform is deployed in 2D or 8 for 3D.
2 This example corresponds to a design matrix with only one column; i.e.
the constant value.
Compensation for serial correlation

In practice, fMRI data sets are known to have a non-negligible
temporal correlation. Hence, if not properly compensated for,
ordinary least-squares estimates are sub-optimal (i.e., the estimates
of the standard deviation are biased). For our framework, we
choose to incorporate the method deployed by SPM (Worsley and
Friston, 1995; Friston et al., 2000, 2002). Basically, the least-
squares estimate is properly weighted by the covariance matrix,
which is estimated using an ARMA-model and a restricted
maximum likelihood (ReML) method, which is then incorporated
into the linear model to prewhiten the data. The degrees of freedom
are estimated by the Satterthwaite approximation (Worsley and
Friston, 1995). Since the temporal model is spatially stationary, it
can be transposed without any problem to the time-series of the
wavelet coefficients. Whitening and parameter estimation are dealt
with by functions available from SPM.

WSPM: a new toolbox for SPM

The extended framework has been implemented as a “WSPM
toolbox” (version 1.2) for SPM2. In this way, the user can setup his
experiments as usual using SPM's extensive features for
preprocessing (e.g., registration) and GLM specification, including
the HRF modeling. Next to the standard analysis performed by
SPM, the toolbox allows to use our framework for spatio-wavelet
statistical testing. Its results are added as new “contrasts” to the
SPM structure related to the experiment, and they can be explored
using SPM's extensive features for visualization and cluster
analysis. This toolbox can be freely downloaded from http://
bigwww.epfl.ch/wspm/.

Simulation results

For more insight, we illustrate the modification of the denoising
step by a 1D example in Fig. 4. We selected the following
activation function

u0 n½ � ¼ exp �ðn� 16Þ2
4

 !
þ 1
3
exp �ðn� 28Þ2

4

 !
;n ¼ 1; N ;32;

ð25Þ
and generated Nt=80 signal realizations corrupted with additive
white Gaussian noise of standard deviation 0.10. In Fig. 4(a), we
show the true activation u0[n] and the linear fit u[n], which is
simply obtained as the average over all realizations.2 The error bars
correspond to the standard deviation. The integrated framework is
applied using the orthogonal B-spline DWT (degree 3, Jw=2
decomposition levels), which corresponds to the well-known cubic
Battle–Lemarié wavelet. The confidence level is α=1%, which
yields the thresholds values τw=4.14 and τs=0.24 after Bonferroni
correction. In Fig. 4(b), we observe that the wavelet basis functions
contributing to the reconstructed signal of the main activation have
a strong weight and induce bias in the denoised parameter map;
i.e., the left positive sidelobe is spurious while the right positive
sidelobe reinforces the smaller activation. In Fig. 4(c), we see how
the systematic overshoot (positive sidelobes) has been suppressed
in the bias-reduced parameter map û; the negative lobes are still
remaining but they have no incidence on detections, as a one-sided
test is used.

In Fig. 5, we take the previous 1D example again. In the non-
redundant case, shown in Fig. 5(a) and (b), the influence of a shift
becomes apparent. The result in Fig. 5(b) corresponds to shifting
the activation by one sample position, which implies that the signal
is less efficiently captured in the wavelet domain; so the smaller
activation stays undetected. In Fig. 5(c), we see how the redundant
DWT is able to combine the result for both shifts, but suffers from
a reduced signal intensity. Finally, in Fig. 5(d), we show the
proposed combination of Fig. 5(a) and (b). The corresponding
threshold values have slightly changed to τw=4.31 and τs=0.23
due to the redundancy factor of 2.
Experimental results

In this section, we propose an evaluation of WSPM compared
to SPM2, based on real multi-session fMRI data. The data set here
comes from a carefully conducted experiment with auditory
,

http://bigwww.epfl.ch/wspm/
http://bigwww.epfl.ch/wspm/


Fig. 4. One-dimensional example to illustrate the effect of the spatial bias
reduction after the denoising step. (a) Original signal and linear estimate.
(b) Non-linear estimate after adaptive denoising in the wavelet domain.
(c) Non-linear estimate after bias reduction. Legend: 1: ground truth u0; 2:
linear estimate u; 3: non-linear estimate ũ; 4: spatial threshold τsΛ; 5:
non-linear estimate with bias reduction û.
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stimulation. All experiments were approved by the Ethical
Committee of the Geneva University Hospital.

