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Abstract

Alzheimer’s disease (AD) disrupts functional connectivity in distributed cortical networks. We analyzed changes in the S-estimator, a
measure of multivariate intraregional synchronization, in electroencephalogram (EEG) source space in 15 mild AD patients versus 15
age-matched controls to evaluate its potential as a marker of AD progression. All participants underwent 2 clinical evaluations and 2 EEG
recording sessions on diagnosis and after a year. The main effect of AD was hyposynchronization in the medial temporal and frontal regions
and relative hypersynchronization in posterior cingulate, precuneus, cuneus, and parietotemporal cortices. However, the S-estimator did not
change over time in either group. This result motivated an analysis of rapidly progressing AD versus slow-progressing patients. Rapidly
progressing AD patients showed a significant reduction in synchronization with time, manifest in left frontotemporal cortex. Thus, the
evolution of source EEG synchronization over time is correlated with the rate of disease progression and should be considered as a

cost-effective AD biomarker.
© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

What happens to neuronal synchronization in Alzhei-
mer’s disease (AD)? The question is of primary importance
because synchronization between spatially remote neuro-
physiological events is thought to be a principal mechanism
of effective and functional connectivity (EC and FC) that is
of direct and indirect interactions between spatially distrib-
uted brain areas (Friston et al., 1993; Singer, 1999). Elec-
troencephalogram (EEG) reports describing moderate to
severe AD suggest a progressive degradation similar to that
in structural connectivity (Babiloni et al., 2006a; Koenig et
al., 2005; Kramer et al., 2007; Lizio et al., 2011; Stam et al.,
2005). However, findings in preclinical and early AD show
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a more complicated picture that includes both strengthening
and weakening of FC estimated with functional magnetic
resonance imaging (fMRI) (Damoiseaux et al., 2012; Sper-
ling et al., 2010; Wang et al., 2007; Zhang et al., 2010) or
EEG synchronization (Knyazeva et al., 2010; Rossini et al.,
2006) at rest and with activation. New evidence based on a
mouse model of AD suggests these phenomena correlate
with the accumulation of B-amyloid, which is associated
with dysfunction of inhibitory interneurons that, in turn,
could augment synchronicity between pyramidal cells (Pa-
lop and Mucke, 2010). There are findings in human AD
compatible with such a hypothesis.

A disproportionate weakening of EC, ascribed to lost
inhibitory modulatory connections, has been demonstrated
in mild AD (Rytsar et al., 2011). In this study, EC in AD
patients and matched controls was analyzed by means of
dynamic causal modeling of fMRI time series in a visual
integration task. The inhibitory effects exerted by extrastri-
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ate on primary visual areas associated with interhemispheric
integration of a visual stimulus were significantly weakened
in AD patients. The same AD patients were also character-
ized by an abnormal landscape of intraregional EEG syn-
chronization that was impaired in frontotemporal regions of
the left hemisphere and augmented in the posterior tempo-
ral, parietal, and occipital cortices of both hemispheres
(Knyazeva et al., 2010). These features discriminated pa-
tients from controls with an accuracy of up to 94%. Anterior
hyposynchronization and posterior hypersynchronization
correlated with individual Mini Mental State Examination
(MMSE) scores, thus linking both types of FC change to
AD-associated cognitive decline.

Posterior hypersynchronization was much more pro-
nounced in early-onset AD patients and in those with short
disease duration (Knyazeva et al., 2010). The literature
suggests further changes in moderate to severe AD mani-
festing predominantly as hyposynchronization compared
with matched controls (Koenig et al., 2005; Lizio et al.,
2011). Therefore, the evolution of AD-associated neurode-
generation causes qualitative changes in EEG synchroniza-
tion, and hypersynchronization is a hallmark of early or
even preclinical AD. However, this sequence of events is
presently based on extrapolation from cross-sectional stud-
ies. Proof from formal longitudinal studies is required. Here
we present a longitudinal study over a year starting from the
clinical diagnosis of AD. To assay the dynamics of syn-
chronization within this period, we apply whole-brain map-
ping of multivariate intraregional FC in EEG source space
using the S-estimator, a multivariate measure exploiting
dimensionality shrinking—a theoretical consequence of
synchronization phenomena (see Section 2.4.)—for the as-
sessment of synchronization within a set of multivariate
measurements (Carmeli et al., 2005).

2. Methods
2.1. Patients and control subjects

Fifteen newly diagnosed AD patients (3 women and 12
men; Table 1a) were recruited from the Memory Clinic of
the Neurology Service (CHUV, Lausanne). Fifteen control
subjects (9 women and 6 men) were volunteers enrolled
among partners, caregivers, or family members. The patient
and control groups differed neither in age nor in level of
education. At baseline, this population overlapped with the
population reported in our cross-sectional study (Knyazeva
et al., 2010), where we analyzed surface EEG in newly
diagnosed AD patients. Eleven patients and 11 controls
were common across these 2 studies. All participants gave
written informed consent. All procedures conformed to the
Declaration of Helsinki (1964) of the World Medical Asso-
ciation concerning human experimentation and were ap-
proved by the local Ethics Committee of Lausanne Univer-
Sity.

