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Normal and abnormal brains can be segmented by registering the target image with an atlas.

Here,  an atlas is defined as the combination of an intensity image (template) and its seg-

mented image  (the atlas labels). After registering the atlas template and the target image,

the  atlas labels are propagated to the target image. We  define this process as atlas-based seg-

mentation. In recent years, researchers have investigated registration algorithms to match

atlases to query subjects and also strategies for atlas construction. In this paper we  present

a  review of the automated approaches for atlas-based segmentation of magnetic resonance

brain images. We  aim to point out the strengths and weaknesses of atlas-based methods

and suggest new research directions. We  use two different criteria to present the methods.

First, we refer to the algorithms according to their atlas-based strategy: label propagation,

multi-atlas methods, and probabilistic techniques. Subsequently, we classify the methods
Automated methods according to their medical target: the brain and its internal structures, tissue segmentation in

healthy subjects, tissue segmentation in fetus, neonates and elderly subjects, and segmen-

tation of damaged brains. A quantitative comparison of the results reported in the literature

is  also presented.

essential for simplifying the segmentation task. Prior infor-
1.  Introduction

Magnetic resonance imaging (MRI) of the brain is widely used
in clinical practice for diagnosis [1],  patient follow-up [2],  ther-
apy evaluation [3] and human brain mapping [4].  This is due
to it being non-invasive, its good spatial resolution and fast
acquisition, and its excellent performance when visualising
differences in various human body tissues. However, despite

the large number of segmentation methods published in sci-
entific journals, the use of semi-automated and automated
tools is relatively limited in clinical practice. This can be
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explained by the difficulty of quantitatively validating these
tools and adapting them to large databases (with images from
different scanners or different sequences).

The automated segmentation of MR brain images is a
challenging task due to image  artifacts (such as intensity
inhomogeneities and partial volume effects) and due to the
fact that different anatomical structures may share the same
tissue contrast. Hence, a priori anatomical information is
mation may be provided in different ways, for instance, as a
set of predefined rules based on known tissue properties, or
as a set of manual expert annotations. In this study, we  focus

erved.
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n anatomical priors from an atlas to be matched to the tar-
et volume we  wish to segment. Here, we consider an atlas
s two image  volumes: one intensity image  (or template) and
ne segmented image  (or labelled image). Note however that,
s stated in [5],  active shape models [6] or active appearance
odels [7] can also be considered as atlases since they bring

patial prior knowledge to the segmentation process.
At this point, the segmentation turns into a registration

roblem. Volumetric registration is often done in two steps.
irstly, a global registration (affine or rigid transformation) is
erformed to obtain an initial alignment at a low computa-
ional cost. Secondly, a local registration is applied to adapt
eneral models to a specific anatomy. Note that this local reg-
stration provides a better match between different brains at
he expense of a high computational cost. Multi-resolution
trategies may be used to reduce this computational cost [8].

Medical image  registration has been widely reviewed in
he literature [9–13]. These studies include reviews of regis-
ration techniques that can be used to align an atlas to an
nseen MRI  scan. However, to the best of our knowledge,
ur study is the first attempt to review the use of atlases for
utomatic segmentation of brain structures and tissues. In
articular, we  first distinguish between three different ways of

ntegrating the atlas information into the whole segmentation
rocess: label propagation, multi-atlas propagation and proba-
ilistic atlas-based segmentation. We  then go on to review the
tlas-based segmentation methods according to their medical
arget: those that segment the brain and its internal structures
such as the amygdala or putamen), those that target brain tis-
ues in healthy brains, those that target brain tissues in fetus,
eonates and elderly subjects, and, finally, those that segment
amaged brains with either focal lesions (such as multiple
clerosis lesions) or space-occupying lesions (like tumours).

For comparison purposes, atlas-based segmentation meth-
ds should be applied to a common database and quantita-
ively validated using ground truth. Unfortunately, only very
ew of such methods and databases are publicly available.
tlas-based segmentation methods also aim to segment dif-

erent targets, such as, for instance, brain structures, brain
issues, or lesions. Our contribution is closely related to this
dea, comparing atlas-based segmentation approaches quali-
atively and quantitatively according to their strategy, target
nd accuracy reported in the literature.

The rest of this paper is organised as follows. In Section 2,
e introduce the different types of public atlases, also describ-

ng their creation process. Then, in Section 3, we present
he strategies used to integrate atlases into the segmenta-
ion process. In Section 4 we analyse and classify the reviewed

ethods according to the ultimate objectives of segmentation.
inally, future trends are suggested in Section 5.

. Type  of  brain  atlases

he construction of a realistic anatomical brain atlas is a
ime-consuming task, especially when aimed at describing

uman data variability. Public atlas repositories have been cre-
ted to provide the research community with MRI  data to go
ith the manual segmentations (or annotations) performed

y expert radiologists. The contribution of these repositories
 m e d i c i n e 1 0 4 ( 2 0 1 1 ) e158–e177 e159

is twofold: firstly, they allow the training of new segmenta-
tion algorithms, and secondly they allow evaluation data to
be standardised for the developed algorithms.

2.1.  Topological  atlases

First attempts at atlas construction of the human brain were
based on a single subject. In the literature these atlases are
called topological,  single-subject or deterministic atlases. The
single-subject atlas is often a volume image  that has been
selected from a data set to be representative of the objects to be
segmented in other images (average size, shapes or intensity).

In medicine, pioneering work was done with the Talairach
atlas [14,15],  which was proposed to identify deep brain
structures in stereotaxic coordinates. One of the first deter-
ministic digital atlases was provided by the Visible Human
Project of the National Library of Medicine [16]. The goal
of this project was to create complete and detailed three-
dimensional anatomical representations of normal male and
female human bodies. These representations were obtained
through the acquisition of transverse Computed Tomogra-
phy (CT), MR and high-resolution cryosection images of male
and female cadavers. Also derived from a digitised cryosec-
tioned human brain, the Karolinska Institute and Hospital,
Stockholm, created a Computerised Brain Atlas (CBA) that
was designed for display and analysis of tomographic brain
images. The atlas includes the brain surface, the ventricu-
lar system and about 400 structures and all Brodmann areas
[17,18].

Nowadays, the vast majority of deterministic atlases are
generated from imaging acquisition. For instance, the Surgi-
cal Planning Laboratory’s (SPL) digital brain atlas, developed
by the Harvard Medical School [19], is based on a 3D MR  atlas
of the human brain to visualise spatially complex structures.
For CT acquisitions, Bajcsy et al. [20,21] created an artificial
CT anatomical atlas based on the stained slices of a dead sol-
dier’s brain belonging to a 31 year-old normal male (from the
so-called Yakovlev Collection). The McConell Brain Imaging
Center [22] provides the research community with a digi-
tal brain phantom, based on 27 high-resolution scans from
the same individual. Its average resulted in a high-resolution
(1 mm isotropic voxels) brain atlas with an increased signal-
to-noise ratio. This brain template is the reference data in
the BrainWeb Simulated Brain Database [23]. Recently, 20 new
normal anatomical models have become available as well as
an anatomical model of a brain with Multiple Sclerosis (MS)
lesions.

2.2.  Probabilistic  atlases

Atlases based on a single-subject are not constructed to rep-
resent the diversity of human anatomy. To better characterise
the variability of anatomical structures, atlases have been con-
structed on the basis of populations. These atlases are often
cited as population-based, statistical or probabilistic atlases. Such
templates are in continuous evolution, as new images can

easily be incorporated. Moreover, the population represented
by a probabilistic atlas can be easily subdivided into groups
according to specific criteria (age, sex, handedness, etc.). As
for single-subject atlases, the first population-based atlases

dx.doi.org/10.1016/j.cmpb.2011.07.015
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Fig. 1 – ICBM452 population-based atlas [27]: (a)
T1-weighted mean, (b) white matter, (c) grey matter, and (d)

erwise, in cases where large anatomical differences exist, large
cerebrospinal fluid.

were based in Talairach space [24,25].  Later, to compensate for
the implicit limitations of Talairach space, such as poor reso-
lution across slices (from 3 to 4 mm),  population-based atlases
from MR  images were proposed. A composite MRI data set was
constructed by Evans et al. [26] from several hundreds of nor-
mal  subjects (239 males and 66 females of 23.4 ± 4.1 years old).
All the scans were first individually registered in the Talairach
coordinate system. Following this they were intensity nor-
malised and, finally all the scans were averaged voxel-by-voxel
and probabilistic maps for brain tissue were created. The same
procedure for constructing an average brain was later used
by the International Consortium for Brain Mapping (ICBM) on
152 brains and later on 452 brains [27]. Fig. 1 shows the tissue
probabilities for one central slice of the ICBM452 template. The
UCLA Laboratory Of Neuro Imaging (LONI), which is a member
of the ICBM, provides also atlases for MR  brain imaging con-
trasts, such as T2-weighted or Diffusion Tensor Imaging (DTI)
[28].