Paradigm and stimuli

A block paradigm that alternates between “rest” and “stimula-
tion” sequences is applied. One period of the design consists of
24 s of auditory stimulation followed by 12 s of silence. The
subject is exposed to single-frequency acoustic stimulation, which
are 0.5 s sinusoidal tone bursts at a rate of 1 Hz. These stimuli are
delivered binaurally at a comfortable loudness level. Four different
frequencies are used: 300 Hz, 1126 Hz, 2729 Hz, and 4690 Hz. A
total of 4 sessions is carried out within the same fMRI experiment,
and the order of blocks of auditory stimulation at different
frequencies is permutated across sessions. In each session, the
stimulation/silent block is repeated twice for each of the 4
frequency values for a total acquisition time of about 5 min per
session.

MRI acquisition

The MRI data are acquired on a 1.5 T system (Philips Medical
Systems, Best, The Netherlands). The multi-slice volume is
positioned using sagittal scout images. Before the functional MR
scans, an anatomical scan (a GRE T1-weighted sequence, TR/TE/
Flip=162 ms/4.47 ms/80°, FOV=230 mm, matrix=256×256,
slice-thickness=3 mm) is performed to acquire the same volume
as in the functional session. Functional imaging consists of an
EPI GRE sequence (TR/TE/Flip = 1.2 s/40 ms/80°,
FOV=230 mm, matrix=128×128, 14 contiguous 3 mm axial
slices, spatial resolution 1.8×1.8×3 mm). The explored volume
is measured 20 times during each period of auditory stimulation
and 10 times during each silent period. Functional scanning is
always preceded by 8 s of dummy scans to ensure tissue steady-
state magnetization. The subject's head is placed within a
custom-designed headset with insulation, which filters out most
of the MR scanners noise (70 dB attenuation for 250–8000 Hz
range).

Data analysis

Data processing is carried out with the Statistical Parametric
Mapping SPM2 software package (Wellcome Department of
Imaging Neuroscience, London UK, http://www.fil.ion.ucl.ac.uk/
spm/). All functional volumes of the 4 sessions are spatially
realigned to a reference functional volume. Realigned images are
then smoothed with an isotropic Gaussian kernel of appropriate size
(FWHM). The pre-processed functional volumes of each subject are
then submitted to fixed-effects analysis using the general linear
model (GLM) applied at each voxel across the whole brain. Each
condition of interest (i.e., auditory stimulation and silent blocks) is
modeled by a boxcar waveform convolved with a canonical
hemodynamic response function (with no dispersion or temporal
derivatives) and subjected to a multiple regression analysis with six
covariates of no interest representing the head motion parameters )
see Friston et al., 1996a; Johnstone et al., 2006). The estimation
process also includes high-pass filtering (1/128 Hz cutoff) to remove
low-frequency noise and signal drift, as well as AR-modeling to
compensate for serial correlation.

The statistical tests with SPM are performed on the smoothed
and realigned images. Contrast volumes are computed for the
main effect of auditory stimulation (“all frequencies”) versus
silent periods over the 4 sessions. Statistical parametric maps of
the t statistics (SPMt) are obtained; these are corrected for
multiple testing based on SPM's Gaussian Random Field theory
(FWE correction). To evaluate the influence of smoothing, we
considered three Gaussian filter settings: 4 mm, 6 mm, and 8 mm
FWHM (voxel size=1.8×1.8×3 mm).

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/


Fig. 5. One-dimensional example to illustrate the effect of translation. (a) Non-linear estimate for non-redundant DWT. (b) Non-linear estimate for non-redundant
DWT, but signal shifted by one position. (c) Non-linear estimate for redundant DWT. (d) Combining the estimates using the non-redundant DWT. Legend: 1:
ground truth u0; 4: spatial threshold τsΛ; 5: non-linear estimate û(1) using non-redundant DWT; 6: non-linear estimate û(2) using non-redundant DWT but with
shifted signal; 7: non-linear estimate ûred using the redundant DWT; 8: spatial threshold τsΛred using the redundant DWT; 9: non-linear estimate ûmax combining
the non-redundant DWTs; 10: spatial threshold τsΛmax.
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For the WSPM analysis, the same realigned images (but
without smoothing) are decomposed using the following wavelet
transforms:

• 2D orthogonal B-spline wavelet transform of degree 1.0, number
of decomposition levels Jw=1 and Jw=2.