Table 1
Demographic and clinical characteristics of the AD and control subjects
and of the relatively stable and fast-progressing AD patients

a. Demographic and clinical characteristics of the AD and control
groups

Group AD patients Control subjects P
Subjects, n 15 15 —
Gender, M/F 12/3 6/9 —
Age (y) 68.7 = 5.1 67.6 5.0 NS
CO (y) 1.9*+0.2 1.6 £0.2 NS
EEG observation interval 124 £0.7 122 £ 0.6 NS
(months)

MMSE at baseline 226 * 1.1 285 1.2 0.001
MMSE in the end of CO 18.1 £2.1 285 1.2 0.001
Disease duration (y) 3.8 £0.5 — —
Education® 22+0.2 24+ 0.1 NS

b. Demographic and clinical characteristics of the relatively stable and
progressing AD subgroups

Fast-progressing ~ Slow-progressing

AD patients AD patients
Number of subjects 8 7 —
Gender M/F 5/3 7/0 —
Age (y) 71.9 £4.0 65.6 = 3.1 NS
CO (y) 1.8 0.3 2.1 0.3 NS
EEG observation interval 12.1 £ 0.9 126 £ 1.0 NS
(months)
MMSE at baseline 205+ 1.5 246 14 NS
MMSE in the end of CO 119 = 2.1 243 1.8 0.001
Disease duration 4.1 +0.7 3.6 0.8 NS
Education® 23+03 2.1 0.3 NS

Second and third columns present group characteristics (mean * standard
error). Fourth column presents p-values for the statistical significance of
the between-group differences. The duration of the disease was determined
as the time in years between the onset of recent episodic memory symp-
toms reported by the patient or relatives and the date of neuropsychological
examination, as recommended in the American Academy of Neurology
Practice Handbook (Practice parameter for diagnosis and evaluation of
dementia (summary statement)).

Key: AD, Alzheimer’s disease; CO, clinical observation; EEG, electroen-
cephalogram; F, female; M, male; MMSE, Mini Mental State Examination;
NS, not significant.

* Educational status was determined by 3 categories: 1, primary/second-
ary school without, or with short (< 3 years) professional training; 2,
primary/secondary school with professional training (> 3 years); and 3,
high school and tertiary education.

The clinical diagnosis of probable AD was made accord-
ing to the National Institute of Neurological and Commu-
nicative Disorders and Stroke and the Alzheimer’s Disease
and Related Disorders Association criteria (McKhann et al.,
1984), allowing a certainty in the diagnosis of about 80%—
85%. Cognitive functions were assessed with the MMSE
(Folstein et al.,, 1975) and with a detailed standardized
neuropsychological assessment scale validated for a franco-
phone population (Puel and Hugonot-Diener, 1996). The
impact of cognitive impairment on daily life was evaluated
with the Basic Activity of Daily Living Scale (Katz, 1983),
and with the Instrumental Activity of Daily Living Scale
(Lawton and Brody, 1969). To improve compatibility across
studies the stage of dementia was determined both by the
Functional Assessment Staging (Scaln and Reisberg, 1992)



696 M.G. Knyazeva et al. / Neurobiology of Aging 34 (2013) 694-705

and Clinical Dementia Rating (Morris, 1993) scales. For
this study we selected patients with mild dementia at base-
line (Functional Assessment Staging score, 3—4; and Clin-
ical Dementia Rating score, 0.5-1).

Clinical laboratory investigations and diagnostic neuro-
imaging (computed tomography or magnetic resonance im-
aging [MRI] and metrizamide single-photon emission com-
puted tomography) were performed to exclude other causes
of dementia. Exclusion criteria were severe physical illness,
psychiatric or other neurological disorders associated with
potential cognitive dysfunction, other dementing conditions
(frontotemporal dementia, dementia associated with Parkin-
sonism, Lewy body disease, pure vascular or prion-associ-
ated dementia, etc.), alcohol/drug abuse, and regular use of
neuroleptics, antidepressants with anticholinergic action,
benzodiazepines, stimulants, or (3-blockers. To confirm the
absence of psychoactive drug use, or other diseases that
interfere with cognitive functions, potential control subjects
underwent a brief clinical interview, including the MMSE,
and a brain MRI scan. Only individuals with no cognitive
complaints and a score = 28 for a high and = 26 for a low
level of education were accepted as controls.

All the subjects are participants of a 3-year longitudinal
study (Swiss National Foundation, Grant number 320030-
127538/1), which includes clinical, EEG, and MRI evalua-
tions on an annual basis. Here we report the EEG results at
1 year from AD diagnosis. The mean time between EEG
sessions was 12.4 = 0.7 (mean = standard error) months for
patients and 12.2 * 0.6 months for controls. All patients
were treated with a cholinesterase inhibitor in this period, all
but 1 slow and 1 rapidly regressing patient received an
antidepressant and none of the control subjects was medi-
cated. Considering that (1) the effects of cholinesterase
inhibitors on AD progression are very limited (Birks, 2006),
(2) antidepressants have never affected AD progression or
MMSE scores, and (3) that medication is given to reduce the
differences between controls and patients, medication-re-
lated false positives are very unlikely.

