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An active area of neuroimaging research involves examining functional

relationships between spatially remote brain regions. When determin-

ing whether two brain regions exhibit significant correlation due to

true functional connectivity, one must account for the background

spatial correlation inherent in neuroimaging data. We define back-

ground correlation as spatiotemporal correlation in the data caused by

factors other than neurophysiologically based functional associations

such as scanner induced correlations and image preprocessing. We

develop a 4D spatiotemporal wavelet packet resampling method which

generates surrogate data that preserves only the average background

spatial correlation within an axial slice, across axial slices, and through

each voxel time series, while excluding the specific correlations due to

true functional relationships. We also extend an amplitude adjustment

algorithm which adjusts our surrogate data to closely match the

amplitude distribution of the original data. Our method improves upon

existing wavelet-based methods and extends them to 4D. We apply our

resampling technique to determine significant functional connectivity

from resting state and motor task fMRI datasets.

D 2006 Elsevier Inc. All rights reserved.
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Introduction

The central nervous system consists of billions of inter-

connected neurons and neuronal ensembles. These intra- and

interregional neuronal connections form the basis of neural

processing in the human brain. An active area of neuroimaging

research involves examining neurophysiologically based functional

associations between spatially remote brain regions. We use the

term ‘‘functional connectivity’’, defined by Friston et al. (1993) as

the ‘‘temporal correlations between spatially remote neurophysio-

logical events’’, when describing these functional associations.

Traditional activation studies focus on determining distributed
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patterns of brain activity associated with specific tasks. However,

we can more thoroughly understand brain function by additionally

studying the interaction of distinct brain regions, as a great deal of

neural processing is performed by an integrated network of several

regions of the brain.

Functional neuroimaging methods such as functional magnetic

resonance imaging (fMRI) allow us to examine relationships

between spatially distinct regions of the human brain. A common

measure used to examine functional connectivity is the temporal

correlation between brain voxels (Salvador et al., 2005; Hampson

et al., 2002; Lowe et al., 1998; Grecius et al., 2003; Xiong et al.,

1999). However, correlation in functional neuroimaging data

cannot only be attributed to a potential neurophysiologically based

association, but also to a host of other factors such as head

movement, spatial realignment and normalization, scanner induced

correlations, and partial voluming. These non-neurophysiological

induced correlations are defined as ‘‘background correlations’’ by

Breakspear et al. (2004). We develop a 4D spatiotemporal wavelet

packet resampling method which allows us to test the null

hypothesis that the correlations between two spatially remote brain

regions are due to only the background correlation present in

neuroimaging data. Our method generates surrogate data that

preserves only the average background spatial correlation within an

axial slice, across axial slices, and through each voxel time series,

while excluding the specific correlations due to true functional

relationships.

These surrogate datasets provide a null distribution of activation

and correlation of voxels and between voxel pairs, respectively,

against which we can test for significant correlations between

voxel pairs and activations due to a stimulus or stimuli of interest

for individual voxels. However, constructing surrogate data by

simply permuting the original data will destroy the background

correlations in the data which we wish to retain within our null

distribution. Bullmore et al. (2001) show that resampling the detail

coefficients of discrete wavelet transformed data and reconstruct-

ing by the inverse discrete wavelet transform preserves much of the

correlations of the original data while spatially rearranging the

exact correlations. Permuting a subset of the wavelet coefficients

corresponding to the intracranial region of the brain allows us to
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construct surrogate data for which a large portion of the energy of

the original data is retained in the intracranial space of the

surrogate data (Breakspear et al., 2004).

Breakspear et al. (2004) developed a 2D spatiotemporal wavelet

resampling method for neuroimaging data which addresses the

problem of differentiating correlations that represent neurophysio-

logically based functional associations from background correla-

tions. They perform a 2D spatiotemporal wavelet decomposition of

preselected fMRI slices and randomly permute the detail coef-

ficients of several levels of the wavelet decomposition and

subsequently perform the inverse decomposition with the goal of

matching the within slice horizontal, vertical, and temporal power

spectral densities of the reconstructed surrogate data to that of the

temporally demeaned original data. From hereon, we refer to the

resampling method for fMRI data developed by Breakspear et al.

(2004) as the ‘‘wavelet permutation method’’. Power spectral

densities are a function of correlograms and thus are used to

represent the horizontal and vertical axial background correlations

and temporal background correlations. However, these densities

may not well represent the average background correlation structure

of an axial fMRI slice as interhemispheric symmetry due to

neurophysiological co-activation (Salvador et al., 2005) selectively

influences these spectra. First, we show that the wavelet permuta-

tion method generates surrogate datasets whose spectral do not

adequately match that of simulated fMRI data and thus construct a

poor estimate of null non-neurophysiological correlation inherent in

fMRI data. Secondly, the approach is limited in its practical use as it

relies on permutation of 2D slices and thus is only able to determine

significant connectivity within each slice. Recent connectivity

studies (Salvador et al., 2005; Hampson et al., 2002; Lowe et al.,

1998; Grecius et al., 2003; Xiong et al., 1999) focus on correlations

throughout the entire intra-cranial space in 3D.

Novel extensions in this paper include the first 4D spatiotem-

poral resampling technique which generates surrogate data that

preserves the average background spatial correlation within an

axial slice, across axial slices, and through each voxel time series,

while excluding the specific correlations due to true functional

relationships; the first use of 4D resampling with wavelet packets,

which offer a more complex and flexible analysis than traditional

wavelet decompositions; the resampling of the exchangeable signs

of wavelet coefficients, which allows for surrogate datasets which

both adequately match the power spectra of the original while

sufficiently randomizing specific activations and correlations

without any tradeoff. Additionally, we are the first to employ 2D

non-separable polyharmonic B-spline wavelets for resampling,

which appropriately do not introduce preferential (horizontal and

vertical) directions in the wavelet decomposition within axial slices

like their separable counterparts.