• 3D orthogonal B-spline wavelet transform of degree 1.0, number
of decomposition levels Jw=1 and Jw=2.WSPM uses simple
Bonferroni correction to deal with the multiple testing problem.

We present results by projecting the detected clusters on the
T1-weighted SPM2 template brain in the radiological convention.
The statistical significance is fixed at 5% corrected for multiple
hypothesis testing. The different results are shown in Figs. 6–11
and will be discussed later. As a reference, we also include the
result of a voxel-by-voxel t-test on the unsmoothed data.
Reproducibility study

To investigate the performance of SPM and WSPM, we
conducted a reproducibility analysis. While the true status (truly
active or truly inactive) of each voxel is unknown, we can estimate
the proportion of truly active voxels that are classified correctly
based on multi-session data. These estimates can be interpreted as
the empirical sensitivity and specificity of the method, which
provides us with a way to establish the receiver-operating-
characteristics (ROC) curve. Several studies have recommended
the ROC approach for validating and comparing statistical
methods, e.g., Friston et al. (1996b), Genovese et al. (1997),
Skudlarski et al. (1999), Maitra et al. (2002), Liou et al. (2003),
Fadili and Bullmore (2004), and Liou et al. (2006).

The main idea is to exploit the consistency in the detections over
multiple sessions. To that end, we consider the cumulative sum of the
individual binary activation maps, which takes values between 0 and
K, where K is the number of sessions. The normalized histogram of
the cumulative map is denoted by q[k], k=0,…, K, and considered to
be a realization of a process that follows the binomial mixture law:

K
k

� �
½kpkAð1� pAÞK�k þ ð1� kÞpkI ð1� pIÞK�k �; ð26Þ

where pA and pI denote the sensitivity and false positive rate,
respectively, and λ the mixture parameter that represents the
proportion of truly active voxels.

These parameters are estimated from the data using an EM-
algorithm (Fadili and Bullmore, 2004). Since the mixture



Fig. 6. Activation maps for the contrast “all frequencies – rest” obtained by
SPM at various smoothing, 5% (FWE correction).

Fig. 7. Activation maps for the contrast “all frequencies – rest” obtained by
voxel-wise t-test, 5% (Bonferroni corrected).
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parameter is assumed to be constant for the given data set, it is
estimated globally. The estimated sensitivity pA and specificity
1−pI are then used to specify an empirical ROC curve by
letting the significance level vary (in our case, from α=1 to
α=10−11 corrected for multiple testing).

Next to this reproducibility analysis, we also measure a bias
term that corresponds to the difference between the denoised
contrast image and the best linear unbiased estimate u[n] (i.e., the
voxel-based estimate of the unsmoothed data). For the SPM
framework, the parameter map is denoised by the smoothing
operation. We define the empirical relative bias as

ESPM ¼
P

naA juSPM½n� � u½n�jP
naA ju½n�j ; ð27Þ

where u[n] is the unsmoothed voxel-wise estimate and A denotes
the set of active-declared voxels. For WSPM, the parameter map is
denoised by the non-linear operation of thresholding the wavelet
coefficients. The corresponding empirical relative bias is

EWSPM ¼
P

naAj ̂u½n� � u½n�jP
naA ju½n�j ; ð28Þ

where û[n] is given by Eq. (17).
In Fig. 12, we show the tri-variate plot of the estimated

specificity, sensitivity, and bias. We also included the voxel-by-
voxel spatial t-test that has no bias, but suffers from a very low
sensitivity while its specificity is well controlled.

Discussion

Based on the results for the multi-session fMRI data set, we
discuss the proposed extensions to WSPM's framework, and make
the comparison with SPM.