2.2. EEG recording and preprocessing

The EEG data were collected with subjects sitting re-
laxed with eyes closed. The EEGs were recorded with a
128-channel Geodesic Sensor Net (Electrical Geodesic,
Inc., Eugene, OR, USA) for 3—-4 minutes. All electrode
impedances were kept under 30 kQ—much lower than
recommended (50 k() for the high-input impedance ampli-
fiers. The recordings were made with vertex references
using a low-pass filter set to 100 Hz. The signals were
digitized at a rate of 500 samples per second with a 12-bit
analogue-to-digital converter. They were filtered (band-pass
of 1-50 Hz) and rereferenced against the common average.
The latter operation has the benefit of providing reference-
independent inverse solutions (Pascual-Marqui, 2009).

To achieve greater confidence in the synchronization
estimates, the signals were segmented into nonoverlapping

1-second epochs. Using short segments for analysis allowed
us to record 155 = 17 (mean = standard error) artifact-free
epochs for patients and 142 = 18 for controls. Artifacts in
all channels were edited off-line: first automatically, based
on an absolute voltage threshold (100 wV) and on a transi-
tion threshold (50 wV), and then on the basis of a thorough
visual inspection. The sensors producing artifacts more than
20% of the recording time were corrected using a bad
channel replacement tool (Net Station 4.2, Electrical Geo-
desic, Inc.).

2.3. LAURA— bioelectromagnetic inverse imaging

Local auto-regressive average (LAURA) is a method
used to image generators of scalp-recorded electromagnetic
activity (Grave de Peralta Menendez et al., 2001). It pro-
vides a distributed linear inverse solution based on a local
auto-regressive average model of unknown current density
in the brain. Its interpolation coefficients depend upon a
power of the Euclidean distance between current density
locations of interest and their neighbors. We computed the
LAURA-based EEG solution for a head model with 4024
solution points isotropically distributed at 6 mm intervals
within the gray matter compartment of the Montreal Neu-
rological Institute’s (MNI) average brain (Mazziotta et al.,
1995). These solution points span superficial and deep gray
matter, except the cerebellum. The head model was coreg-
istered with EEG electrode coordinates from MNI space,
and the lead-field matrix was computed via the 3 shell
SYmmetric Spherical Head Model with Anatomical Con-
strains (Grave de Peralta Menendez et al., 2006). This
method has been successfully used in clinical and experi-
mental studies and results in localization precision that is
comparable with realistic boundary element models (Gug-
gisberg et al., 2011). At each solution point, 3-D current
density time series were produced. To avoid excessive com-
putational demands and uncertainties in the interpretation of
synchronization maps along the 3 components of current
density vectors, for subsequent data analysis we considered
the modulus or intensity of the vectors, thus discarding their
directionality.

2.4. Measuring multivariate source EEG synchronization

Synchronization occurs when there is a correlation of
activity between a number of systems due to either a cou-
pling configuration or driven by an external source (Brown
and Kocarev, 2000). In order to estimate the amount of
synchrony defined by distances (volumes) of interest (see
below), that is between multiple neighboring sources, we
exploited the S-estimator (for a discussion of this multivar-
iate approach and numerical validation of the method, see
Carmeli, 2006; Carmeli et al., 2005). The S-estimator ex-
ploits the theoretical consequences of synchronization phe-
nomena to quantify the synchronization of a set of signals.
The observable dimensionality of a network of dynamic
systems decreases as a result of interactions among its
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elements (Brown and Kocarev, 2000). The S-estimator in-
directly measures this synchronization-induced contraction
of observed dimensionality by measuring the eigenvalue
dispersion (entropy) in the 0O-lag correlation matrix of a
multivariate set of signals. The S-estimator can be applied to
multivariate time series or to phase-space embedded multi-
variate data. The latter involves the estimation of 2 param-
eters for each solution point, namely time lag and embed-
ding dimension (Carmeli et al., 2005). Because such
estimations are time-consuming in a large-scale setting, we
opted for the most simple approach, that of considering the
nonphase-space embedded time series.

Given a K-variate time series, the S-estimator is defined
as:

E(\)
log(K)

where A designates the normalized eigenvalues of the 0-lag
correlation matrix of the K-variate time series, and E()) is
their Shannon entropy. When all normalized eigenvalues
are roughly of the same value (maximum dispersion of
eigenvalues), all the state-space dimensions are almost
equally visited; in this case E(A) is maximum [close to
log(K)], consequently S is close to 0, meaning no contrac-
tion of the observed dimensionality, i.e., no synchroniza-
tion. Alternatively, when nearly all normalized eigenvalues
are roughly 0 and only a few are not (minimal dispersion),
only a few state-space dimensions are visited; in this case
E(A) is minimal (close to 0), consequently S is close to 1,
meaning maximal contraction of the observed dimensional-
ity and complete synchronization. Thus, the S-estimator is a
multivariate measure that fits the structure of source EEG by
allowing a reconstruction of the whole-brain topography of
synchronization.

2.5. Whole-brain topography

Whole-brain maps were obtained by applying the S-es-
timator to 4024 volumes of interest. Each volume of interest
corresponded to a sphere of 3 cm in radius centered on a
solution point. On average, a volume of interest included
about K = 200 sources, and embraced the range of distances
spanned by short corticocortical association fibers (Schuz
and Braitenberg, 2002), which are demyelinated in early
AD patients (Fornari et al., 2012). To reduce the computa-
tional burden and to avoid the issue of multiple comparisons
when assessing synchronization maps for several EEG fre-
quency bands, we applied the S-estimator to broadband
source EEG signals. This approach seemed to be optimal for
achieving the aims of our study given the further fact that in
previous work similar synchronization landscapes were
found across conventional EEG frequency bands (Knyazeva
et al., 2010).