Although the spatiotemporally resampled surrogate data has the

same overall variability as the original, the entire energy of the

original data is constrained within the intra-cranial space, whereas

the energy of the surrogate data disseminates into extra-cranial

voxels as well as into the temporally padded volumes. Thus, the

variability of each intra-cranial voxel in the surrogate data is on

average smaller than that of the original data as the number of

voxels for which the energy is spread is much larger. We extend a

1D amplitude adjustment algorithm proposed by Theiler et al.

(1992) to a 4D lattice and address when it is appropriate to use

such an algorithm. Finally, we apply our resampling technique to

determine significant functional connectivity from resting state and

motor task fMRI datasets.
Materials and methods

Resting state fMRI data

A single healthy right-handed 35-year-old male subject was

scanned at rest. The subject gave informed consent in accordance

with a protocol reviewed and approved by the Emory University

Institutional Review Board. The subject laid in a 3 T scanner with

eyes open staring at a crosshair which was projected onto a mirror

approximately two feet away. The subject was instructed to let his

mind wander and to try not to think about anything specific.

Following the acquisition of anatomical reference images, a

functional imaging run was acquired. A T2-sensitive, single-shot

echo-planar pulse sequence was used for acquisition of 210

functional images of 27 slices each (TR = 2000 ms, TE = 34

ms, flip angle = 90, FOV = 220 mm, and a 64 � 64 acquisition

matrix that resulted in a voxel resolution of 3.44 mm � 3.44 mm �
4 mm). The 210 functional images were accrued only after the

signal had reached a steady state. We utilized only the first 180

functional images as the subject experienced a sudden and

permanent shift larger than 1 mm after the 180th scan.

All data were motion corrected to the first functional scan and

subsequently spatially normalized to the MNI152 template using

SPM2 (http://www.fil.ion.bpmf.ac.uk/spm/). Spatial normalization

resulted in a resampled image resolution of 3 mm � 3 mm � 4

mm. No spatial smoothing was done to minimize the amount of

preprocessing that induces spatial correlation. We removed the

effect of the underlying signal strength by temporally demeaning

each voxel time series. For the 180 functional images we analyzed,

the subject exhibited translation in any direction of less than 0.5

mm and rotation in any direction of less than 1-.
For our analysis, we zero padded the data so that each intra-

cranial volume exists within a 80 � 80 � 48 lattice. We also zero

pad the time series to 192 volumes so that our spatiotemporally

resampled data has dimension 80 � 80 � 48 � 192. These zero

padding operations are required to guarantee a number of iterations

for the wavelet packet decompositions.

Motor task fMRI data

A single healthy right-handed 22-year-old male subject was

scanned during an experimental motor task. The subject laid in a

Philips 3 T scanner viewing either FL_ or FR_ or a fixation cross,

F+_, in successive blocks of 18 seconds that run in the pattern FL +

R + L + R + L + R + L + R_. The first block coincides with the first
volume. When viewing either FL_ or FR_, the subject is instructed to
repeatedly tap the corresponding left or right index finger,

respectively. A T2-sensitive, single-shot echo-planar pulse se-

quence was used for acquisition of 90 functional images of 30

slices each (TR = 3000 ms, TE = 30 ms, flip angle = 90, FOV =

240 mm, and a 128 � 128 acquisition matrix. The 90 functional

images were accrued only after the signal had reached a steady

state.

All data were motion corrected to the first functional scan and

subsequently spatially normalized to the MNI152 template using

SPM2 (http://www.fil.ion.bpmf.ac.uk/spm/). Spatial normalization

resulted in a resampled image resolution of 3 mm � 3 mm � 4

mm. No spatial smoothing was done to minimize the amount of

preprocessing induced spatial correlation. We removed the effect of

the underlying signal strength by temporally demeaning each voxel

time series. For the 90 functional images we analyzed, the subject

http://www.fil.ion.bpmf.ac.uk/spm/
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exhibited translation in any direction of less than 0.5 mm and

rotation in any direction of less than one degree.

For our analysis we zero padded the data so that each intra-

cranial volume exists within a 80 � 80 � 48 lattice. We also zero

pad the time series to 96 volumes so that our spatiotemporally

resampled data has dimension 80 � 80 � 48 � 96.

Wavelets

The discrete wavelet transform provides a multi-resolution,

multi-frequency decomposition of a signal across a hierarchy of

spatial (temporal) scales. The signal is iteratively decomposed at

each scale into a set of approximation coefficients aj,k which

provide low frequency signal information at the spatial resolution

corresponding to that scale, and a set of detail coefficients dj,k,

which provide high-frequency information of the signal at the same

spatial resolution (Mallat, 1989; Daubechies, 1990). As the scale

increases, the spatial resolution and frequency range of information

within the corresponding coefficients decrease. For an overview in

neuroimaging applications, we refer the reader to Bullmore et al.

(2004) and Van De Ville et al. (in press).

The discrete wavelet transform involves a family of wavelet

functions wj,k and scaling functions / j,k generated through dilation

(at scale j) and translation k of basis functions, the ‘‘mother’’

wavelet w and ‘‘father’’ wavelet /, respectively. The convolution

of w j,k and / j,k with the original signal produces dj,k and aj,k,

respectively. A signal S can be represented as a wavelet

decomposition at scale J by

S ¼
X
k a Z

aJ ; kwJ ;k þ
X
j V J

X
k a Z

dj;k/j;k : ð1Þ

For a signal of length M, the number of detail coefficients at

scale j is Nj = 2�j M when we use periodic interpolation at the

boundaries of the finite signal and M is divisible by 2j (Breakspear

et al., 2004). Fig. 1a illustrates a one level wavelet decomposition

and subsequent recomposition.