Another widely used repository for MRI  brain data is the
Internet Brain Segmentation Repository (IBSR) [29]. The MRI
studies contained in this database have also been used either
to define a set of topological atlases for multi-atlas strategies
(using the included manual segmentations) or to construct a
probabilistic atlas after co-registering all the segmented cases
to a standard space and computing the frequency of each voxel
to belong to a specific structure [30,31].

Interest in disease-based atlas construction [32,33] has

increased in recent years. For instance, the ICBM provides an
Alzheimer’s disease template. Disease atlases allow quantita-
tive examination of the history and evolution (due to natural
b i o m e d i c i n e 1 0 4 ( 2 0 1 1 ) e158–e177

disease evolution or reaction to clinical treatment) of a specific
disease.

Important questions arise when generating population-
based atlases, such as selecting a reference space or the
registration method for the data alignment. Many  researchers
have proposed new strategies to create unbiased average tem-
plates and multi-subject registration [34–41].

3.  Segmentation  strategies

In formulating atlas-based segmentation, we  can define the
input image  to be segmented, I(x), as I : x ∈R3 �→ I(x) ∈RN,
where x represents the 3D voxel coordinates, and N is the
number of intensity values of multi-spectral MRI  data for
each voxel. Following this notation, when dealing with single-
subject atlases, we  can differentiate between the grey level
volume, �I(x), defined as �I : x ∈ R

3 �→ �I(x) ∈ R, and the cor-
responding labelled volume, �L(x), defined as �L : x ∈ R

3 �→
�L(x) ∈ L, where L = {1, . . . , C} and C is the number of labels.
If probabilistic atlases are available, for each class c the proba-
bilistic volume �P

c (x) is defined as �P
c : x ∈ R

3 �→ �P
c (x) ∈ R  where

c ∈ {1, . . .,  C}.
By definition, volumes �I(x), �L(x) and �P

c (x) are on the same
spatial coordinates, which we refer to as the atlas space X�.
On the other hand, the input image  usually lies in a differ-
ent space, which we refer to as the image space XI. Therefore,
in order to use the atlas information, a transformation � :
x� ∈ X� �→ xI ∈ XI must be found in the space of all possible
transformations T.  The process of finding this transformation
is commonly known as image  registration and is defined in
Eq. (1) as an optimisation problem, where �̂ is the estimated
transformation and ı() is a similarity metric used to compare
the input image and the transformed intensity image  volume
of the atlas.

�̂  = argmax
� ∈ T

ı(I(x), �I(�(x))). (1)

Finally, we can define the final segmentation, S(x), as S :
x ∈ R

3 �→ S(x) ∈ L.

3.1.  Label  propagation

Once the registration problem is solved, the easiest and fastest
way to assign a label to each input image  voxel is to propagate
the atlas labels to image  space, XI [20,42–52]. This segmenta-
tion procedure is defined as:

S(x) = �L(�̂(x)). (2)

With this strategy, the segmentation process relies on a
registration process that aims to estimate the anatomical dif-
ferences between the atlas and the input image  volumes.
Registration errors exist in all real-world applications but
errors are larger if differences between two images are large.
We assume that the atlas is close to the subject’s anatomy. Oth-
registration errors may cause important segmentation errors.
Global rigid and affine transformations are usually enough

when dealing with intra-subject medical applications, such

dx.doi.org/10.1016/j.cmpb.2011.07.015
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s longitudinal studies of illness progression or multi-modal
egistration for radiotherapy planning. However, when deal-
ng with inter-subject applications such as atlas matching, the
natomical variation between different subjects can only be
aptured using non-rigid algorithms.

Volume partitioning can be performed to account for these
ocal deformations. In general, either the moving image  (usu-
lly the atlas) or the target image  or both image  volumes are
ecomposed on smaller sub-volumes and these sub-volumes
re then registered in a hierarchical manner using rigid and
ffine transformations [53–55].

Other partitioning approaches define a uniform grid, usu-
lly called the free-form deformation grid, and then apply a
on-linear transform to each of the grid vertices. Depending
n accuracy and time efficiency requirements, grid vertices
an be defined as the voxels for the whole volume. Common
on-linear transforms based on mathematic transformations
re, for instance, cosine based functions [56], B-spline curves
8,57] or level set partial differential equations [58]. Other func-
ions used to define a displacement field are based on the
hermodynamics concept of demons [59,60],  optical flow mod-
ls [61,62] or elasticity properties [20,42].

.2.  Multi-atlas  label  propagation

abel propagation has been extended to multiple atlases to
etter deal with the registration errors obtained when using a
ingle atlas and also to better account for anatomical variabil-
ty. With an atlas database, those voxels with low agreement
etween different label propagations can be discarded in
rder to minimise outliers. Due to its strengths over simple

abel propagation, this technique presents an improvement
n accuracy when dealing with the segmentation of objects

ith well-defined shape that may present slight deformations
etween images.

There are two important considerations to take into
ccount when dealing with a set of atlases. The first is related
o the number of atlases to be used to segment a new patient
nd how to select them. We  refer to this issue as the selection
riteria problem. Different studies [63–66] conclude that using
ore than one topological atlas improves accuracy, but that it

s not necessary to use all the cases in a database.
Two principal methods exist for choosing the best match-

ng cases: either using meta-information (which may not
lways be available), or using similarity metrics to compare
he images. In order to use this second method, the new image

ust be aligned to all the manually segmented cases. One pos-
ible technique is to warp all atlases into a common space, and
he subject to be segmented will then be matched in this space.
his considerably reduces the number of registrations. How-
ver, with this strategy, there exists a strong dependency on
he initially selected reference space. Therefore, new group-
ise registration techniques [34–41] may prove a better way
f solving this issue. These techniques try to register all the

ubjects together constructing an average reference template
t each step. It is also advisable to use a combination of sim-
larity metrics to avoid bias from using the same metric as in
he registration step.
 m e d i c i n e 1 0 4 ( 2 0 1 1 ) e158–e177 e161

The question of how atlases should be combined remains.
Voting rules are commonly applied [63–68]:

S(x) = argmax
c

P∑
i=1

wi(x) · f (�L
i (�̂i(x)), c), (3)

where c represents a class, P is the number of atlases, wi is
a weight function that may vary for each atlas voxel and f is
defined as:

f (�L
i (�̂i(x)), c) =

{
1 : �L

i
(�̂i(x)) = c,

0 : �L
i
(�̂i(x)) /= c.

(4)

This step can be seen as a specific case of classifier
fusion. Within this voting procedure, the function wi(x) can
either be defined as a constant value for all atlases to use a
majority voting strategy [69,70] (wi(x) = 1/p), a different con-
stant value for each atlas to use globally weighted voting
[71] (wi(x) = Ki) or a function for each voxel to use locally
weighted voting [68,72] (wi(x) = fi(x)). Recently, a generative
probabilistic model for this fusion step was presented by
Sabuncu et al. [73].

Other combination strategies based on the Expectation
Maximisation (EM) algorithm have also been presented [74,75].
However, these methods usually obtain a lower accuracy
when compared to local weighting methods [68]. Intuitively,
these techniques weight each atlas according to estimated
agreement or similarity with respect to the other atlases.
However, in the case where the atlases with the high-
est agreement are not the best match for the subject
being segmented, such a weighting procedure may bias the
segmentation.

3.3. Probabilistic  atlas-based  segmentation

When probabilistic atlases are used, voxel probabilities can
be integrated as part of a statistical Bayesian framework
[55,76–83] as defined by:

S(x) = argmax
c

p(I(x)|c) · p(c), (5)

where p(I(x) | c) represents the conditional probability of the
intensities, and p(c) are the class priors. Probabilistic atlases
can also be used within variational frameworks [30,31,84–86]:

S(x) = argmin
c

(Ed + � · Es), (6)

where Ed is the data energy term, Es is the smoothness energy
term, and � is a user-defined parameter.