Following a summary statistics approach, whole-brain
synchronization maps were computed for each subject by
averaging over all available epochs. To control for interin-

dividual variability and to decouple regional synchroniza-
tion from global synchronization level in individual sub-
jects, each map was normalized by its global mean, i.e., the
spatial average of synchronization was subtracted from each
local S-estimator in each 1-second epoch. Such normaliza-
tion assumes an equality of global mean values across
samples, which was the case for the baseline versus 1-year
sessions in both groups, but not for patients versus controls
(2-way analysis of variance [ANOVA] with disease [AD
patients vs. controls] and observation period [baseline and
1-year session] factors). Because our study was primarily
focused on the evolution of EEG synchronization, we used
the normalization to unmask regions with the greatest rate
of AD-related progression. However, to avoid misinterpre-
tations due to significantly lower mean synchronization lev-
els in patients (p < 0.01), we also analyzed nonnormalized
data. The so obtained absolute and relative synchronization
maps entered a population analysis.

We acknowledge the fact that localization of distributed
sources based on the LAURA algorithm has limited spatial
resolution, because field spread is not completely abolished
in source space (Schoffelen and Gross, 2009). This is a
consequence of the high indeterminacy of the inverse prob-
lem and of the approximations in modeling head geometry
and spatial conductivity in the forward model. As a result,
source signals are not perfectly reconstructed and spatially
localized and may result in spurious values of the S-estima-
tor. Given our high-density EEG setup (> 100 channels),
the localization accuracy with LAURA is in the order of the
grid size, i.e., about 1 cm (Michel et al., 2004). Furthermore,
the whole-brain maps of source power minimize the possi-
bility that our synchronization maps depend significantly on
signal-to-noise ratio changes (see Supplementary data). Fi-
nally, as described in the following paragraph, we applied a
conservative statistical approach in order to interpret only
the most pronounced effects.

2.6. Group statistics

Two-way between-within ANOVAs included disease
(AD patients vs. controls) as a first factor and observation
period (2 levels: 7, and ¢, at baseline and 1-year session,
respectively) as a second. Two-way between-within ANOVAs
were also performed on the AD patients separately. With
this design we analyzed the effects of AD subtype (fast-
progressing patients vs. slow-progressing patients), obser-
vation period (2 levels: 7, and ¢,), and their interaction.
Interactions were sought with planned comparisons that
contrasted #, and 7, data separately in patients and controls
(the first ANOVA) and in the 2 subgroups of patients (the
second ANOVA).

To reduce the computational burden of permutation-
based nonparametric testing, we applied a parametric
ANOVA based on the Gaussian distribution. According to
the central limit theorem, because our summary statistics at
the between-subject level are linear mixtures of within-
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Fig. 1. Main effect of Alzheimer’s disease on regional multivariate synchronization. The whole-brain 3-D rendering for the S-estimator shows clusters of
sources hypersynchronized (in red) and hyposynchronized (in blue) in patients compared with control subjects independently of the electroencephalogram
(EEG) recording session. The effects were considered significant at local false discovery rate (Ifdr) = 0.1 for clusters = 5 sources. In the gray areas there
were no significant effects. For details see the Results section. All the maps were made with Cartool software (https:/sites.google.com/site/fbmlab/cartool),
which displays the solution points as a series of transparent iso-surfaces. To render the significant effect at a deep source, a shift between its real position
and surface projection was used. Specifically, deep sources were displayed on top of superficial sources. For medial views, we applied a light shift (up to
12% of the maximum depth, i.e., the depth of 1 hemisphere of the Montreal Neurological Institute’s [MNI] average brain), while for other views we applied

a medium shift (25% of the maximum depth).

subject level data, the random errors in such ANOVAs are
well approximated by a Gaussian distribution.

The univariate p-values were controlled for whole-brain
multiple testing through the local false discovery rate (1fdr)
approach (Efron, 2004). The lfdr controls the expected pro-
portion of significant findings that are indeed false positives
(type I errors). It is an empirical Bayesian method and is
defined from a 2-component mixture model of the observed
p-value distribution, namely:

JP) = mofo(P) + (1 = mo)fs(P)

where the null density f; is the uniform distribution U(0,1),
which corresponds to the p-values of no interest, f, is an
alternative density for the p-values of interest, n, is a true
null proportion, which is estimated from the computed p-
value distribution together with the alternative density f.
The Ifdr is defined as:

Nofo(P)
Ja(P)

This formula provides the probability that a null hypothesis
is true given the corresponding p-value. Contrary to tradi-
tional false discovery methods (Strimmer, 2008), this ap-
proach takes into account dependencies between multiple
null hypotheses. In our case, it also accommodates spatial
dependences across a whole-brain synchronization map.

We computed the Ifdr from the distribution of p-values
obtained for the 4024 null hypotheses under test via an
estimator implemented in the software package fdrtool
(http://cran.r-project.org/web/packages/fdrtool/index.html).
Solution points with a conservative Ifdr = 0.1 (c.f., with a
conventional lfdr = 0.2) were considered significant.

