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a b s t r a c t

Evaluation of segmentation methods is a crucial aspect in image processing, especially in the

medical imaging field, where small differences between segmented regions in the anatomy

can be of paramount importance. Usually, segmentation evaluation is based on a measure

that depends on the number of segmented voxels inside and outside of some reference

regions that are called gold standards. Although some other measures have been also used,

in this work we propose a set of new similarity measures, based on different features, such

as the location and intensity values of the misclassified voxels, and the connectivity and

the boundaries of the segmented data. Using the multidimensional information provided by

these measures, we propose a new evaluation method whose results are visualized apply-

ing a Principal Component Analysis of the data, obtaining a simplified graphical method

to compare different segmentation results. We have carried out an intensive study using
MRI segmentation

Similarity measure

several classic segmentation methods applied to a set of MRI simulated data of the brain

with several noise and RF inhomogeneity levels, and also to real data, showing that the new

measures proposed here and the results that we have obtained from the multidimensional

evaluation, improve the robustness of the evaluation and provides better understanding

about the difference between segmentation methods.

some noise as a result of signal attenuation, instrumentation
1. Introduction

Image segmentation is the task that consists in dividing an
image into homogeneous regions for a set of relevant prop-
erties such as color, intensity, texture, etc. By homogeneous
it is meant that all elements inside these regions share sim-
ilar properties. The human brain carries out segmentation of
common data with ease—a natural ability largely exploited
in the medical environment. For instance, when radiologists
look at magnetic resonance (MR) or computer tomography (CT)

images to evaluate lesions or tumors, they first segment the
suspicious growth mentally and then use their training and
experience to assess its properties. However, several factors
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such as the ever-increasing amount of clinical data gener-
ated in clinical environments and their increasingly complex
nature now make it necessary to rely more and more on com-
puterized segmentation techniques. Their goal is to either
assign a label to every voxel or estimate the relative amount of
various classes within a voxel. Several technical factors make
this goal hard if not impossible to achieve with the current
technology. The first important factor is the quality of the col-
lected data. The data acquisition process always introduces
.es (R. de Luis-García), meritxell.bach@epfl.ch (M. Bach-Cuadra).

noise, scattering, patient movement (for instance breathing)
and many others. A related factor is the limited resolution of
the data, which makes every voxel liable to correspond to more

erved.
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han one class in the patient anatomy. Such situation is known
s partial volume effect. Another subtle factor, also related to
he acquisition process, is the choice of imaging modality and
ts parameters. Poor choice will lead to poor contrast, poor res-
lution and generally speaking will prevent the full use of the
natomical knowledge that one may have.

A wide range of methods have been proposed to deal
ith these effects. Consequently the literature dedicated to

he problem of medical data segmentation is large and var-
ed. A thorough review of all these methods is beyond the
cope of this paper. For interested readers, general reviews
n image segmentation can be found in [1–3]. Other domain-
pecific studies on image segmentation and analysis are
4–6].

A crucial aspect of segmentation techniques (be they
or medical data or not) is their reliance on contextual
nformation for them to be effective. An important source
f contextual information for medical data is the medical
nowledge collected on the problem. Turning this medical
nowledge into a set of criteria adapted to computer vision is
ne of the most difficult aspects of the development of com-
uterized segmentation routines. It follows that segmentation
echniques are best suited to specific applications and classes
f data, for example to a type of data where an underlying
ssumption is true. No segmentation technique is better than
he others for any purpose. Thus, for a particular problem we
ave to figure out what available method fits best into our
eeds in terms of a given criteria or a combination of them,
s for instance accuracy, speed [7,8], reproducibility or user
nteraction [9].

This paper is an extended version of our previous work [10],
nd at the same time this is a continuation of that work: on
he one hand we improve the results using a Principal Com-
onent Analysis (PCA) for dimensionality reduction in order
o better discriminate graphically between the segmentation

ethods, and on the other hand, we validate our evaluation
ethod using more segmentation methods, and a set of simu-

ated data sets, a real data set, and a synthetic phantom. Here
e first motivate the use of the new similarity measures1 and
e introduce a way to combine them for segmentation evalua-

ion, in terms of accuracy, using a known ground truth. These
ew similarity measures are based on the location and the

ntensity values of the misclassified voxels and also based on
he connectivity and the boundaries of the segmented data.