Either parametric (for instance using Gaussian mixture
models) or non-parametric approaches (for instance using
Parzen windows) can be used to estimate p(I(x) | c) and Ed. Ini-
tial estimates of such models often use propagation of the
atlas probabilities [79,81,82,84]. Class priors (p(c)) and smooth-

ness term (Es) may also be encoded using atlas probabilities
[83], sometimes in combination with other spatial priors
[30,31,55,76–78,80,85,86] often modelled by Markov Random
Models.

dx.doi.org/10.1016/j.cmpb.2011.07.015
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Table 1 – Advantages and drawbacks of the different reviewed atlas-based segmentation strategies.

Description Strengths Challenges Application

Label propagation
(LP)

Atlas labels are directly
applied in image space

Intuitive No anatomical variability ROI definition or contour
initialisationStraight-forward Atlas dependant

A single registration Registration dependant

Multi-atlas
propagation (MA)

Multiple labels are
combined in image space

Anatomical variability Atlas selection and combination Segmentation of structures
with a well-defined shapeOutlier minimisation Multiple registrations

Probabilistic atlas
segmentation (PA)

Atlas values are used in a
probabilistic framework

Anatomical variability Atlas weighting Segmentation of new classes or
classes with high anatomical
variability

A single registration Complex model estimation
Multiple input features
Some other methods [52,87–90] directly combine atlas
probabilities with other image  features such as voxel inten-
sities or spatial coordinates (x) to train a classifier. These
classifiers allow several features to be combined without the
need to estimate a probability distribution in a high dimen-
sional space.

The above-mentioned strategies use all the atlas prob-
ability values after registering the atlas with the patient.
In order to reduce the effect of registration errors, some
approaches select only a subset of voxel samples with
high probability per class. These atlas samples can then be
used to train a classifier [91–94],  to estimate class distribu-
tions [95,96],  or as initialisation points for a contour based
segmentation [97].

3.4. Summary

In this section, we  have presented three strategies for deal-
ing with the information provided by an atlas (see Table 1 for
a summary of the main advantages and drawbacks for each
strategy). The most straightforward technique is to assign
atlas labels after registration of the intensity atlas volume
with the subject we  wish to segment. This label propagation
technique is highly dependent on both the atlas image  and
the registration procedure, and it may not be desirable when
dealing with subjects from very different populations. Never-
theless, label propagation is widely used as a segmentation
method to define a region of interest (ROI) for further seg-
mentation [51,87,94] or to initialise an active contour strategy
[49,98].

Furthermore, several topological atlases can be taken into
account to improve the capture of anatomical variability
between different scans. This multi-atlas propagation is in fact
an extension of label propagation. Therefore, these techniques
are desirable when segmenting objects with a well-defined
shape where there is low anatomical variability between dif-
ferent images.

Finally, when using probabilities (either from a probabilistic
atlas or a combination of topological atlases), a probabilistic
model of the input images can be estimated. This probabilistic

model, which may be unknown, can be estimated by different
methods (i.e. parametric, non-parametric, or trained classi-
fiers) that apply outlier rules to segment the images into new
classes not present in the atlas. Moreover, these models may
also be learned from a subset of image  voxels to reduce the
effect of registration errors.

4.  Segmentation  methods  and  clinical
targets

Table 2 offers a compact overview of methods to segment
the brain using atlas information. We  have grouped the seg-
mentation algorithms into four categories according to their
medical target: (1) brain structures with well-defined shapes
(such as the whole brain or the hippocampus), (2) brain tis-
sues in healthy subjects (namely GM, WM and CSF), (3) brain
tissues in challenging populations such as fetuses, neonates,
and elderly subjects, and (4) damaged brains with either focal
lesions (e.g. white matter lesions) or space-occupying lesions
(e.g. tumours). Fig. 2 depicts the relation of these different cat-
egories with the types of atlases used. Table 2 also specifies
the type of atlas used, the registration technique applied, and
the corresponding atlas-based segmentation strategy.

In this section, we briefly describe these methods followed
by a qualitative and quantitative evaluation of the results
reported in the literature. We  select the Dice similarity coeffi-
cient (DSC) as a measure for comparison since it is the most
commonly used in the studies analysed (see Appendix A).
Moreover, in Section 4.5, a summary of toolboxes freely avail-
able on the internet will be presented.

4.1.  The  brain  and  its  internal  structures

The brain itself may be the first structure to be targeted.
The procedure of removing non-brain tissue is a well-known
pre-processing step in brain imaging. Several reviews and
comparisons have been presented recently [99–102], conclud-
ing that, among all brain segmentation methods, atlas-based
segmentation (mainly by label propagation of probabilistic
atlases) is applied as an initial step, although further process-
ing is needed to obtain a good brain segmentation [103,104].

In this section, we focus on the segmentation of the inter-
nal structures of the brain such as the amygdala (AMY),
accumbens (ACC), caudate (CAU), hippocampus (HIP), pal-

lidum (PAL), putamen (PUT) or the thalamus (THA) (as shown
in Fig. 3). Note that these structures present well-defined
shapes that show some anatomical variability between sub-
jects.

dx.doi.org/10.1016/j.cmpb.2011.07.015
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Table 2 – Classification of automated atlas-based segmentation methods. Rows are the segmentation targets, while
columns refer to: the type of atlas, the number of volumes used to build the atlas, the registration method, and the atlas
strategy (label propagation (LP), multi-atlas propagation (MA), and probabilistic atlas segmentation (PA)).

Article Atlas type Registration transforms Strategy

Statistical Topological Global transforms Local transforms

Internal structures Bajcsy [20] No 1 manual Affine Elastic LP
Gee [42] No 1 manual Affine Elastic LP
Miller [43] No 1 manual Affine Mechanoelastic LP
Collins [44] No 1 manual Affine Deformation vectors LP
Christensen [45] No 1 manual Affine Fluid mechanics LP
Davatzikos [47] No 1 manual Affine Elastic LP
Iosifescu [46] No 1 manual Affine Elastic LP
Dawant [48] No 1 manual Affine Demons LP
Baillard [49] No 1 manual No Optical flow LP
Fischl [78] 12 manual No Affine No PA
Klein [50] No 1 manual Affine Mindboggle LP
Klein [63] No 19 manual Affine Mindboggle MA
Heckemann [67] No 29 manual Affine B-splines MA
Pohl [108] 80 manual No Affine Hierarchical PA
Han [55] 80 manual No Affine Hierarchical PA
Bazin [31] 18 manual 1 manual Rigid No PA
van der Lijn [80] 19 manual No Affine B-splines PA
Aljabar [65] No 275 manual Affine B-splines MA
Artaechevarria [68] No 18 manual Affine B-splines MA
Ciofolo [52] No 1 manual Rigid Hierarchical LP
Lötjönen [66] No 17 manual Affine Hierarchical MA

Healthy tissue Van Leemput [76] ICBM No Affine No PA
Marroquin [84] ICBM No Affine Level set PA
Cocosco [91] 53 manual No Affine No PA
Grau [97] 29 manual No No Demons PA
Ashburner [114] ICBM No Affine Cosine PA
Awate [79] ICBM No Affine No PA
Vrooman [92] 22 manual No Affine B-Splines PA
Bricq [82] ICBM No Affine B-splines PA

Fetus, neonates, elderly Mortamet [125] ICBM No Affine No PA
Prastawa [118] 3 manual No Affine No PA
Weisenfeld [116] 13 manual No Affine No PA
Xue [119] No 3 manual Affine No LP
Murgasova [120] 1 manual (37) No Affine B-Splines LP,PA
Smith [126] 141 manual No Affine Cosine PA
Habas [122,124] 14 manual No Affine Elastic PA
Weisenfeld [117] 15 manual No Affine No PA