The results of ANOVAs are described as the percentage
of solution points with significant changes of S-estimator
for broadband source EEG relative to the total number of
solution points spanning relevant anatomical structures,
based on the source grid (see Section 2.3.).

Ifdr(P) =

3. Results

An ANOVA on nonnormalized data with disease and
observation period as factors (see Methods section for de-
tails) showed a significant effect of disease but no effect of
time, nor any interaction. The main effect of disease showed
up as a synchronization reduction across all solution points
(Ifdr = 0.1). Therefore, nonnormalized data failed to local-
ize AD-affected brain regions or to follow AD progression.

The main effect of disease on normalized S-maps man-
ifested itself in both hemispheres (blue clusters in Fig. 1,
Supplementary Table 1) as both hyper- and hyposynchro-
nized clusters. Hyposynchronized clusters in patients were
located in the temporal and prefrontal cortices. The most
affected territories included the superior, middle, and me-
dial frontal gyri bilaterally (20%—-40%, the percentage is
relative to the total number of sources spanning respective
anatomical structure based on the source grid) and the left
inferior and middle temporal gyri (13%—47%). In the me-
dial temporal lobe, the uncus (bilaterally, 20%—-54% of
sources), and the left parahippocampal gyrus (18%) to-
gether with the left fusiform gyrus (27%) were affected.

Hypersynchronization was found in posterior clusters
located on the medial, basal, and lateral surfaces of both
hemispheres (red clusters in Fig. 1) with the largest hyper-
synchronized network on the right hemispheric convexity.
This cluster spread from the right inferior and middle oc-
cipital gyri posteriorly to the precentral and middle frontal
gyri anteriorly, thus covering a significant part of the lateral
temporal territories including the superior (57% of sources),
middle (33%), and transverse (86%) temporal gyri and the
right insula (70%) (Supplementary Table 1). In the left
hemisphere, the hypersynchronized cluster was limited to
the parietal and temporal cortices including parts of the
superior and middle temporal gyri (31% and 20% of
sources, respectively), and of the supramarginal gyrus
21%).
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The medial hemispheric surfaces were affected symmet-
rically. Hypersynchronized networks covered the posterior
cingulate gyrus (51%—69% of sources), precuneus (37%—
42%), and cuneus (53%-57%). On the basal hemispheric
surface they were found in the lingual (31%-36% of
sources), right fusiform (11%), and right parahippocampal
(30%) gyri. Neither the main effect of time nor the interac-
tion was significant.

Because heterogeneity of AD progression was a probable
cause for the failure to show AD-specific changes in EEG
synchronization with time, we repeated this analysis after
dividing our patients into 2 sets characterized by fast- (RAD
group, 8 patients) or slow progression (SAD group, 7 pa-
tients) of AD symptoms in the period of observation (Table
1b). As seen in the table, at baseline the 2 AD subgroups did
not differ significantly in age, MMSE score, or the duration
of AD symptoms. Over the period of clinical observation (2
years on average) the MMSE score dropped in the RAD
group (p < 0.001), but did not change significantly in the
SAD group. The between-subgroup difference in MMSE
was significant both at first-year (¢;) (p < 0.005; not given
in the table) and second-year examination (p < 0.001). We
used this categorization for a 2-way between-within
ANOVA to explore the main effects and interaction be-
tween AD subtypes (RAD vs. SAD) and period between
EEGs (¢; vs. t;). We found no significant main effects or
interaction, when analyzing nonnormalized data.

For normalized data, despite the absence of main effects,
we found a significant interaction between AD subtype and
time, revealing cortical territories in which synchronization
changed differentially in RAD compared with SAD patients
(Fig. 2, top row; Supplementary Table 2). The differences
were much more widespread in the left hemisphere occu-
pying frontal and temporal cortices, including the inferior

Left lateral Left medial

Interaction

RAD: # vs. 1,

frontal gyrus (31% of sources) together with adjacent terri-
tories in the precentral (20%), middle frontal (15%), supe-
rior temporal (13%), and middle temporal (4%) gyri. The
left medial temporal lobe was among the most affected
regions. Clusters of deviant synchronization were located
prominently in the uncus (79% of sources) and the parahip-
pocampal gyrus (30%). The posterior cingulate was affected
bilaterally (10%—41%). Another cluster was located in the
distal part of the left precentral gyrus.

To interpret the interaction, we examined simple main
effects with planned comparisons between the 2 sessions (t;
vs. t,) separately in RAD and SAD patients. The results of
these comparisons show frontotemporal hypo-synchroniza-
tion in the RAD subgroup over a year (Fig. 2, bottom row).
These effects were seen predominantly in the left hemi-
sphere. Seventy-one percent of sources were affected in the
uncus, 25% in the parahippocampal gyrus, 28% in the
inferior frontal gyrus and 14%, in the middle frontal gyrus.
There were also small clusters of increased synchronization
located in the precentral and posterior cingulate gyri bilat-
erally and in the left subcallosal gyrus and left precuneus.
SAD patients showed no significant changes in source EEG
synchronization over a year.