One of the most fundamental properties of wavelets is their

approximate behavior as a multiscale differentiator. This property
Fig. 1. (a) Single iteration of the analysis-synthesis filterbank for the wavelet

2 iterations. (c) Structure of the representation for the wavelet packet transform,
is directly coupled to the number of vanishing moments of the

wavelet; i.e., the wavelet (locally) removes polynomial trends up to

a polynomial degree of (c1 – 1. In the context of stochastic

processes, this feature translates into the highly praised decorrelat-

ing or whitening property, which has made wavelets a popular tool

for statistical estimation of long-memory processes such as

fractional Brownian motion (fBM) (Flandrin, 1992; Dijkerman

and Mazumdar, 1994; Percival and Walden, 2000; Fan, 2003). For

this kind of process, the correlation between wavelet coefficients

rapidly decays as an inverse power of their distance within and

between scales.

In the case of orthogonal wavelet transforms, the basis

functions are chosen to be orthogonal. The major advantage of

orthogonal transforms is their energy conservation property,

which is critical for permutation or resampling methods. Here,

we choose the popular orthogonal symmetric B-spline wavelets,

introduced by Battle (1987). Recently, it has been shown that the

essential properties of any wavelet transform, such as multi-scale

differentiation, are only due to the convolutional B-spline factor

within the scaling function (Unser and Blu, 2003). In the case of

B-spline wavelets, the degree a of the B-spline scaling function

automatically translates into its order of approximation c = a + 1,

which imposes, at its turn, the differentiation order c of the

wavelet.

Resampling techniques which utilize the wavelet transform

rely on the ‘‘exchangeability’’ property of detail coefficients by

decomposing the signal, manipulating exchangeable detail

coefficients, and subsequently reconstructing the signal. The

resulting signal has similar correlation to the original, while the

specific activations and correlations are randomized across time

(space). Although the wavelet decomposition decorrelates detail

coefficients as the decomposition scale increases yielding them

more and more exchangeable, the coefficients at lower scales

may not be sufficiently exchangeable in strongly correlated

signals. The wavelet packet decomposition addresses the issue of

insufficiently decorrelated detail coefficients by the decomposing

detail coefficients at each scale as well as approximation

coefficients.
transform. (b) Structure of the representation for the wavelet transform,

2 iterations.



Fig. 3. (A) Polyharmonic wavelet packet decomposition (two iterations, c =

3) of a typical slice from our resting state dataset. To better show the

coefficients within each subband, the dynamic range has been adapted. The

coefficients on the quincunx lattice after the first iteration are represented in

a ‘‘squeezed’’ way. (B) Radial power spectrum densities of the 15 wavelet

packet subbands after four iterations for the same test image.

Fig. 2. Frequency tiling for the 2D polyharmonic wavelet packet

decomposition (3 iterations, c = 3).
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Wavelet packets

Wavelet packet decompositions, introduced by Coifman et al.

(1992), recursively decompose both approximation and detail

coefficients, resulting in a binary tree representation of the

original signal (Fig. 1c). Since each set of detail coefficients

corresponds to a specific frequency range, their additional

recursive decomposition allows for a greater frequency resolu-

tion representation of the underlying signal. Furthermore, the

additional decomposition of detail coefficients serves to further

decorrelate coefficients at smaller scales permitting the manip-

ulation of wavelet packet coefficients for resampling techniques.

Wavelet packets provide us with a very flexible way to

represent the signal. From one side, wavelet packets still inherit

the ‘‘differentiation property’’ of the normal wavelets; i.e., they still

behave as a cth order differentiator. From the other side, they

represent information on a unique and narrow frequency interval.

Whitcher (in press) is the first to utilize wavelet packets to

decompose 2D fMRI slices before permuting detail coefficients

similarly to the wavelet permutation method.

The 2D polyharmonic wavelet transform

The wavelet transform can be extended to multiple dimensions

in a straightforward way using the tensor product. Unfortunately,

this approach introduces preferential (horizontal and vertical)

directions by its sequential row and column-wise series of 1D

decompositions while creating a ‘‘diagonal’’ cross-term that does

not have a straightforward interpretation.

Here, we opt for the polyharmonic wavelet transform with

quincunx subsampling (Van De Ville et al., 2005a), which is a non-

separable 2D wavelet transform that is particularly suited to perform

an isotropic treatment of the data. Quincunx subsampling provides a

more isotropic treatment of the data and a slower progression

through scale than dyadic subsampling. We refer to Appendix A for

some fundamental characteristics of the polyharmonic wavelets.

In Fig. 2, we show the frequency tiling of the polyharmonic

wavelet packet decomposition for three iterations. The contours of the

essential support in the frequency domain for each subband are
indicated. Frequency zones that belong to the same subband are

indicated in the samegrayscale color. Each label refers to the sequence

of scaling (‘‘L’’) and wavelet (‘‘H’’) filters that was used. Notice that

the quincunx subsampling scheme creates a ring-like structure for

each subband. In Fig. 3A, we show an example of a polyharmonic

wavelet packet decomposition for a typical slice of our dataset. In Fig.

3B, the radial power spectrum densities of the 15 wavelet packet

subbands (after four iterations) are plotted. Clearly, the spectra are

well flattened, which indicates good decorrelation of the coefficients.

Wavelets for 4D spatiotemporal data

In the next section, we apply wavelet packet decompositions

for the spatiotemporal resampling of fMRI data (3D volumes over

time). The resulting surrogate datasets serve to estimate the null

distribution of the spatiotemporal correlation inherent in fMRI.

We utilize the 2D polyharmonic wavelet packets for each axial

slice to obtain an isotropic treatment, and in the transverse and

temporal directions, we apply a 1D B-spline wavelet packet

decomposition.
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Wavelet packet resampling of fMRI data

Axial, inter-axial, and temporal power spectra

For any signal, S(x), the power spectrum of that signal gives the

portion of the signal’s power, or energy per unit of time, that occurs

at a particular frequency. In contrast to a frequency spectrum, the

power spectrum contains no spatial or phase angle information. A

common method of calculating, the power spectrum for a given

signal utilizes a Fourier transform:

PSDS xð Þ fð Þ ¼ F S xð Þð Þ �;;;
F S xð Þð Þ; ð2Þ

where F(S(x)) is the Fourier transform of S(x) and
;;;
F S xð Þð Þ is its

conjugate. Breakspear et al. (2004) give a detailed mathematical

description of power spectra.