Damaged brains

Focal lesions Kamber [87] 12 manual No Rigid No LP, PA
Van Leemput [77] ICBM No Affine No PA
Zijdenbos [88] 53 manual No Rigid No PA
Wu [51] Yes No Affine B-splines LP
Bricq [81] 31 manual No Affine B-splines PA
Kroon [89] ICBM No Affine B-splines PA
Prastawa [96] ICBM No Affine No PA
Shiee [85,86] 18 manual 1 manual Rigid No PA
Souplet [83] ICBM No Affine No PA
Akselrod-Ballin [90] ICBM No  Affine Cosine PA
de Boer [93] No 12 manual Affine B-splines PA
Tomas [94] 15 manual 15 manual No B-splines LP, PA
Shiee [30] 18 manual 1 manual Rigid No PA

Space-occupying lesions Kyriakou [142] No 1 manual Affine Elastic LP
Dawant [143] No 1 manual Affine Demons LP
Warfield [148] No 1 manual No Elastic LP
Moon [154] ICBM No Affine No PA
Shen [149] 1  manual 1 manual Affine Hierarchical LP
Bach Cuadra [145] No SPL Affine Demons LP
Duay [151] No 1 manual No Elastic LP

dx.doi.org/10.1016/j.cmpb.2011.07.015
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– Table 2 (Continued)

Article Atlas type Registration transforms Strategy

Statistical Topological Global transforms Local transforms

Liu [153] No 1  manual Affine Hierarchical LP
Prastawa [95] ICBM No  Affine No PA
Stefanescu [152] No 1 manual Rigid Grid-based LP
Pollo [146] No SPL Affine B-Demons LP
Nowinski [147] No 1 manual No Non-linear LP
Bach Cuadra [140] No SPL Affine Optical flow LP
Zacharaki [150,141] No 1 manual Affine Elastic LP

Fig. 2 – Diagram of how atlases are used to segment structures, healthy tissue (in both healthy and challenging population)
and abnormal tissue and lesions. The MR  brain data sets and their manual segmentations were provided by the Center for
Morphometric Analysis at Massachusetts General Hospital and are available at http://www.cma.mgh.harvard.edu/ibsr/.

Fig. 3 – Internal structures of the brain. (a) Axial plane, (b) sagittal plane, (c) coronal plane, and (d) 3D representation of the
following structures: thalamus (blue), putamen (black), pallidum (yellow), hippocampus (purple), caudate (orange),
amygdala (red) and accumbens (green). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of the article.)

dx.doi.org/10.1016/j.cmpb.2011.07.015
http://www.cma.mgh.harvard.edu/ibsr/


 b i o

b
o
[
s
p
o
e
m
a
t
i
m
B
l

b
s
a
t
f
s
i
b
a

c
t
s
[
o
b
o
a
e
t
I
m
w
I
s
c
s
r
s
r
r
o

t
o
f
v
i
p
a

u
a
a

c o m p u t e r m e t h o d s a n d p r o g r a m s i n

Due to the lack of clearly defined edges between some
rain structures and substructures, approaches based solely
n voxel intensities are expected to produce poor results

78]. Therefore, a priori spatial information for anatomical
tructures is required. Several studies have adopted label
ropagation strategies, focusing their contribution on devel-
ping new registration techniques based on, for instance,
lasticity [20,42,43,46,47], deformation vectors [44], fluid
echanics [45], thermodynamics [48], optical flow [49] or hier-

rchical methods [50]. Propagated labels can later be extended
o define a fuzzy label map  (with higher values for voxels
nside the label masks and lower values for voxels outside the

asks) guiding a fuzzy controller. For instance, Ciofolo and
arillot [52] designed a fuzzy controller to guide a competitive

evel set approach initialised by cubes inside the brain scan.
As mentioned in Section 3, multi-atlas approaches have

ecome a recent area of research on automated atlas-based
egmentation to provide improved capture of anatomical vari-
bility. Heckemann et al. [67] proposed the combination of 29
opological atlases after registration via a vote rule decision
usion approach. This technique treats each propagation as a
eparate classifier and then applies the label with the max-
mum number of occurrences to each voxel. A similar study
y Klein et al. [63] assigned a structure label to each voxel by
pplying the findings of their previous study [50] on 19 atlases.

When using a large database with previously segmented
ases some of the segmentations can deviate greatly from
he new subject and therefore bias the result and decrease
egmentation accuracy. To resolve this issue, Aljabar et al.
65] presented a new approach based on selecting a subset
f volumes instead of using all 275 cases (the total num-
er of volumes in the database). The selection was based
n taking both volume similarity and meta-information into
ccount. Moreover, as pointed out by Artaechevarria et al. [68],
ven if the best atlases are chosen, their variability can affect
he final result depending on the fusion technique applied.
n this last study, the authors proposed different weighting

ethods: either globally, using similarity measures for the
hole volume, or locally, using a small neighbourhood area.

n their study, local methods were found to improve the final
egmentation when compared to global methods. The same
onclusion was obtained by Lötjönen et al. [66], who reviewed
election and combination algorithms as well as non-rigid
egistration. Furthermore, they noticed that although atlas
election methods provided better segmentation results than
andom selection, there was still a clear difference with
espect to the results obtained when knowing the optimal set
f atlases.

While these studies create a statistical atlas and keep
he labels with the highest probability per voxel, there are
thers that use atlas probabilities on a complex statistical
ramework (mainly based on Bayes theorem). For instance,
an der Lijn et al. [80] created a probabilistic atlas by averag-
ng different topological atlases and then incorporated those
robabilities as an energy term in a graph-cuts segmentation
pproach.
Fischl et al. [78] proposed segmenting brain structures
sing the Iterated Conditional Modes (ICM) algorithm [105]
fter defining the transformation between a probabilistic atlas
nd the subject. This optimisation algorithm starts with ini-
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tial estimates for the parameters, called conditional modes,
and proceeds to update the segmentation sequentially until
the optimum is found. In this case, the volume is defined as a
Markov Random Field (MRF) to explicitly include spatial infor-
mation. The ICM is initialised with the maximum a posteriori
(MAP) estimate of the segmentation. In a subsequent work,
Han and Fischl [55] proposed applying a pre-processing step to
this framework, consisting in atlas intensity normalisation for
enhancing the performance on different scanning platforms.

In a similar way, segmentation and registration can be com-
bined in a probabilistic framework via an EM algorithm [106]
or the Fuzzy C-Means (FCM) [107] algorithm. The EM algorithm
computes the probability of each entry of the data set belong-
ing to a certain distribution. It then estimates the hidden
parameters of this distribution which maximise the previ-
ous expectation in an iterative manner until convergence is
reached. Even though great convergence properties are found,
this algorithm can lead to non-desired local minima, espe-
cially when only relying on the data itself. Therefore, proper
initialisation and spatial information are introduced into the
framework using atlas-based approaches. For instance, Pohl
et al. [108] proposed using the EM algorithm to find the opti-
mum parameters for registration while labelling each voxel to
a brain structure. On the other hand, FCM inherently treats
each class as a Gaussian with the same variance, since it only
takes class centroid and membership values for each voxel
into account. Note that no spatial information is encoded in
the original algorithm. However, Bazin and Pham [31] pro-
posed modifying the objective function to include spatial
constraints as well as probabilities from a statistical atlas. Seg-
mentation masks were then constrained by a topological atlas
to ensure that topology was preserved. Finally, growing and
thinning techniques were used to refine the final delineations
of the brain structures.

Regarding the experimental evaluation of these works,
the Dice Similarity scores for the central nuclei (amygdala,
accumbens, caudate, hippocampus, pallidum, putamen, and
thalamus) are summarised in Table 3. This table includes infor-
mation about the data sets used for validation. Even if some
of the approaches [31,52,66,68] use the same data set (IBSR),
a quantitative comparison of all methods is difficult due to
the variability of the testing data. Furthermore, the number
of cases used for testing varies, ranging from 10 to 30 vol-
umes, with the exception of Aljabar et al. [65], who  used a
larger database of 275 subjects to show the influence of atlas
selection.