e show how the combination of these measures can improve
he quality of the evaluation. Furthermore, we show that using
single measure to evaluate segmentation is not enough, and

herefore we propose to use a new global multidimensional
easure between the segmented image and the gold standard.

he study that we show here is carried out using several classic
egmentation methods applied to a simulated MRI data set of

he brain, and also applied to real data. We will show that our
ew measures and their combination improve the robustness
f the evaluation and provides better understanding about

1 The term similarity measure is more often used to guide image
egistration or segmentation, but this term is used instead of error

easure because the measure values used here increase as the
imilarity between images increase.
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the difference between segmentation methods. Moreover, we
present in this paper a robust way to visualize all the proposed
quality measures using PCA.

This paper is organized as follows. In the next section we
will describe the state of the art on evaluation methods and the
similarity measures for image segmentation proposed before
in the literature. Then, in Section 3 we will provide an overview
of the segmentation methods that we are going to employ in
our evaluation method, describing the data sets used and the
segmentation results. In Section 4 we will describe the eval-
uation method, describing the new similarity measures and
a aggregated multidimensional similarity measure. Then, in
Section 5 we will present some results to validate the evalu-
ation methodology using simulated data sets and a real data
set, as well as with a synthetic phantom, including the PCA for
dimensionality reduction in the visualization of our results.
Finally, the conclusions and future work will be presented in
Section 6.

2. Background

2.1. State of the art on evaluation methods

Many works to evaluate segmentation methods have been
reported in the last two decades. A good survey about
segmentation evaluation can be found in [11]. This author dis-
tinguishes the evaluation methods between empirical (based
on the study of the results) and analytical (based only on
intrinsic features of the methods). The empirical methods are
divided into discrepancy and goodness methods, where the
former compare the results with a reference or ground truth,
and the latter are based on the study of the results themselves.
Among the discrepancy methods, there exist several features
reported to measure the quality of the segmentation: num-
ber of misclassified voxels, position of misclassified voxels,
number of objects in the image, feature values of segmented
objects and other miscellaneous quantities.

Most of the methods in the literature for segmentation
evaluation are based on classic discrepancy methods, limited
to the computation of the number of voxels of the segmented
classes in the results and in a gold standard. Other authors
have introduced the location of the misclassified voxels as
a feature to measure the discrepancy between segmented
images, for example, Yasnoff et al. [12], Straters and Ger-
brands [13] and later Pichon et al. [14] proposed to use an error
distance from the misclassified voxels to the gold standard.
Huttenlocher et al. [15] used the partial Hausdorff distance
between set of voxels, and also [16] proposed an overlap dis-
tance using fuzzy set theory to take into account fractional
labels coming from multiple test images. Other work proposed
by Cardoso and Corte-Real [17] presented a general distance
between segmentation partitions to measure the quality of a
given segmentation.

One interesting work about segmentation evaluation is the
one published by Udupa et al. [18]. In that work, the authors

proposed a methodology that takes into account more aspects
than just the accuracy of the segmentations. In addition, they
present measures of the precision (reproducibility) and the
efficiency (time taken), to finally conclude that the combina-
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tion of these factors are essential in the assessment of the
performance of any segmentation method.

Some other methods have been proposed to perform seg-
mentation evaluation without a ground truth, see for instance
[19–21].

2.2. Similarity measures

This section describes the similarity measures used com-
monly in the literature for segmentation evaluation, namely
the confusion tables, other classic measures based on voxel
overlap, and some distance based similarity measures.

2.2.1. Classic similarity measures
Segmentation is often evaluated using similarity measures
based on region overlap. One of the most common ways
to show segmentation evaluation results are the confusion
tables. Every value in a confusion table represents the num-
ber of overlapping voxels between two classes, divided by the
number of voxels of the class in the gold standard

Mij = |Xi ∩ Yj|
|Yj|

, (1)

where the sub-indexes represent the classes. Other classic
measures commonly used are the Jaccard (JC), Dice Similarity
(DS), Tanimoto (TN), and Volume Similarity (VS) coefficients.
All of them take values between 0 and 1. If X is the set of vox-
els segmented as class C in one volume, Y is the set of voxels of
the same class in the other volume, a is the number of voxels
in their intersection, b is the number of voxels in X not belong-
ing to Y, c is the number of voxels of Y not belonging to X, and
d is the number of voxels outside X and Y, we can define these
measures with the following expressions,

JC:=|X ∩ Y|
|X ∪ Y| = a

a + b + c
(2)

DS:= 2|X ∩ Y|
|X| + |Y| = 2a

2a + b + c
(3)

These two coefficients are equal to one if X and Y are the
same region, and zero if they are disjoint regions. In fact, they
are related by DS = 2JC/(JC + 1), so they give equivalent values.