We can determine the average horizontal, vertical, inter-axial,

and temporal power spectra for a fMRI volume, Y (r, c, a, t),

where r and c are the row and column in axial slice, a, at time
Fig. 4. (a–c) The original (a) horizontal (solid)/vertical (dashed), (b) inter-axial, an

state data. (d– f) The corresponding power spectra for 19 surrogate datasets (gray

inter-axial resampling. (j – l) Power spectra for 19 surrogate datasets after tempor
point, t, by taking a 4D Fourier transform, Ffx
(Y ), where fx = { fr,

fc, fa, ft} is a 4D spatiotemporal frequency vector, multiplying by

its conjugate and integrating over the remaining directions:

PSDH fhð Þ ¼
ZZZ

F Yð Þ � ;;
F Yð Þdfcdfadft; ð3Þ

PSDV fvð Þ ¼
ZZZ

F Yð Þ � ;;
F Yð Þdfrdfadft; ð4Þ

PSDA fað Þ ¼
ZZZ

F Yð Þ � ;;
F Yð Þdfrdfcdft; ð5Þ

PSDT ftð Þ ¼
ZZZ

F Yð Þ � ;;
F Yð Þdfrdfcdfa: ð6Þ

The average inter-axial and temporal spectra, PSDA and PSDT,

summarize the background spatial correlation across axial slices
d (c) temporal power spectral densities for the temporally demeaned resting

) after axial resampling. (g– i) Power spectra for 19 surrogate datasets after

al resampling.



Fig. 5. The original (black), surrogate using non-separable wavelets (blue),

and surrogate using separable wavelets (red), horizontal (solid)/vertical

(dashed) power spectral densities for the temporally demeaned resting state

data. The surrogate spectra represent one typical surrogate realization.
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and background temporal correlation over the entire voxel time

series, respectively. The average horizontal and vertical spectra,

PSDH and PSDV, give estimates of the inter-axial spatial

correlation. We are interested in preserving the average correlation

within an axial slice and not necessarily the horizontal and vertical

correlations as non-neurophysiological spatial correlation should

have no directional bias within an axial slice. It is evident from Fig.

4a that there is a distinct difference in the high frequency range

between the horizontal (perpendicular to the coronal plane) and

vertical (perpendicular to the sagittal plane) power spectra within an

axial slice. A larger percentage of the power of the vertical spectra

lies in the low frequency range, suggesting a greater long range

correlation along the sagittal axis than the coronal axis. This may

suggest significant inter-hemispheric correlation due to neurophys-

iological co-activation as suggested by Salvador et al. (2005).

Construction and interpretation of axial, inter-axial, and temporal

spectra require the assumption of stationarity within an axial slice,

across axial slices, and over time, respectively. Stationarity exists in

a stochastic process when the probability density function of the

elements of the signal does not change over time or position.

4D spatiotemporal wavelet resampling

The square of the detail coefficients of the wavelet packet

decomposition represent the energy of the corresponding frequency

subband at their respective location, either temporally or spatially.

The sign of the detail coefficient, however, gives phase or

activation information at its corresponding location. We aim to

generate surrogate data which has similar variance and background

correlation as the original data, while randomizing specific

activations and correlations spatiotemporally. Thus, we develop a

novel wavelet packet resampling method which involves resam-

pling, with replacement, the signs of the detail coefficients.

However, before resampling, we must ensure that the signs of

the detail coefficients are ‘‘exchangeable’’.

The detail coefficients decorrelate as the scale of the decom-

position increases. We utilize this property of the 2D and 1D

wavelet decompositions to iteratively build wavelet packet trees,

further decomposing each scale until each sub-band is sufficiently

decorrelated. We determine whether each subband is sufficiently

decorrelated by conducting a spatial or temporal join count test

(Cliff and Ord, 1973). Through a join count test (see Appendix B

for details), we are able to test the null hypothesis that positive

coefficients occur randomly throughout 1D or 2D time or space.

Although the join count test yields evidence of spatial or temporal

dependence, it cannot be treated as a test for proof of indepen-

dence. Critical assumptions required of the resampling method are

the spatial/temporal independence of the signs of the detail

coefficients within each sub-band and the distribution of the detail

coefficients is symmetric and has zero median.

Resampling axial slices. The specific spatial correlations within

axial slices can be randomized throughout the data while retaining

the average background spatial correlation. This is done in the

following manner:

(1) Determine the level of the wavelet packet decomposition, Ls,

by iteratively decomposing each axial slice of each volume

of each session and conducting a join test for spatial

independence at each level. Ls is the first scale at which

the average P value of the join test for each slice is greater

than a = 0.15.
(2) Perform the Ls-level 2 dimensional wavelet packet decom-

position of each slice of each volume of the entire dataset

such that the detail coefficients are sufficiently spatially

decorrelated at the Ls
th level as indicated by the spatial join

test.

(3) For each slice, resample the signs of the detail coefficients

by an element-wise multiplication of the i detail coefficient

subbands, where i = 1, . . . , 4Ls –1, by a matrix A(i), where

Ar,c
(i) = 2 � Br,c

(i) –1 where Br,c
(i) is drawn from a Bernoulli(0.5)

distribution. We multiply the wavelet packet decomposition

of each slice of each volume by the same set of resampling

matrices, A.

(4) Perform the Ls-level inverse wavelet packet recomposition

to reconstruct our axially resampled surrogate data.

Since the signs of the detail coefficients of each slice of a

volume are resampled by the same resampling matrices, A, the

correlations across slices remain unchanged (Breakspear et al.,

2004; Prichard and Theiler, 1994). Similarly, since each slice of

each volume of the entire time series is resampled by A, the

temporal correlation of each voxel time series remains unchanged.