We would like to point out that the results obtained by
Klein et al. [50,63] are not included since they provide sim-
ilarity values for the whole brain instead of structure-based
values. However, in their last study, the authors provided a
comparison of the similarity values when increasing the num-
ber of atlases, showing also an increase in the Dice coefficient.
This behaviour can also be observed in Table 3, where the best
Dice values for each structure are obtained from multi-atlas
approaches [65–67],  closely followed by statistical frameworks
[55,78,108]. Notice that Aljabar et al. [65] obtained the best

results on some structures (the thalamus, the hippocampus,
and the accumbens) by applying selection strategies in their
multi-atlas approach. Furthermore, among the approaches
using IBSR data, the method of Lötjönen et al. [66] outper-

dx.doi.org/10.1016/j.cmpb.2011.07.015
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Table 3 – Summary of brain structure segmentation results using the DSC metric. Additional information on the number
of volumes (v) and the MRI  system is also given. Acronyms in alphabetical order: Amygdala (AMY), Accumbens (ACC),
Caudate (CAU), Hippocampus (HIP), Pallidum (PAL), Putamen (PUT), and Thalamus (THA).

Article Real data

CAU THA PUT PAL HIP AMY ACC Test data (MRI system)

Dawant [48] 0.86 – – – – –  – 8v (Siemens 1.5T)
Fischl [78] 0.88 0.79 0.71  0.71 0.81 0.79 – 14v (GE 1.5T) + 13v (Siemens 1.5T)
Klein a [50] – – – – – – – 10v (Siemens 3T)
Klein a [63] – – – – – – – 10v (Siemens 3T) + 10v (GE 1.5T)
Heckemann [67] 0.90 0.90 0.90 0.80 0.81 0.80 0.70 30v (GE)
Pohl [108] – 0.894 – – – – – 22v (GE 1.5T)
Han [55] 0.84 0.88 0.85 0.76 0.83 0.75 – 14v (GE 1.5T) + 13v (Siemens 1.5T)
van der Lijn [80] –  – – – 0.858 – – 20v (Siemens 1.5T)
Bazin [31] 0.781 0.773 0.817 – – – – 18v (IBSR)
Aljabar [65] 0.881 0.908 0.898 0.818 0.834 0.777 0.758 275v b

Artaechevarria [68] 0.83 0.88 0.87 0.81 0.75 0.72 0.68 18v (IBSR)
Ciofolo [52] 0.60 0.77 0.66 0.56 – – – 18v (IBSR)
Lötjönen [66] 0.866 0.899 0.905 0.844 0.819 0.767 – 18v (IBSR)

ather
a Results by Klein et al. [50,63] are reported for the brain as a whole r
b Aljabar et al. [65] do not specify the MRI system used.

formed the others for all structures. Note that this method
is also based on a multi-atlas strategy.

Only few studies focus on evaluating how algorithms
are affected by image  variability within different scanning
devices. For instance, Klein et al. [50,63] and Han and Fischl
[55,78] validated their methods with MRI  data acquired from
different machines. This later study also demonstrated the
importance of normalising the atlas and the subject inten-
sities when using different scanning machines, obtaining
higher DSC values after atlas normalisation when using data
sets from two different MRI  scanners. Almost all of the studies
in Table 3 segment images from 1.5T devices. Only Klein et al.
[50,63] applied their method to MRI  images acquired at higher
magnetic fields (3T). The recent multi-site and multi-scanner
database maintained by the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) [109] will allow researchers to test the
robustness of developed algorithms on different scanning
devices.

Segmentations for central nuclei structures have a DSC
of between 0.70 and 0.90, showing good agreement between
manual and automatic segmentation. The best segmentation
results are obtained for the caudate, the thalamus, and the
putamen structures, with values of 0.90, while the segmenta-
tions of the amygdala, the hippocampus, and the accumbens
achieve values near 0.80 when using multi-atlas strategies.

4.2.  Brain  tissue  segmentation  in  healthy  subjects

MRI  has become a standard modality for brain tissue segmen-
tation due to its high effectiveness in contrasting between
tissue types. However, some image  artefacts like the partial
volume effect, image  noise and intensity non-uniformities
(also known as bias field [110]) can considerably increase the
difficulty of segmentation work. In addition to these artefacts,
the large differences that may exist between sulci and gyri pat-

terns for various subjects are the main issues when dealing
with brain tissue segmentation.

Numerous approaches have been proposed for MR brain
tissue segmentation [111–113] and only some use atlas pri-
 than providing values for each structure.

ors. Atlas-based approaches for brain tissue segmentation are
mostly within a statistical framework and make use of prob-
abilistic atlas priors (see Section 3.3).

Van Leemput et al. [76] proposed accounting for neigh-
bouring relationships between voxels through an MRF model.
Distribution parameters were then estimated using the EM
algorithm using bias field estimation to aid the segmentation
task. Due to the need for initialisation, the authors decided to
use atlas probabilities as a prior classification and to constrain
the classification process at each iteration by multiplying the
E-step probability by the one given by each atlas voxel. In a
similar way, Bricq et al. [82] proposed including Markovian
properties to account for voxel relationships by means of hid-
den Markov chains. After applying this theory to MRI, model
parameters were also estimated with EM using atlas probabil-
ities during initialisation and each subsequent iteration step.
In order to increase the robustness, Marroquin et al. [84] pro-
posed a novel variant of the EM algorithm which also relies on
atlas information for initialisation. This algorithm substitutes
the expectation step by using the MAP estimator to compute
the MRF  parameters followed by the maximiser of posterior
marginal estimate instead of the maximisation step. There-
fore, using the atlas values for initialisation, this algorithm
iterates until convergence is achieved.

While most segmentation approaches using Markov the-
ory rely on a parametric estimation, non-parametric methods
are quite powerful themselves, as pointed out by Awate et al.
[79]. In their study, the Parzen-window technique is used to
estimate a Markov probability density function (PDF) with-
out imposing strong parametric models on the data. This
data-driven technique, which is also initialised using atlas
probabilities, provides the ability to model and learn arbitrary
PDFs. However, corrupted volumes may bias this estimation
and cause misclassification errors.

All the above methods rely on an initial registration step

and then apply a segmentation framework. However, both
steps are closely related, since atlas registration can benefit
from an initial segmentation, while brain tissue segmenta-
tion requires prior information such as atlas probabilities,

dx.doi.org/10.1016/j.cmpb.2011.07.015
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Fig. 4 – (a) Fetus at 31 weeks of gestational age, (b)
premature newborn, (c) 61 year-old woman and (d) 66
c o m p u t e r m e t h o d s a n d p r o g r a m s i n

hich are obtained from the atlas registration process. Hence,
y combining both steps, Ashburner and Friston [114] pro-
osed a novel method for segmenting brain tissues while
orrecting the bias field and refining atlas registration. In
heir approach, the ICM algorithm is used to estimate the
nal segmentation, while Gaussian Mixture Model parame-
ers are estimated via EM using atlas probabilities and volume
ntensity. A Levenberg–Marquardt algorithm is then applied to
orrect the bias field and refine atlas alignment.

Probabilistic atlases can also be translated to topological
nes. By applying a threshold to the probabilities, topological
asks may be obtained for each tissue. Once registered to the

ubject volume, these masks can be applied in order to select
 set of representative tissue samples from the subject. These
re the samples that are then used to train a classifier. This
s the main idea of the approach by Cocosco et al. [91] and
rooman et al. [92], who extracted tissue samples using an
tlas and then used the minimum spanning tree algorithm to
educe outliers. These samples were used to train a k-Nearest
eighbour (kNN) classifier. This algorithm uses the distance

n feature space between the current voxel and each training
ample to assign the label with most votes from among its k
losest neighbours. Although this algorithm proposes a simple
mplementation, its major drawback is its high computational
ost. Similarly, Grau et al. [97] applied the watershed trans-
orm to segment tissues. The simple and intuitive foundation
f this algorithm consists in simulating the flooding of a region
hile considering image  intensities as heights. However, one
f the major drawbacks associated with this approach is that
he obtained results may be over-segmented. The authors pro-
osed setting some initial markers, corresponding to each
issue class, to overcome this issue. Skeletons are calculated
y thresholding a statistical atlas and then removing outliers;
he resulting skeletons are considered as the initial markers.

The lack of a gold standard for brain tissue classes in real
mages makes the quantitative evaluation of segmentation
lgorithms difficult. The BrainWeb phantom [23] provides a
tandard platform for comparing healthy brain approaches,
ut results on synthetic phantoms cannot be extrapolated to
eal conditions. Table 4 summarises the results for WM and
M on both synthetic and real data,1 including also informa-

ion on data acquisition. The number of volumes used to test
he methods ranges between 10 and 40, which does not sig-
ificantly differ from the reviewed segmentation methods for
rain structures.