We first investigate the effect of the bias reduction and the shift-
invariant extension of WSPM for the 2D slice-by-slice wavelet
transform (orthogonal B-spline wavelet of degree 1.0, Jw=2
decomposition levels). In Fig. 8, we see that the bias reduction
effectively makes the detected activation patterns closer to typical
activations within the grey matter. As this correction is
conservative, the number of detections can only potentially
decrease, but there is no apparent sensitivity reduction at the
cluster-level. In Fig. 9, we show the activation maps for the data
analyzed using various shifts of the original data in the axial plane.
The influence of such a shift is clearly not negligible and leads to
different detections and shapes. Using the shift-invariant extension
of the framework (Fig. 11, top), we see that the results for the
various shifts are properly combined. While the redundancy by a
factor of 4 slightly increases the threshold values, there is no
noticeable loss in sensitivity. From now on, we consider only



Fig. 8. Activation maps for the contrast “all frequencies – rest” obtained byWSPM, 5% (Bonferroni corrected), for the 2D wavelet transform without redundancy
(2 decomposition levels). Left: with bias reduction; right: without bias reduction.

1213D. Van De Ville et al. / NeuroImage 37 (2007) 1205–1217
WSPM results using the bias reduction and the shift-invariant
extension (4 shifts for 2D, 8 shifts for 3D).

We now take a closer look at the results for SPM as shown in
Fig. 6. For this type of auditory stimulation, we expect that
Fig. 9. Activation maps for the contrast “all frequencies – rest” obtained byWSPM,
(2 decomposition levels). Shifts are in the axial plane.
activated regions are mainly located bilaterally in the auditory
cortex with more extent in the left hemisphere (e.g., see Bilecen et
al., 1998). Indeed, we observe different activated foci in the
auditory cortex and extended anterior-lateral to posterior-mesial
5% (Bonferroni corrected), for the 2D wavelet transform without redundancy



Fig. 11. Activation maps for the contrast “all frequencies – rest” obtained by
WSPM, 5% (Bonferroni corrected).

Fig. 10. Activation maps for the contrast “all frequencies – rest” obtained by
WSPM, 5% (Bonferroni corrected).
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within the Heschl's gyrus. Increasing the Gaussian smoothing
strength results into a grouping of activated clusters and an
enlargement of their extent (left auditory cortex in Fig. 6), which is
in line with previous assessments of the effects of data smoothing;
e.g., Worsley et al. (1996). This increase in the spatial extent of
activation is inherently accompanied by a decrease in the spatial
definition (i.e., the ability to identify distinct activated foci), which
might be relevant when high spatial resolution acquisitions are
performed to better delimit subdivisions of the auditory cortex or to
visualize tonotopy. Critically, the activated clusters outside the
auditory cortex (which are more likely to be false positives) are
also increasing with spatial smoothing, as illustrated by frontal or
occipital foci in SPM with 8 mm smoothed data (Fig. 6, bottom).
Finally, we notice that the sensitivity of SPM has indeed greatly
improved with respect to the voxel-wise spatial t-test.

In Figs. 10 and 11, we show the various results for WSPM (2D
and 3D wavelet transform, 1 and 2 decomposition levels). In
general, functional patterns detected by WSPM are comparable to
those by SPM but with some notable differences. Interestingly,
significant clusters are localized with high spatial definition, which
seems to be fairly independent of the type of wavelet transform.
The 3D transform has a higher sensitivity than the 2D one; e.g., a
cluster located in the anterior-lateral part of the left auditory cortex
is left undetected by the 2D transform. This superior performance
can be explained by inter-slice correlations that are exploited by the
additional transform along the Z-direction for the 3D transform.
However, the inter-slice correlation is local, and having more than
1 decomposition level starts degrading the result for the 3D
transform. Slice timing correction did not influence the results in
this case, but it should be considered for higher TR (with non-
sequential slice acquisition schemes or event-related paradigms).
For data sets with less inter-slice correlation, the use of the 2D
transform can be more appropriate since it is computationally
faster, and its shift-invariant extension is less redundant.

The ROC curves obtained from the reproducibility study over
the multiple sessions are shown in Fig. 12. By definition, the
voxel-wise statistical test has no bias, but a very low sensitivity.
SPM's Gaussian smoothing introduces a bias but also significantly
increases sensitivity. It is interesting to see that, with WSPM, we
obtain a lower bias than SPM 4 mm for all types of wavelet
transforms. For very high significance levels, the bias of WSPM
approaches the linear unbiased estimate. In addition to a lower
bias, we also observe an improved ROC behavior. In particular, the
3D transform with 1 decomposition level yields a higher sensitivity
than SPM 4 mm for the same empirical specificity. The only
exception is the 3D transform with 2 decomposition levels. Finally,
we note that the wiggly curves for WSPM are due to the (non-
linear) thresholding operation in the wavelet domain.