Fig. 4d gives the horizontal/vertical power spectra for the

surrogate data. For our data, we find that the detail coefficients

at Ls = 4 are sufficiently decorrelated via the join test described

above.

Unlike the original data, the surrogate data has similar

horizontal and vertical spectra thus removing directional corre-

lation bias which may be induced by symmetric neurophysio-

logical activation (Salvador et al., 2005). The utilization of 2D

non-separable wavelets provide this horizontal and vertical

correlation averaging that we desire, as under the null

hypothesis, there should be no difference in correlation between

the horizontal and vertical directions within an axial slice. A

comparison of 2D non-separable and separable wavelets using

our resampling technique is shown in Fig. 5. The separable

wavelets retain the horizontal/vertical difference in the surrogate

data, and thus does not provide an accurate depiction of our null

hypothesis.
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Resampling across axial slices. The specific spatial correlations

across axial slices can be randomized throughout the data while

retaining the average background correlation across slices via a

1D wavelet packet decomposition and resampling (Fig. 6). We

perform the La-level 1D wavelet packet decomposition for each

transverse vector through the axial slices of each volume such

that the detail coefficients are sufficiently decorrelated at the La
th

level as indicated by the join test. We resample the detail

coefficients 1 dimensionally in a similar manner to that

described above and reconstruct our inter-axially resampled

surrogate data by subsequently performing an inverse wavelet

packet recomposition. We find that the detail coefficients at

La = 4 are sufficiently decorrelated at each subband. Fig. 4h

gives the inter-axial power spectra for the 19 surrogate datasets.

The horizontal/vertical and temporal spectra do not change

during this step.

Resampling time series. We randomize the specific temporal

correlations by performing a 1D wavelet packet resampling for

each voxel’s time series. Since the polyharmonic wavelet decom-

positions inherently utilize a periodic extension at the edges, we

zero pad the time series to alleviate wrap around effects of the

wavelet coefficients and subsequently perform a Lt = 5 level

decomposition of the zero padded time series. The signs of the

detail coefficients of each of the 25 – 1 subbands are sufficiently

decorrelated at Lt = 5 according to the join test. Using the same set

of resampling multiplication vectors for each time series, we are

able to keep the spatial correlations the same while randomizing

the specific temporal correlations alone. Fig. 4l gives the temporal

power spectra for the 19 surrogate datasets. Neither of the spatial

spectral densities are affected by this step.
Fig. 6. (A) Example axial slices of the original and 4 surrogate datasets after all

intracranial voxel for original (black and bold) for surrogate data (gray).
After performing the inverse wavelet packet recomposition, we

truncate our time series to the original, non-padded length (Fig. 6).

Since the surrogate data has non-zero values in the truncated scans,

we diminish the overall energy of our voxel time series when

compared to the original. We propose an amplitude adjustment step

which addresses this issue of energy loss for the surrogate data.

Choice of order c
Both the 1D B-spline wavelets and 2D polyharmonic wavelets

have a tuning parameter, which is their order c. To select this

parameter, we follow the common approach that considers fMRI

data as a realization of a fBM, for which the power spectrum can

be considered as proportional to 1/||x ||2H + Nd, where H is the Hurst

exponent and Nd is the dimensionality. It has been shown that the

order should be chosen such that c > 2H + Nd (Dijkerman and

Mazumdar, 1994). We choose c = 4 for each decomposition (axial,

inter-axial, and temporal).

Amplitude-variance adjustment step

Although the surrogate data has the same overall variability, or

energy, as the original, the entire energy of the original data is

constrained within the intra-cranial space, whereas the energy of

the surrogate data disseminates into extra-cranial voxels as well as

into the temporal padding volumes. Ideally, the number of extra-

cranial voxels and number of temporal padding volumes should be

minimized, thus reducing the likelihood of energy loss into extra-

cranial space or into the padded temporal volumes. We pad the data

so that the dimensionality of the data allows a wavelet packet

decomposition for which the detail coefficients are sufficiently

spatially (or temporally) decorrelated. Thus, the variability of each

intra-cranial voxel in the surrogate data is on average smaller than
3 resampling steps. (B) Example voxel time series for randomly selected



Fig. 8. Axial slice at z = +18 with labeled regions of simulated

neurophysiological correlation. Voxels within similarly colored regions

are neurophysiologically correlated.
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that of the original data as the number of voxels for which the

energy is spread is larger. The distribution of the variances of each

intra-cranial voxel time series is given in Fig. 7.

If the measure of connectivity is not influenced by the large

difference in the variance distribution between the original and

surrogate data, then an amplitude-variance adjustment step may not

be necessary. Otherwise, we propose an extension to an amplitude

adjustment step developed by Theiler et al. (1992).

This proceeds by generating V time series, Gi, from a Gaussian

distribution with mean 0 and variance r(i)
2 for i = 1, . . . , V, where

V is the number of intra-cranial voxels and r(i)
2 is the ith smallest

sample variance of the time series of the V intra-cranial voxels. Let

Gi( j) be the j
th smallest element in Gi. Then, assign Gi( j) to the jth

smallest element of the surrogate data voxel time series with the ith

smallest variance of the intra-cranial voxels of the surrogate data.

The resulting adjusted surrogate data will have approximately the

same variance distribution as the original data, while approximate-

ly retaining the spatial and temporal power spectral densities of the

unadjusted surrogate data. A critical assumption of this adjustment

step is that each voxel time series takes a Gaussian distribution,

although each distribution can have its own distinct variance.