Contrary to the methods presented in Section 4.1 for deep
rain structure segmentation, no tissue segmentation meth-
ds rely on label or multi-atlas propagation. Moreover, most
rain tissue segmentation uses statistical atlases instead of
opological ones. Tissue segmentation strategies are often
ased on probabilistic atlas segmentation. Furthermore, para-
etric estimation algorithms are most widely used, with DSC

alues over 0.90 on the BrainWeb phantom. For instance, val-

es of 0.975 for GM and 0.980 for WM (both close to perfect
greement) are reported by Bricq et al. [82], who used the EM

1 CSF is not included since some methods do not include it in
heir segmentation.
year-old woman with dementia.

algorithm with atlas probabilities for initialisation and then
include prior probabilities at each step.

Even though significant agreement is found for synthetic
data, DSC values decrease when these methods are applied
to real cases. Awate et al. [79], who obtained worse results
than Bricq et al. [82] when evaluating the BrainWeb phantom,
obtained better results when testing with real data. These
prove the need to use real data sets in conjunction with
synthetic phantoms to evaluate and compare segmentation
methods.

4.3.  Brain  tissue  segmentation  in  fetus,  neonates,  and
elderly  subjects

There are specific populations such as fetuses and newborns
that are particularly challenging for atlas-based segmentation
methods. Automated segmentation of these populations is a
key tool for brain development studies. Their specific charac-
teristics (such as spatial and temporal variations of the image
contrast due to myelination and folding of the growing brain,
and low signal to contrast ratio and high partial volume effects
due to fast acquisition sequences to avoid motion) represent
new challenges for brain tissue segmentation when compared
to adult brain segmentation. Consequently, on the one hand,
anatomical priors are needed to reduce the complexity of seg-
menting fetus and neonate brains, while on the other hand
constructing these atlases is difficult due to the constantly
evolving anatomy. Fig. 4a and b shows intra-utero fetal and
newborn brains, respectively.
Pioneer studies on these populations were carried out
on newborns and pre-term infants. Some groups proposed
supervised classification methods [115–118] using both MR

dx.doi.org/10.1016/j.cmpb.2011.07.015
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Table 4 – Summary of healthy tissue segmentation results with DSC metric. Results are given for both real and BrainWeb
images, where available. Additional information is also given on number of volumes (v) and MRI  system.

Article BrainWeb Real data

GM WM GM WM Test data (Scanner)

Van Leemput [76] 0.93 0.92 0.836 0.821 9v (GE 1.5T)
Marroquin [84] 0.891 0.892 0.797 0.812 20vb

Cocosco a [91] – – – – 43vb

Grau [97] 0.890 0.946 – – –
Ashburner [114] 0.932 0.961 – – –
Awate [79] 0.92 0.96 0.807 0.887 18vb

Cocosco [92] – – 0.915 0.937 12vb

Bricq [82] 0.975 0.980 0.799 0.865 18vb

y me

mentation of the patient scans and the probability priors
obtained within an atlas. Those regions where the inconsis-
tency is large are assumed to be part of the lesion.
a Results by Cocosco et al. [91] are reported using the kappa similarit
b Means that the MRI system used is not specified.

signal (multi-spectral contrast in some cases) and spatial pri-
ors. Probabilistic atlases are either used to train the classifier
[117] or to be included as features for classification [118].
Bayesian frameworks (see Eq. (5))  for neonatal segmentation
were suggested in [119]. Label propagation was used prior to
the non-supervised statistical tissue segmentation to mask
some structures. A label propagation approach [120] has also
been presented to create a population-specific atlas for young
children.

Very few studies exist related to the automated segmenta-
tion of fetal brain tissues [121–124]. Indeed, only one research
group has recently proposed a spatio-temporal probabilistic
atlas and an atlas-based segmentation of developing brain
tissues in young fetuses [122,124].

Elderly subjects (see Fig. 4c) are another challenging pop-
ulation due to the loss of tissue volume related to ageing
[125–127], also known as normal atrophy [128]. Still, the same
registration methods are used as for young subjects. In this
context, special attention needs to be paid to atlas selection
and in cases where younger atlases are not representative of
the elderly anatomy age and sex-specific atlases [129] can be
used. It should be noted that the aging effect is also present
in brains containing abnormal regions.

4.4.  Segmentation  of  tissues  and  lesions  in
pathological  brains

Abnormal atrophy (see Fig. 4d) is a common feature among
neuro-degenerative brain disorders such as mild cognitive
impairment, Alzheimer’s disease, or schizophrenia. This
pathological tissue loss2 is not present on healthy atlases and
is thus usually overlooked under the assumption that the reg-
istration step will capture it. As for healthy elderly subjects,
the strategies presented in the previous sections are also used
on these cases [67,130–134]. Disease-specific atlases could be
used to improve segmentation results [32,33].

Damaged brains may contain more  than subtle brain tis-
sue loss, such as, for instance, focal tissue lesions or large

space-occupying lesions. Obviously, atlases do not contain
such damaged areas as they vary greatly in size, shape and
location. Therefore, new strategies or extensions to existing

2 Note that the tissue loss due to aging is present as well.
asure.

methods are needed to deal with these pathological cases.
Below, we  distinguish between two kind of brain lesions. First,
focal tissue lesions, which represent those produced by the
loss and inflammation of tissue, as in strokes and multi-
ple sclerosis. In these cases, registration error due to lesion
areas not present in the atlas are neglected. Second, space-
occupying lesions, like tumours, which induce a deformation
on the patient’s brain anatomy and where the deformation
field caused by the lesion needs to be estimated.

4.4.1. Focal  tissue  lesions
Segmentation methods that deal with focal tissue lesions usu-
ally rely on the use of healthy brain atlases to segment brain
tissues and consider lesions as outliers. Fig. 5 illustrates some
examples of focal tissue lesions.

Shen et al. [135,136] proposed to automatically detect
stroke lesions by comparing voxel-to-voxel the inconsistency
between the result of applying an unsupervised tissue seg-
Fig. 5 – Focal tissue lesions. (a) Enhancing MS lesions, (b)
black holes in MS,  (c) hyperintense MS  lesions and (d)
medial cerebral artery ischaemia.

dx.doi.org/10.1016/j.cmpb.2011.07.015
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the competition obtained by Souplet et al. [83], using an EM
algorithm initialised with atlas probabilities.
c o m p u t e r m e t h o d s a n d p r o g r a m s i n

In most cases, following detection of the outliers a sub-
equent analysis is usually performed to ensure that outlier
egions are actually lesions. These methods can be seen as
n extension of healthy tissue and structure approaches that
se a statistical frameworks, introducing a new class into
he segmentation algorithm. For instance, Seghier et al. [137]
xtended the tissue segmentation approach of Ashburner and
riston [114] to detect stroke lesions. On the other hand, Van
eemput et al. [77] extended their previous work [76] to detect
ultiple sclerosis lesions by searching for outliers that follow

 set of user-defined rules, i.e. lesions should appear as hyper-
ntense on both PD-w and T2-w images. In a similar way, Bricq
t al. [81] applied their hidden Markov chain approach [82] to
etect multiple sclerosis lesions as outliers, while Shiee et al.

30,85,86] modified their fuzzy segmentation algorithm [31] to
egment lesions inside WM tissue.

Similarly, Souplet et al. [83] extended a previous study by
ugas-Phocion et al. [138] based on segmenting tissues with
n EM approach by including pure tissue and partial volume
lasses. Using pure tissue masks, normal appearing tissue
arameters (mean and standard deviation) were estimated on
he T2-FLAIR image  to define a lesion threshold.

The unsupervised methods mentioned above can be biased
y unhealthy tissues. Intuitively, supervised methods relying
n tissue samples from lesion and non-lesion classes should
erform better than unsupervised methods, since no inten-
ity distribution models are assumed. For instance, Kamber
t al. [87] compared three different classifiers. In their study,

 probabilistic atlas was used to provide the classifiers with
eatures as well as to constrain the search within the WM
reas. Following the same idea, Wu et al. [51] implemented

 kNN  classifier trained on 20 voxels for each class. Following
lassification, a probabilistic atlas was used to relabel GM and
ultiple sclerosis lesions taking WM regions into account.
On the other hand, Zijdenbos et al. [88] used a probabilis-

ic atlas to extract features for training an artificial neural
etwork classifier. The input features included three MRI
odalities and three spatial tissue priors from the atlas. Fur-

hermore, healthy atlases could be extended, as proposed by
roon et al. [89]. In this study, segmented lesions were man-
ally warped to the ICBM atlas (from SPM) and this was used
s a feature of a PCA-based classification framework which
as trained with lesion and non-lesion samples. Developing a
ore  general framework, Akselrod-Ballin et al. [90] proposed

egmenting the volume in different regions using a graph-
ased algorithm. These regions were then characterised with

 rich set of extracted features (comprising probabilities taken
rom an atlas) and classified using a decision forest along
ith the Fisher linear discriminant. This combination of

egmentation and region classification helped to reduce mis-
lassification at voxel level due to noisy data.