To better understand regional dynamics exposed by hy-
persynchronized clusters in normalized maps, we visualized
a synchronization landscape in absolute values of S-estima-
tor (Fig. 3A). As this figure demonstrates, the landscape is
characterized by peak values of S-estimator in the parietal/
cingulate regions in both groups and by dip values in the
medial temporal regions. We also performed a 3-way
ANOVA with disease (AD vs. controls), observation period
(ty vs. t;) and cluster type (hyper- vs. hyposynchronized)
factors on absolute values of the S-estimator averaged over
the clusters outlined in Fig. 3A. They showed up both in the

Right medial

Right lateral

Fig. 2. Interaction between progression of Alzheimer’s disease and time. The top row shows the 3-D rendering of interaction effects on the S-estimator. Black
areas correspond to the significant interaction effects at local false discovery rate (Ifdr) = 0.1. The bottom row shows the planned simple contrast ¢, versus
t,in Alzheimer’s disease (AD) patients with rapidly progressing disease. Blue color corresponds to ¢, < f,, while red color corresponds to ¢, > t,. For details

see the Results section.
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Fig. 3. (A) Topography of absolute synchronization. The whole-brain landscape of absolute S-estimator values is shown for recordings at the baseline session.
A cool-warm color scale represents low-high values of synchronization. The 3-D maps of the left hemisphere were rendered with Cartool software
(https://sites.google.com/site/fbmlab/cartool) as described in Fig. 1. The blue and red ellipses highlight regions of relative hypo- and hypersynchronization
(12 and 21 sources, respectively) that are common to the main effect of Alzheimer’s disease (AD) (Fig. 1) and the interaction (Fig. 2). (B) Interaction effects
on absolute values of S-estimator averaged for clusters outlined in (A). A significant cluster by time interaction: hypersynchronized clusters (red bars) change
more slowly with time (p = 0.023) and a cluster by disease interaction: the difference in synchronization level between the cluster types is greater in patients

(p = 0.026).

main effect of AD (Fig. 1) and as an interaction (Fig. 2). For
nonnormalized data, we found a significant cluster by ob-
servation period interaction (hypersynchronized clusters
changed more slowly with time at p = 0.023) and a cluster
by disease interaction (the difference in synchronization
levels between cluster types was greater in patients at p =
0.026 [Fig. 3B]).

We additionally performed a whole-brain analysis of
source EEG power (see Supplementary information and
Supplementary Fig. 1) with the 2 ANOVAs applied to the
synchronization maps. In contrast to regionally specific
changes of the S-estimator, we found either a highly dis-
persed decrease in absolute (i.e., nonnormalized) source
EEG power in AD patients versus controls or no significant
effects (RAD vs. SAD patients). This makes a significant
effect of signal-to-noise ratio changes on the S-estimator
very unlikely, so supporting the interpretation of our find-
ings in terms of true regional FC.

4. Discussion

The year following clinical diagnosis is of particular
importance as it is a period when a treatment is often
prescribed and its effects must be tracked and estimated
accurately. Here we report changes in local intraregional FC
induced by mild AD and their evolution over a year. Our
results suggest that such an EEG measure has potential as a
biomarker of disease progression.

Some of our AD patients belonged to a larger group
analyzed in a cross-sectional study (Knyazeva et al., 2010).
At the point of clinical diagnosis, the whole group was
characterized by a specific landscape of synchronization
changes derived from high-density EEG in sensor space.
This included hyposynchronized clusters in the left fronto-

temporal region and hypersynchronized ones in temporo-
parieto-occipital regions bilaterally. This pattern of changes
was reproducible across different measures of EEG syn-
chronization and across frequency bands. However, surface
topography provides limited information about source brain
structures causing the changes in EEG synchronization and
therefore, limits compatibility of EEG data with results
from other neuroimaging domains.

To ensure the integration of EEG-based local FC find-
ings with other neuroimaging modalities, we applied a
source EEG reconstruction with the LAURA algorithm.
This allowed us to reproduce our earlier main findings,
including bidirectional changes of intraregional FC in
source space. In general, the distribution of regions with
aberrant synchronization corresponds to brain regions
known to be implicated in AD, including the medial tem-
poral lobe and the posterior cingulate—key regions sup-
porting memory function—as well as the lateral parietal and
medial frontal areas (Braak and Braak, 1991; Buckner et al.,
2005; Thompson et al., 2003, 2007).

However, our finding that in mild AD the frontal and
temporal networks show reduced synchronization, while
posterior networks are hypersynchronized requires special
consideration. To the best of our knowledge, we were the
first to show such a landscape of changes in local intrare-
gional synchronization; a finding that is discrepant with
other EEG reports and discussed in detail by Knyazeva et al.
(2010) previously and so not reprised here. We suggested
that local hypersynchronization is a transient event and
proposed a 2-phase scenario for the evolution of FC with
AD progression. Our idea was that an increase in temporal
coordination of EEG activity is characteristic of early and
possibly preclinical AD. With progression, ongoing degra-
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dation of anatomical connectivity ultimately results in hy-
posynchronization. Our new results support such a scenario.

4.1. AD networks with decreased synchronization: links
to other neuroimaging data

The networks with decreased intraregional synchroniza-
tion are in the lateral and medial temporal regions including
parahippocampal and fusiform gyri of the left hemisphere
and the uncus, which is affected early in AD, and is bilat-
erally desynchronized. Such networks were also localized
along the interhemispheric fissure, on the convexity and
medial surfaces of both hemispheres from superior and
medial frontal gyri to the postcentral gyrus and paracentral
lobule, respectively.