We choose the smallest possible level of decomposition at each

step of the wavelet packet resampling algorithm at which the

evidence of dependence among the wavelet coefficients is below

some threshold in order to minimize the energy of the surrogate

data disseminates into extra-cranial space. If amount of energy

disseminates into extra-cranial space is small, and amplitude

adjustment step may not be necessary, however if it is large, the

variance of each surrogate voxel time series will be significantly

smaller than the original data. Due to the additional assumptions

required by the amplitude adjustment step, we recommend its use

only when the measure of connectivity is influenced by the

variance of each time series.
Results

Simulation study

Simulated dataset

The simulated fMRI dataset contains simulated neurophysio-

logical correlation between three sets of brain regions as well as
Fig. 7. Time-series variance distribution of intra-cranial voxels of the original d

(gray).
simulated non-neurophysiological background spatial and temporal

correlation inherent in fMRI. Our wavelet packet sign resampling

method is used to estimate the background correlations and

determine significant neurophysiological correlations. We compare

our method to the wavelet permutation method which has only

been developed for 2D fMRI axial slices.

We simulate 192 functional images of a single fMRI slice

(Talairach z = +18 mm) in the following manner. Let voxels

belonging to the left or right superior temporal gyrus (LSTG,

RSTG) comprise the set of voxels Xa. Let voxels belonging to the

left and right caudate nucleus (LCN, RCN) comprise the set of

voxels Xb. Let voxels belonging to the left frontal middle gyrus or

left middle occipital gyrus (LFMG, LMOG) comprise the set of

voxels Xc. Fig. 8 illustrates the location of the voxels within Xa,

Xb, and Xc.

(1) Simulate neurophysiological correlations within 3 sets of

voxels, Xa, Xb, and Xc. For each functional image v, simulate

N(0, 1) data with correlation = 0.5 for all voxels in Xa, simulate

N(0, 1) data with correlation = 0.3 for all voxels in Xb, and

simulate N(0, 1) data with correlation = 0.1 for all voxels in Xc.

For all remaining intra-cranial voxels, simulate independent N(0,

1) data.
ata (black), unadjusted surrogate data (white), and adjusted surrogate data
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(2) Induce spatial correlation inherent in fMRI by smoothing

each image with a Gaussian kernel with full width half max

(FWHM) of 1.5 voxels. We choose a FWHM of 1.5 to closely

match the background spatial correlation in our resting state data.

(3) Induce 1/f-like temporal correlation inherent in fMRI (due

to BOLD response and other factors) by taking Fourier transform

of each intra-cranial voxel time series and multiplying the

frequency component of each by c/f, where f is the frequency

associated with the frequency component and c is a constant. We

choose c = 10 to closely match the background temporal

correlation in our resting state data. The real component of the

subsequent inverse Fourier transform is the temporally correlated

fMRI signal.

The simulated dataset consists of only one slice so that the

method introduced in this paper can be compared to the wavelet

permutation method, which only considers 2D functional slices.

Simulation methods

The wavelet permutation method involves random permutation

of intra-cranial detail coefficients at each scale of a wavelet

decomposition. For our simulated data, each slice is decomposed

spatially with a wavelet transform through 4 scales and each time

series is decomposed temporally through 6 scales. Breakspear et al.

(2004) suggest the Daubechies (Daubechies, 1990) family of

wavelets to decompose the data. A Daubechies wavelet of order 6

is chosen to decompose the data based on the most adequate

matching of spatial and temporal spectra.

We examine significant correlations from a voxel within LSTG,

LCN, and LFMG to each other intra-cranial voxel. For the

simulation study, 19 surrogate datasets are generated using each

method. For each voxel pair, a one-tailed test of significance is

performed by comparing the correlation of the voxel pair in the
Fig. 9. Power spectral densities of original (black) and surrogate (gray) data. (a) gi

method developed in this paper. (b) gives the corresponding temporal spectra. (c) g

method developed in Breakspear et al. (2004). (d) gives the corresponding tempo
original simulated data rorig against the rank ordered measures

among the 19 surrogate datasets rsurr. The null hypothesis is

rejected is rorig > max(rsurr).

Simulation results

The spectra of the surrogate datasets of both algorithms is

given in Fig. 9. Our method generates data with surrogate

spectra similar to those of the original data both spatially and

temporally, however the horizontal and vertical spectra of the

surrogate data generated by the wavelet permutation method fail

to adequately match those of the original data. The reason for

this is likely that the wavelet detail coefficients are not

sufficiently decorrelated at lower scales, and thus permutation

of these coefficients destroys higher frequency correlations.

Breakspear et al. (2004) begin to address this problem by

introducing block permutation of wavelet coefficients, however,

they do not suggest a way to implement such a method for

images where there is an irregular sub-domain (intra-cranial

voxels within an axial slice). Block permutation of the wavelet

coefficients with an adequate block size would address the issue

of matching power spectra, however as the block size increases

(allowing for a more adequate match of the power spectra), the

number of possible surrogate sets decrease. Consequently, block

permutation induces a trade-off between adequate matching of

the power spectra and sufficient randomization of the specific

neurophysiological activation and correlations in the data Break-

spear et al. (2004).

Results in the form of thresholded connectivity maps are

given for both our wavelet packet sign resampling algorithm

(Figs. 10A–C) and the wavelet permutation method (Figs. 10D–

F). Results between the two methods are similar for connectivity

within strongly connected regions (Figs. 10A, B, D, E), where
ves the horizontal and vertical spectra of the surrogate data generated by the

ives the horizontal and vertical spectra of the surrogate data generated by the

ral spectra.



Fig. 10. Thresholded connectivity results for our method (A–C) and wavelet permutation method (D–F) where rorig > max(rsurr) for the corresponding voxel

seed ((A, D)-LSTG, (B, E)-LCN, (C, F)-LFMG) and intra-cranial voxel.
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the simulated Pearson correlation before inducing background

spatial correlation was 0.5 for Xa and 0.3 for Xb. However, for

weakly correlated regions (Figs. 10C, F), where the simulated

Pearson correlation before inducing background spatial correla-

tion was 0.1 for Xc, the wavelet packet sign resampling method

is able to still correctly extract areas of statistically significant

correlation, whereas the wavelet permutation method fails to

do so.
Fig. 11. Map of significant neurophysiological motor task correlation to the PC

Talairach and Tournoux. The left hemisphere of the brain corresponds to the left

frontal gyrus (BA 6), B—Precuneus (BA 7), C—Superior occipital gyrus (BA 19
Resting state study

Functional imaging studies have shown that certain brain

regions, such as the posterior cingulate cortex (PCC) and the

ventral anterior cingulate cortex (vACC) show a greater activity

during the resting state than during cognitive tasks (Shulman

et al., 1997; Mazoyer et al., 2001). The finding that certain

brain regions exhibit a decreased level of activity during
C. The numbers above each image correspond the z plane coordinates of

side of the image. Four significant clusters are labeled A–D: A—Superior

), D—Superior frontal gyrus (BA 10).
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cognitive tasks leads to the hypothesis that these regions are

components of a default mode of cognitive processing (Raichle

et al., 2001).