Atlases can also be used to sample healthy-looking tissue
oxels. For instance, de Boer et al. [93] extended the healthy
issue classification from Cocosco et al. [91] to deal with white

atter lesion segmentation. Similarly to Souplet et al. [83],
fter tissue segmentation a histogram of all GM voxels in T2-

LAIR is created and a threshold is defined to segment the
esions.

Atlases also provide a way to select abnormal tissue sam-
les while estimating healthy ones. For example, Prastawa
 m e d i c i n e 1 0 4 ( 2 0 1 1 ) e158–e177 e169

et al. [95,96] proposed using the Minimum Covariance Deter-
minant to estimate tissue PDFs using healthy samples.
Outliers to this estimation are then considered as abnormal
tissue.

Finally, a combination of training sample points and WM
area refinement for multiple sclerosis segmentation was pre-
sented by Tomas and Warfield [94]. This approach used a set of
topological atlases to define healthy tissue samples, obtained
using the STAPLE algorithm [74], and to create a probabilistic
atlas from the average of these manual segmentations. Multi-
ple sclerosis samples were then defined as intensity outliers by
comparing the reference group and the subject volumes. Sub-
sequently, a Bayes classifier was trained to select lesion and
non-lesion voxels. Since some of these voxels were misclas-
sified as false positives, this classification was refined using
WM regions extracted from the probabilistic atlas.

Different lesion sizes and locations make the comparison
of segmentation methods even more  challenging than the
evaluation for segmenting healthy brain tissue and structures.
Furthermore, evaluation measures would differ for different
lesion sizes and types (multiple sclerosis, strokes or tumours).
Public data sets for lesions along with ground truth segmen-
tations are rare. As far as we  know, only the BrainWeb site [23]
provides a public synthetic phantom to validate multiple scle-
rosis lesions, and data for only 20 subjects from the training
set of the 2008 Multiple Sclerosis Challenge [139] are available.

Results with both synthetic and real data for white mat-
ter lesions are summarised in Table 5, including information
on data acquisition. The number of tested subjects ranges
between 10 and 30 for these studies, with the exception of de
Boer et al. [93], who used 209 volumes to validate their method.
Similarly to methods used for structure and healthy brain tis-
sue segmentation, abnormal tissue segmentation approaches
are validated using a small number of cases. Validation with
larger data sets would be desirable in order to assess their
usability in clinical practice.

As with approaches used for healthy tissue segmentation,
brain tissues and lesions are mostly segmented using a prob-
abilistic atlas segmentation framework. This is because most
lesion segmentation methods are extensions of approaches
used for healthy tissue segmentation. Note also that white
matter regions are often used to confine lesions to a region
of interest in order to reduce false positives.

Finally, we would like to briefly recall here the quanti-
tative results published during the 2008 Multiple Sclerosis
Challenge3[139]. A total of 53 volumes were separately
acquired by the Children’s Hospital Boston (CHB) and the
University of North Carolina (UNC) for this competition: 20
volumes for training, 25 public volumes before the contest
for validation and 8 volumes for on-site testing. Five of the
nine methodologies presented during the challenge used an
atlas-based strategy [81,83,86,89,96] with the best results of
3 All this information can be found at:
http://grand-challenge2008.bigr.nl/ and the open journal
www.midasjournal.org/browse/publication/638.
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Table 5 – Evaluation of reviewed methods for abnormal tissue segmentation. DSC is presented for both real and
BrainWeb simulated data, where available. Additional information is also given on number of volumes (v) and MRI
acquisition devices. Studies presented in the MS  Grand Challenge 2008 are not reported here since different evaluation
measures were used and only off-site results are provided for all of them.

Article BrainWeb Real data

Abnormal Abnormal Test data (Scanner)

Kamber a [87] – – 12v (Philips 1.5T)
Van Leemput [77] – 0.49 23v (Philips 1.5T)
Zijdenbos [88] – 0.60 29vb

Prastawa [95] – 0.854 3vb

Wu [51] – 0.6 12v (Siemens 1.5T)
Shiee [85] 0.677 0.531 10v  (Philips 3T)
Akselrod-Ballin [90] –  0.53, 0.55 25vb + 16vb

de Boer [93] – 0.72 209v  (GE 1.5T)
Tomas [94] – – 9v (GE 3T)
Shiee [30] 0.789 0.633 10v (Philips 3T)
a Results by Kamber et al. [87] are reported using error measures.
b Means that the MRI system used is not specified.

4.4.2.  Space-occupying  lesions
Examples of space-occupying lesions are shown in Fig. 6.
These lesions induce large deformations and lack clear
anatomical detail due to infiltration and edema [12], making
the registration of diseased brains with normal atlases diffi-
cult. When space-occupying lesions are present, registration
methods aim to capture not only the anatomical variability
but also the deformations induced by the tumour. Thus the
assumption of small and smooth deformations is clearly vio-
lated [140,141].

The original works of applying atlas-based segmentation
to the presence of tumours were by Kyriakou and Davatzikos
[142] and Dawant et al. [143]. The aim of both approaches was
to estimate how the presence of the lesion affected brain tis-
sues and structures. The approach of Kyriakou and Davatzikos
[142] modelled the soft tissue deformations induced by the
tumour using a finite-element method, and subsequently,
they registered the topological atlas with a transformed
patient image  from which the tumour was removed. As for
Dawant et al. [143,144], the patient (including the tumour) was
registered with a seeded version of the atlas that included
a region with the same intensity properties as the tumour,

which was manually segmented previously. Bach Cuadra et al.
[145] and Pollo et al. [146] improved this approach by avoid-
ing registration of the full volumes, assuming a radial tumour

Fig. 6 – Space-occupying lesions: (a) meningioma and (b)
astrocytoma.
growth from a single voxel seed. A similar assumption was
taken into account by Nowinski and Belov [147], who  pro-
posed a non-linear tumour deformation after registration of
the patient volume and the atlas using Talairach registration.
All these methods required a precise pre-segmentation of the
tumour, usually performed using semi-automatic algorithms
[148]. More sophisticated models of lesion growth are pro-
posed by the authors of the HAMMER [149] and the ORBIT
[150,141] frameworks.

Some other methods [151–153], instead of having a lesion
growth model, apply different rigidity constraints to the
tumour area. For instance, Duay et al. [151] locally adapt the
elasticity of the transformation, hence allowing large defor-
mations around the tumour. Pre-segmentation of the tumour
was  not necessary. Stefanescu et al. [152] introduce specific
rigidity parameters for the tumour, and Liu et al. [153] assume
local rigidity by means of a Markov Random field-maximum a
posteriori approach. However, both approaches again require
a priori segmentation of the lesion.

Moon et al. [154] extended Van Leemput et al.’s [76] tis-
sue segmentation approach for detecting brain tumours. The
authors used the same EM approach but extended the number
of classes with a tumour class. The prior spatial probabilities
of the tumour location were introduced into the algorithm by
multiplying the atlas probabilities by the difference image  of
the pre and post-contrast images. Prastawa et al. [95], prior
to detecting MS lesions as seen in Section 4.4.1, also pro-
posed detecting tumours and edemas by using the Minimum
Covariance Determinant to estimate tissue PDFs using healthy
samples, and determining the diseased regions as the result-
ing outliers of the model.

Results for tumours [95] (DSC of 0.854 using only 3 cases)
and general white matter lesions [93] (DSC of 0.72 using a
large data set of 209 cases) show a good agreement in real
data. Unfortunately, in the specific case of WM  lesions corre-
sponding to MS lesions, segmentation results show lower DSC
values, like, for instance, the 0.633 obtained by Shiee et al.