Fig. 12. Empirical ROC curves for the multi-session experiment. (a) Tri-variate plot showing (1-specificity), sensitivity, and fidelity (bias) for the various
approaches. (b) View only showing bias and sensitivity. (c) View only showing specificity and sensitivity. (d) Zoom of (c).

1215D. Van De Ville et al. / NeuroImage 37 (2007) 1205–1217
These findings suggest that WSPM should be useful for high
spatial resolution mapping. As shown above, the false positives are
well controlled, while the true positives are precisely localized. The
latter property is a consequence of the spatial adaptivity of the
wavelet representation and of the bias reduction procedure that
tends to preserve smaller activations. Preserving localization is a
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key consideration in many fMRI studies. For example, investiga-
tions of the auditory cortex that try to identify cortical subdivisions
or visualize tonotopy have analyzed raw fMRI data without spatial
smoothing (e.g., Talavage et al., 2000, 2004; Schönwiesner et al.,
2002; Formisano et al., 2003; Seghier et al., 2005). Indeed, it is
highly desirable to preserve the high spatial resolution provided by
the scanner and to avoid integration of signal from different voxels
that may have different functional properties. However, better
resolution usually comes at the expense of noise and many authors
have employed spatial smoothing (e.g., Bilecen et al., 2002;
Wessinger et al., 2001) to improve the signal-to-noise ratio and to
increase the sensitivity of the statistical analysis. Within this
context, WSPM can be seen as an adaptive technique, in which the
spatial filtering is performed by wavelets that can preserve edges
and can potentially recover high-resolution activation patterns. We
have shown that this can be achieved without any compromise in
sensitivity. For instance, it is noteworthy that five different foci can
be distinguished within the left auditory cortex (Fig. 10, bottom);
these may correspond to subdivisions of the primary auditory
cortex (Morosan et al., 2001) or to different secondary auditory
areas (Rivier and Clarke, 1997; Talavage et al., 2000).

In this study, we opted for the orthogonal B-spline wavelet of
degree 1.0 (Battle, 1987; Unser and Blu, 2000). Thanks to
orthogonality, the measurement noise remains white in the wavelet
domain; therefore, the denoising operation by coefficient-wise
thresholding is very efficient. The transform has 2 vanishing
moments, which means that constant and linear trends in the data
are filtered out, which could compensate for inhomogeneity
effects. While the activation maps and ROC curves for the current
study show that a single decomposition level yields the better
results, we expect a beneficial effect of more decomposition levels
for data with higher spatial resolution (leading to relatively larger
activation patterns that can be more efficiently represented by
larger basis functions). A similar effect has been observed when
applying the framework to analyze data from optical imaging, as in
Bathellier et al. (2007).

Finally, we recall that WSPM relies on SPM's temporal
modeling (GLM and AR-model). One shortcoming of this model is
that it may produce overestimates when there is serial correlation in
the data that has not been dealt with correctly. One possibility
could be to deploy more advanced methods to deal with colored
noise; e.g., Bullmore et al. (2001) and Fadili and Bullmore (2002).

Conclusions and outlook

In this paper, we extended WSPM's framework to further
improve the results for fixed-effect analysis using the spatial
discrete wavelet transform. In particular, we proposed a simple bias
reduction method, and an approach to overcome the shift-variance
of the wavelet transform.

The beneficial influence of both extensions has been illustrated
using synthetic and experimental data, including a comparison
against SPM's results for various degrees of smoothing. This
evaluation also clarified the trade-off between bias, sensitivity, and
specificity that WSPM achieves.

We believe that the use of WSPM is particularly interesting for
the analysis of high spatial-resolution fMRI data, such as studies
involving sensory (Beauchamp et al., 2004) or visual (Menon et
al., 1997; Kim et al., 2000) cortex. Another potential area of
application is clinical fMRI. Indeed, the characterization of peri-
lesional activation is highly significant for the assessment of
recovery and plasticity in patients after brain insult (e.g., Breier et
al., 2004) and it is of paramount importance to obtain the most
accurate spatial mapping.
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