To illustrate our method, we examine the functional

connectivity of the PCC by determining significant functional

correlations between the average time series of a contiguous four

voxel cluster in the PCC (Talairach coordinates: �12, �47, 28)

and the set of all other intra-cranial voxels given the single

subject resting state fMRI dataset described in Section 2.1. We

construct 19 spatiotemporally resampled surrogate datasets and

determine significance of a pairwise correlation if the correlation

of the observed data exceeds the maximum correlation of the

corresponding pair among the 19 surrogate datasets. This results

in a pairwise Type I error rate of a = 0.05 not corrected for

multiple comparisons. We use a low pass filter on each

voxel time series to consider only low frequency correlations

(<0.1 Hz) as Cordes et al. (2002) suggest that only the

‘‘synchronicity of low frequency fluctuations in functionally

related regions suggests the existence of neuronal connections

characterizing a widespread cortical network’’. Grecius et al.

(2003) address a similar problem without however addressing

and adjusting for non-neurophysiologically based background

correlations. We do not perform the amplitude adjustment step

for these datasets as correlation is not influenced by variance

bias.

Fig. 11 shows 6 axial slices of the brain for which there were

clusters of significant correlations to a seed of the average

time series of four contiguous voxels in the PCC. Four

significant clusters include the superior frontal gyrus (Brod-

mann’s area (BA) 6 and 10), precuneus (BA 7), and the superior

occipital gyrus (BA 19). The connectivity of the PCC with the

precuneus corresponds well with the results of Grecius et al.

(2003). Further supporting our results, Jiang et al. (2004)

conclude in their resting state functional connectivity study that

BA 7 and BA 6 are important nodes in the resting state

functional network.

Motor task study

To illustrate our method with an activation study, we

examine the connectivity from the average time series of a

contiguous four voxel seed in the primary motor cortex
Fig. 12. Map of significant neurophysiological motor task correlation to the primar

The numbers above each image correspond the z plane coordinates of Talairach an

the image. Three significant clusters are labeled A–C: A—Cingulate gyrus (BA
(Talairach coordinates: 35, �10, 36). We again construct

19 spatiotemporally resampled surrogate datasets and deter-

mine significance of a pairwise correlation if the cor-

relation (<0.1 Hz) of the observed data exceeds the maximum

correlation of the corresponding pair among the 19 surrogate

datasets.

Fig. 12 shows 4 axial slices of the brain for which there were

clusters of significant correlations to a seed in the primary motor

cortex (BA 4) in the right hemisphere. Marker A in Fig. 12 labels

a significant positive connectivity in the right cingulate gyrus (BA

24) and a corresponding negative connectivity with the left

cingulate gyrus. Marker B labels a significant positive connec-

tivity with the supramarginal gyrus (BA 40) in the parietal cortex.

Also evident in the +32 mm axial slice is an interesting pattern of

connectivity where the right anterior and left posterior (BA 7 and

BA 9) intra-cranial regions exhibit a strong negative connectivity

to the primary motor cortex while the left anterior and right

posterior intra-cranial regions exhibit a strong positive connec-

tivity with the primary motor cortex. Finally, marker C labels a

strong positive connectivity with the left middle frontal gyrus

(BA 10).
Discussion

We develop a 4D spatiotemporal wavelet packet resampling

technique for testing the null hypothesis of no neurophysiolog-

ical functional relationship between a given voxel pair. The

method generates surrogate data that preserves the average

background spatial correlation within an axial slice, across axial

slices, and through each voxel time series, while excluding the

specific correlations due to true functional relationships. Wavelet

packets offer a more complex and flexible analysis than

traditional wavelet decompositions in that they decompose the

frequency spectra into smaller subbands which can be resampled

independently. Multi-scale wavelet packet decompositions

allow us to resample the exchangeable signs of wavelet

coefficients without the need for resampling within a sub-

domain or block resampling as developed by Breakspear et al.

(2003). Our method utilizes two-dimensional isotropic polyhar-

monic b-spline wavelets to preserve the average background

correlation within each slice and subsequent one-dimensional
y motor cortex (Talairach coordinates: 35, � 10, 36) in the right hemisphere.

d Tournoux. The left hemisphere of the brain corresponds to the left side of

24), B—Supramarginal gyrus (BA 40), C—middle frontal gyrus (BA 10).
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decompositions to preserve the average transverse and temporal

correlations.

An important property of surrogate datasets for any resam-

pling or permutation technique is that they are sufficiently

independent. We check the independence of our surrogate

datasets by determining the average temporal correlation between

each corresponding intra-cranial voxel pair (n = 44906) of two

randomly generated surrogate sets (95% confidence interval:

0.0079–0.0095). Although the mean correlation is significantly

greater than 0 at a = 0.05, the mean correlation is so close to

0 that we can consider each dataset as sufficiently independent

for the purpose of determining significance. However, one

should proceed with caution as any positive correlation among

surrogate datasets results in an overall underestimation of Type I

Error.

A second caveat which remains from existing wavelet

resampling and permutation techniques (Breakspear et al., 2004)

is the impact of the spatiotemporal resampling on the distribution

of the variance of each voxel time series. Since the variance

distribution is not necessarily the same as that of the original data,

we propose an extension to the Theiler et al. (1992) amplitude

adjustment step which adjusts the data to approximate the variance

distribution of the original. However, use of this extension requires

the additional assumption of normality of each voxel time series.