The finding of hyposynchronized networks is an ex-
pected result within mainstream thinking about FC in AD.
The novel aspect we add is that based on source EEG we
localize these clusters to brain regions involved early in AD,
thus confirming their disease-specific topography. The ac-
cumulation of neurofibrillary tangles starts in the medial
temporal regions (Braak and Braak, 1991). In vivo neuro-
imaging and postmortem anatomical studies consistently
show that brain atrophy first develops in the medial tempo-
ral lobe and then spreads across the association neocortices.
These neuropathological changes manifest with gray matter
(Li et al., 2011; Schuff et al., 2009; Thompson et al., 2003,
2007) and white matter (Fornari et al., 2012) loss. The latter
can thus be linked to impaired FC as indeed shown in
Babiloni et al. (2006b) and Knyazeva et al. (2009).

The asymmetry of hyposynchronization with greater ef-
fects in the left hemisphere is mirrored by a comparable
spatial pattern of demyelination of juxtacortical white mat-
ter (Fornari et al., 2012). The juxtacortical white matter
consists mostly of association U-fibers that implement local
corticocortical connectivity. The deterioration of synchro-
nization over a year (see section 4.3.) occurred in the same
and neighboring areas of the left hemisphere. Thompson et
al. (2003) found similar asymmetric gray matter atrophy in
AD patients. Moreover, the rate of loss at follow-up was
greater in the left hemisphere. These structural findings are
compatible with our functional ones. Although mounting
data show that the left hemisphere is more affected in early
AD (Fornari et al., 2012; Thompson et al., 1998; Loewen-
stein et al., 1989; Thompson et al., 2003; Zhang et al.,
2010), there is no explanation for this finding so far. Other
neurodegenerative diseases, e.g., Parkinson’s disease also
show asymmetrical changes at onset.

4.2. What is so special about relatively
hypersynchronized EEG networks?

The relatively hypersynchronized clusters in the normal-
ized maps emphasize some regional features hidden in the
nonnormalized data. Firstly, these networks have the high-
est absolute FC as demonstrated by the landscapes with the
peak parietal/cingulate and the dip mediotemporal S-esti-

mator values in our control and patient groups. An fMRI-
based analysis of FC similarly showed that the posterior
cingulate and lateral parietal cortices are among regions
with the highest connectivity (Buckner et al., 2009). Sec-
ondly, they are characterized by a less rapid decline of FC
than the medial temporal networks. Therefore, while global
synchronization was lower in our AD group than in con-
trols, there existed a differential spatial pattern with parietal
and cingulate regions showing somewhat greater synchro-
nization and a slower decline than the frontotemporal ones.

On the other hand, our results confirm that clinical man-
ifestations of AD are associated with already impaired FC
and leave open an issue of AD-related absolute increases.
Because the latter were observed in a cross-sectional study
of newly diagnosed AD patients (Knyazeva et al., 2010),
this effect may characterize the earlier stages of disease.
Indeed, recent fMRI-based studies of FC report bidirec-
tional changes in mild AD (Damoiseaux et al., 2012; He et
al., 2007; Wang et al., 2007; Zhang et al., 2010). However,
given that normalization procedures were used at least in
some of these studies (Damoiseaux et al., 2012; Zhang et
al., 2010), the phenomenon requires further experimental
examination in preclinical and early AD.

The posterior neocortical relatively hypersynchronized
networks overlap with regions of decreased oxygen and
glucose metabolism measured with 150-positron-emission
tomography and fluorodeoxyglucose (FDG)-positron-emis-
sion tomography. The latter include the lateral and medial
parietal and posterior cingulate cortices, extending into lat-
eral occipital and medial temporal regions (Buckner et al.,
2005; Edison et al., 2007; Ewers et al., 2011; Frackowiak et
al., 1981). Hypometabolism in parietal/posterior cingulate
regions is a very early event observed at a preclinical stage,
when neither cognitive deficits, nor cerebral atrophy are
detected (Mosconi et al., 2008). The metabolic findings
indicate declining synaptic activity that correlates with cog-
nitive deterioration (Jack et al., 2010) and with postmortem
changes of AD (Hoffman et al., 2000).

Because EEG and glucose metabolism reflect aspects of
synaptic activity, the methods would be expected to produce
clinically relevant spatially overlapping results, which is
indeed the case. Correlations between EEG localization
based on a single dipole model and spatial extent of energy
hypometabolism have been demonstrated in a mixed mild
cognitive impairment-AD population (Dierks et al., 2000).
In a recent mouse model with a prodromal AD/mild cogni-
tive impairment phenotype, hypometabolic regions overlap
with loci of EEG change (Platt et al., 2011). Finally, a likely
association between hypometabolism and intraregional
EEG synchronization is supported by accumulating evi-
dence from epilepsy studies. Sites of seizure generation and
propagation demonstrate interictal glucose hypometabolism
(Henry and Votaw, 2004) and an increase of interictal re-
gional synchronization of intracranial activity, magnetoen-
cephalographic (MEG), and EEG across a wide range of
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epilepsies in both animal models and humans (Bettus et al.,
2008; Douw et al., 2010; Garcia Dominguez et al., 2005;
Ortega et al., 2008; Schevon et al., 2007).