[30] using a statistical framework based on the fuzzy cluster-
ing algorithm. This indicates that there is a need for further
development of MS lesion segmentation.

dx.doi.org/10.1016/j.cmpb.2011.07.015
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.5. Publicly  available  toolboxes

ome of the methods reviewed in this paper are publicly avail-
ble as toolboxes, open source code or closed applications. For
nstance, the structure segmentation methods proposed by
ollins et al. [22] and Fischl et al. [78] are publicly available as
art of the ANIMAL (www.bic.mni.mcgill.ca/ServicesSoftware-
dvancedImageProcessingTools/RegistrationTools) and
reeSurfer (http://surfer.nmr.mgh.harvard.edu/)  applica-
ions, respectively. Similarly, FSL presents a set of brain
RI tools called FIRST, which also include an atlas-based

ool to segment structures (http://www.fmrib.ox.ac.uk/fsl/).
urthermore, Ashburner et al.’s [114] tissue segmentation
ethod is implemented as part of the MATLAB toolbox SPM

www.fil.ion.ucl.ac.uk/spm/). Another tissue segmentation
ethod based on the SPM code was implemented and made

vailable by Van Leemput et al. [76] under the name Expec-
ation Maximisation Segmentation (EMS) (www.medicalima-
ecomputing.com/downloads/ems.php). Finally, Zijdenbos
t al. [88] and Souplet et al. [83] also made their methods avail-
ble as part of the INSECT (www.bic.mni.mcgill.ca/Services-
oftwareAdvancedImageProcessingTools/HomePage) and
epINRIA (www-sop.inria.fr/asclepios/software/SepINRIA/)
pplications, respectively. Note that these public toolboxes
rovide also a public atlas (the one used in their algorithms),
or instance, the Desikan’s atlas [155] within the Freesurfer
ackage or probabilistic atlases within SPM. We  would also

ike to point out the importance of other development
latforms such as the Insight Toolkit (ITK, www.itk.org/).

 wide range of registration and segmentation techniques
re distributed within this C++ library for image  processing.
oreover, a large number of developers have used this library

s the core to implement medical image  processing tools or to
evelop their own toolboxes, such as MITK (www.mitk.org/)
r Slicer (www.slicer.org/) to cite just two.

.  Future  trends

n this paper we  have shown that atlas-based segmentation
as become a standard paradigm for exploiting spatial prior
nowledge in MR  brain image  segmentation.

.1.  Temporal  and  regional  atlas

e  have seen that both topological and statistical atlases
rovide helpful information regarding brain anatomy and its
ariability. Using a single-subject atlas for label propagation is
he most straightforward strategy, but clearly not the best to
vercome anatomical variability. As presented in Section 3.2,
mproved segmentations are achieved with multi-atlas based
echniques [63–68] where multiple individuals are selected as
tlases for label propagation and their segmentation results
an be fused by majority voting rule [69,70],  weighted voting
68,71,72] or EM-based strategies [74,75].  However, multi-atlas

egmentation strategies outperform single atlas-based seg-
entation methods at a much higher computational cost

156]. A different way to combine multiple atlases is to create
 population-based template. Several methods have been sug-
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gested for averaging brains and registering them group-wise
to avoid any bias [34–41,157].

Recently, several studies have shown that selection of the
atlas, or group of atlases, is crucial for improving segmenta-
tion results [65,66],  for a given pathology [32,33],  for instance. It
is particularly important in developing populations like new-
borns and infants [119,120,158,159],  where age-related atlases
are chosen. Thus, research interests currently focus on the
construction of temporal (also called 4D)  atlases for develop-
ing, growing and aging populations [127,160–163]. The goal of
these dynamic probabilistic atlases is twofold: to capture both
inter-subject and longitudinal anatomical variability.

New atlases will aim to encode the anatomical differences
locally. The importance of region-wise atlases has been shown
recently by [164–166]. Such approaches aim to overcome the
limitation of most current atlases, whereby all voxels in all
atlases are considered equally important. Further, Shi et al.
[166] claim that even better results can be obtained with multi-
ple atlases matched according to adaptive weighting schemes.

5.2.  Combining  segmentation  and  registration

In Section 3, we presented atlas-based segmentation meth-
ods grouped into three different strategies: label propagation,
multi-atlas techniques,  and probabilistic atlas-based segmentation.
The three strategies are registration-based, that is, they rely
on the deformation of the atlas objects to match their cor-
responding objects in the patient image  to be segmented.
We believe that having such a transformation or deforma-
tion field between the atlas and the patient has one main
advantage: the position of structures with fuzzy contours or
without visible contours can be estimated. Consider the sub-
thalamic nuclei targeting used in the treatment of Parkinson’s
disease [167,168], for instance. However, if the registration pro-
cedure relies only on intensity-based similarity measures, the
segmentation obtained by applying the estimated transforma-
tion to the atlas fails to exploit other information contained
in the grey-level atlas image,  such as the shape or texture
of the structure of interest and similar features of adjacent
regions. Moreover, these strategies assume a point-to-point
correspondence between atlas and subject, providing very
poor segmentation results (if no special procedures are used)
in cases where anatomical inconsistencies exist.

To overcome these limitations, novel atlas-based segmen-
tation methods aim to combine segmentation and registration
methods either alternatively or jointly. Iterative interleaving
registration and segmentation steps have been presented for
brain tissue segmentation in [108,114,169]. The idea in these
works is that in one step the registration helps the segmen-
tation and in the following step the segmentation helps the
registration.

Joint registration-segmentation methods allow the inclu-
sion of more  local constraints during matching while
computing a deformation field. A first group of approaches
track the deformation of the atlas contours modelled by a
level set function during an active contour-based segmenta-

tion process [170,171]. A second group of methods extracts
the contours of the same objects within both atlas and sub-
ject images and, at the same time, compute the deformation
between the contours of these objects. This idea is sug-

dx.doi.org/10.1016/j.cmpb.2011.07.015
http://www.bic.mni.mcgill.ca/ServicesSoftwareAdvancedImageProcessingTools/RegistrationTools
http://www.bic.mni.mcgill.ca/ServicesSoftwareAdvancedImageProcessingTools/RegistrationTools
http://surfer.nmr.mgh.harvard.edu/
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http://www.medicalimagecomputing.com/downloads/ems.php
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gested in two different frameworks: coupling active contour
segmentation to registration in an energy-based variational
framework [172–174] and labelling brain tissue jointly with the
registration task using Markov Random Fields [175,176].

5.3.  Conclusions

Many  avenues remain to be investigated in the research of
atlas-based segmentation for MR  brain imaging. Here we have
outlined two  of them: combining segmentation and registra-
tion methods, and adding regional and temporal information
in atlases. We believe that these new trends will improve the
paradigm for exploiting spatial prior knowledge in MR imag-
ing, obtaining faster and more  robust segmentation methods
which can significantly help crucial aspects of every-day clin-
ical practice such as diagnosis, follow-up and brain mapping
studies.
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Appendix  A.  Evaluation  measures

A common evaluation measure for brain segmentation is
the Dice similarity coefficient (DSC) [177], an overlap metric
between two binary masks defined as:

DSC = 2  · |A ∩ M|
|A| + |M| ,  (A.1)

where A represents the automatic segmentation mask and

M the manual segmentation from the expert. DSC ranges
between [0, 1], and DSC values equal or higher than 0.7 are
usually considered as a good agreement between two binary
masks [178].
b i o m e d i c i n e 1 0 4 ( 2 0 1 1 ) e158–e177

This measure is mathematically related to the Area Overlap
(Aov), another common similarity index presented by Jaccard
[179]. The Aov also ranges between [0, 1], and it is defined as:

Aov = |A ∩ M|
|A ∪ M| . (A.2)

The relationship between both measures is expressed by the
following equation:

DSC = 2 · Aov

1 + Aov
. (A.3)

Note that values from the DSC similarity index are expected
to be higher:

DSC > Aov ⇒ 2 · Aov

1 + Aov
> Aov ⇒ 2 > 1 + Aov.

Other similarity measures used are the True Positive Rate
or the Kappa statistic. However, the use of these measures is
limited to few studies, the above mentioned DSC and Aov being
the most widely used.

Note that in this work we have translated some results
presented as Aov to DSC to provide a more  clear comparison.
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