The variance distribution of the surrogate data is only a concern if

the connectivity measure is influenced by changes in the variance

distribution without distortion of the power spectra, as is the case

with the simple correlation test statistic.

Thirdly, we do not adjust for multiple comparisons in this paper.

The use of 19 surrogate datasets allows us to determine voxel pair

specific P values. The number of correlations assessed from an

individual seed totals the number of intra-cranial voxels. In this

paper, no P value adjustment is made to adjust for these

comparisons, as this is a topic of future research. Conducting a

Bonferroni adjustment would require the generation of a much

larger number of surrogate datasets, however there are significant

limitations in doing so. The computational requirements of

generating and storing surrogate datasets is significant. For a

single subject, it takes approximately five hours and two gigabytes

of hard drive space to generate 19 surrogate datasets using

MATLAB 7.0 on a 12 processor (750 MHz) Sun compute server

running the Solaris operating system. Among other variables,

processing time and disk space depends on the size of each dataset,

for which ours (after padding) is 80 � 80 � 48 � 192 (for resting

state data), the number of levels for which to construct each

wavelet packet, and the speed and multitude of the processors.

Ideally, we would like to construct hundreds if not thousands of

surrogate datasets from which we can more accurately and

precisely determine P values of the correlations of voxel pairs,

however processing speed and disk space currently limit us to

many fewer realizations.
Fig. 13. Orthogonal polyharmonic scaling function (A) and wavelet (B) for

order c = 3.
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Appendix A. Essential characteristics of the 2D polyharmonic

wavelet decomposition

Two important characteristics deserve our attention. First, as a

scaling function, the polyharmonic B-spline (Rabut, 1992) is

deployed. These basis functions can be regarded as the true

multi-dimensional extension of 1D B-splines, spanning the

same space as radial basis functions; i.e., functions of the form

q(x1, x2) = (x1
2 + x2

2)(c�2)/2, where c is the order of the

polyharmonic B-spline. Second, the quincunx subsampling scheme

is used, which is characterized by the dilation matrix

D ¼ 1 1

1 � 1

��
: ð7Þ

This scheme provides a more isotropic treatment of the data and

a slower progression through scale than dyadic subsampling. The

decomposition formula for a 2D signal S at scale J equals
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S xð Þ ¼ 2J=2
X

k a Z
2� 1

aJ ; k/ D�Jx�k
� �

þ
XJ
j ¼ 1

2j=2
X

k a Z
2� 1

dj;kw D�jx� k
� �

; ð8Þ

where x = [x1 x2]
T.

The polyharmonic wavelet behaves (approximately) as a

multiscale version of the c/2-th iterated Laplacian operator; in

the Fourier domain we have

w wð Þ”kwkc ¼ x2
1 þ x2

2

� �c=2
; when wY 0: ð9Þ

Therefore, the polyharmonic wavelet transform has a decorre-

lating property for isotropic processes with a 1/||W||-like power

spectrum density, such as fractional Brownian fields. In Fig. 13, we

show both the scaling function and wavelet for the orthogonal

version of the transform.

In the 1D case, the number of iterations Jw of the wavelet

packet decomposition corresponds to its level L. However, in 2D,

we define the level L as the half of the number of iterations. This

way, the number of subbands for a one-level 2D packet

decomposition coincides with the separable case. At level L of

the 2D wavelet packet decomposition of a R � C matrix, we obtain

4L –1 sets of detail coefficients of size R2�L � C2�L. Similarly,

for a 1D wavelet packet decomposition of a vector of length T, we

obtain 2L –1 sets of detail coefficients of size T2�N.
Appendix B. Join test to determine spatial/temporal

independence

Before resampling the signs of the detail coefficients, we must

ensure some degree of independence among the signs. We can

treat each subband as a binary lattice (or vector) indicating

whether the detail coefficient at that location was positive. We

can conduct a test for independence of the detail coefficients at

level L of the wavelet packet decomposition in the following

manner.

If two detail coefficients are adjacent to each other (including

diagonally adjacent), they are said to be linked by a ‘‘join’’ (Cliff

and Ord, 1973). To test for independence among the coefficients,

we see whether the number of positive–positive (PP) joins, or joins

between two positive coefficients, negative–negative (NN) joins,

and positive–negative (PN) joins are close to what is expected under

independence. Let y be a connection matrix in which dij = 1 if

coefficients i and j in the Lth level are adjacent to each other and dij =

0 otherwise. Let di = 1 if the i
th detail coefficient is positive, and di =

0 if the ith detail coefficient is negative. Detail coefficients equal to

0 are not included in the analysis. The observed number of PP

joins is given by PP =~ n � 1
i = 1 ~

n
j = i + 1 dijdidj, the observed number

of PN joins is given by PP = ~n –1
i = 1~

n
j = i + 1 dij(di – dj)

2, and the

observed number of NN joins is given by NN = K – PP – PN,

where n is the number of non-zero detail coefficients at level L and

K is the total number of joins between non-zero detail coefficients

at level L. K is given by K = ~n�1
i = 1~

n
j = i + 1dij.

Under the assumption that the sign of each detail coefficient

is an independent drawing from a Bernoulli( p) distribution,

then E[PP] = Kp2 and V AR[PP] = Kp2 + 2Dp3 � (K + 2D)p4,

where D = 1/2 ~n
i = 1 Hi(Hi � 1) and Hi is the number of

positive coefficients adjacent to i (Cliff and Ord, 1973).
Since PP is asymptotically normally distributed (Cliff and

Ord, 1973), we can conduct a hypothesis test for the

independence of the signs of the detail coefficients by checking
jPP�E½PP
jffiffiffiffiffiffiffiffiffi

VAR½PP

p >Za=2, in which case we would conclude that there is

sufficient evidence to suggest dependence. For our study, we use

a = 0.05.
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