Collectively these results suggest that increased EEG
synchronization is a manifestation of the hypoactive state of
a region in early AD. The clinical significance of this pos-
sibility is that the earliest EEG signs of preclinical AD may
be hypersynchronization in the posterior cortex.

4.3. Follow-up: rapidly progressing versus slowly
progressing AD

Several longitudinal studies have considered EEG/MEG
as a potential objective marker of AD progression. Only a
proportion of them is based on serial recordings (al Soininen
et al., 1991; Coben et al., 1985; Dunkin et al., 1994; Jelic et
al., 2000; Rossini et al., 2006), while in others the baseline
EEG/MEG has been retrospectively used as a predictor of
outcome in clinical follow-up (Luckhaus et al., 2008;
Prichep, 2007; van der Hiele et al., 2008; Verdoorn et al.,
2011). Reports based on power spectral analysis have con-
sistently shown EEG slowing in AD patients, associated
with a relative power decrease in the fast « and 8 and an
increase in the & and 6 frequencies. Although well estab-
lished, these EEG features lack sufficient specificity, be-
cause they are also present in other frequent pathologies
encountered in elderly populations, among them multi-in-
farct dementia, Parkinson’s disease, stroke, as well as in
normal aging (Stomrud et al., 2010).

EEG source analysis was expected to improve its diag-
nostic specificity via the localization of power changes to
regions preferentially affected by AD. Indeed, increased 6
source power has been found in the temporal and parietal
cortices in AD-converters (Prichep, 2007). Yet, of the 2
longitudinal studies using source EEG analysis that report
medication effects, only 1 found a shift of the power spec-
trum after a 3-month treatment with rivastigmine in fronto-
parietal, posterior cingulate, and medial temporal regions
(Gianotti et al., 2008), while the other failed to find any
changes after a year of donepezil dosing (Babiloni et al.,
2006).

Mapping synchronization of source EEG (or MEG) is an
alternative approach to improving the potential of high
density EEG as an AD biomarker. Although previous stud-
ies have not fully exploited the spatial dimension of EEG,
because region-of-interest approaches and/or bivariate mea-
sures of synchronization suboptimal for whole-brain map-
ping, they have reported a number of promising findings,
including the AD-specific topography of longitudinal
changes and their correlation with AD progression (Prichep,
2007; Rossini et al., 2006; Verdoorn et al., 2011). In con-
trast to the greater accuracy of narrow-band power indica-
tors of AD, an efficient marker of changes in functional
connectivity turns out to be broadband synchronization (Kn-
yazeva et al., 2010; Prichep, 2007; Verdoorn et al., 2011).
Here we have further optimized the analysis of FC in AD by

whole-brain mapping of broadband multivariate source syn-
chronization.

The temporal dynamics of normalized synchronization
appear to be sensitive to AD progression rate within the
limited observation period of a year. We have demonstrated
a clear interaction between synchronization changes over
time and the rate of AD progression in territories affected by
AD pathology. In contrast to the relatively stable AD group
that showed no detectable synchronization changes, the
progressing group showed both increases and decreases in
regional synchronization. The major change, however, is
left-lateralized hyposynchronization in the medial temporal
lobe and adjacent frontal cortex that includes the uncus,
parahippocampal gyrus, and inferior and middle frontal
gyri, further supporting the AD specific topography of EEG
synchronization changes.

In contrast, the relative increase in synchronization is
localized to small bilateral areas in the posterior cingulate
and precentral gyri. Three of 4 areas overlap with the hy-
persynchronized areas implicated by the main effect of AD.
The comparisons between baseline and after a year show
that although hypersynchronization is still observable in
rapidly progressive AD, it is much less widespread than
hyposynchronization, which may indicate flattening of re-
gional rates of decline. A similar trend was observed by
Damoiseaux et al. (2012), who showed bidirectional
changes of fMRI-based connectivity in AD patients at base-
line, but only reductions at follow-up.

These findings imply that normalized intraregional syn-
chronization is a sensitive measure of AD progression and
of interregional heterochronicity associated with patholog-
ical processes. As our results relate to group studies, it
remains to be determined whether the sensitivity of our
noninvasive and readily available technique is sufficient for
individual patient monitoring.

4.4. Conclusion

The significance of EEG for AD has been relatively low
because of nonspecific findings such as spectral slowing
(Jeong, 2004). Our approach, based on multivariate source
EEG synchronization has revealed a whole-brain, AD-spe-
cific phenotype of temporal coordination in distributed cor-
tical networks, which shows clinically relevant changes
over time. This suggests a new role for EEG as part of a
multimodal imaging approach to early diagnostics and for
tracking AD evolution. As a cost-effective noninvasive
technique, EEG can be widely used for primary preclinical
AD screening, followed by other neuroimaging techniques,
if indicated. However, the limitations of this study, which
include gender composition of control and patient groups
and small sample size for the post hoc descriptive analysis
of RAD vs. SAD subgroups, require confirmation of the
results obtained and further studies designed to specify in
detail the association between regional EEG synchroniza-
tion and other neuroimaging modalities.
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