TN:=|X ∩ Y| + |X ∪ Y|
|X ∪ Y| + |X ∩ Y| = a + d

a + 2b + 2c + d
(4)

TN is one if X is equal to Y, and zero if they are disjoint
regions and they occupy all the image.

VS:=1 − ||X| − |Y||
|X| + |Y| = 1 − |b − c|

2a + b + c
(5)

VS is one if the number of elements of X is equal to the
number of elements of Y, and zero if one of them is empty.

2.2.2. Distance based similarity measures

The similarity measures described above are based only on the
number of voxels of the classes in the segmented image and
in the gold standard, their union, and their intersection. As
Pichon et al. [14], and also Crum et al. [16] recently proposed, it
b i o m e d i c i n e 9 6 ( 2 0 0 9 ) 108–124

is important to use the distances from the misclassified voxels
to the ground truth in order to improve the similarity mea-
sures. Given two point sets X and Y, it is possible to define the
distances from the points in one set to the other, as proposed
in [14]:

d(r):=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, r ∈ X ∩ Y,

min
x ∈ X

||x − r||, r ∈ Y \ X,

min
y ∈ Y

||y − r||, r ∈ X \ Y.

(6)

There exist measures using this kind of distance definitions
between point sets, such as the Yasnoff discrepancy measure
[12], defined as

YM:= 1
N

N∑
i=1

d(ri)
2 (7)

and the Factor of Merit proposed by Straters [13]

FOM:= 1
N

N∑
i=1

1

1 + d(ri)
2

(8)

where ri are the misclassified voxels, N is the number of mis-
classified voxels, and d(ri) is the distance from ri to the ground
truth. Another popular distance between two point sets X and
Y, is the Hausdorff distance, defined as

H(X, Y):= max{max
x ∈ X

min
y ∈ Y

||x − y||, max
y ∈ Y

min
x ∈ X

||x − y||} (9)

which is the maximum distance one set has to move its bound-
aries so that it would enclose the other set.

Some of these measures have been extended to surface to
surface error measures as reported in the literature in [22],
and for instance in [23] where the Hausdorff distance between
surfaces is used, and also this kind of surface measures is
especially useful to drive or evaluate deformable model algo-
rithms, such is the case in [24].

3. Design considerations

In order to illustrate this new multidimensional evaluation
methodology four segmentation techniques for brain tissue
segmentation are assessed. We choose this application since
brain tissue segmentation is a key issue in many applications
of medical image analysis for quantitative studies [25–31],
particularly in the study of many brain disorders, or as a pre-
liminary step of image processing algorithms such as image
registration. However, there is a problem inherent to this eval-
uation, because it is quite difficult to obtain a reliable reference
segmentation data set. The most used approach is to use
a manual segmentation, or a combination of several man-
ual segmentations, from several experts if possible. There is

though, the possibility to validate brain tissue segmentation
methods on a brain simulated data set as the one proposed by
the Brain Web MR simulator [32]. Their data is very well suited
for this purpose since a ground-truth classification is known
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Fig. 1 – Axial slice of the brainweb simulated MRI (a), gold standard: in red is WM, in light blue is CSF, in yellow is GM, and
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n dark blue is the background (b) and volume histogram (c)
egend, the reader is referred to the web version of the articl

hile different types of MR modalities and image resolution
nd artifacts can be reproduced.

.1. Image segmentation techniques

large number of approaches have been proposed to deal with
he MR brain image classification problem. In this work, we
ave selected four well known and widely used segmentation
echniques2:

A K-Means clustering method [33].
A Gaussian mixture model using the Expectation Maximiza-
tion (EM) algorithm [34].
A statistical classification using Gaussian Hidden Markov
Random Field Model (GHMRF) [35].
A supervised method based on the k Nearest Neighbor (kNN)
rule [36].

The first three methods are non-supervised parametric
ethods, and the last method is a supervised non-parametric
ethod. All of them are intensity based and only the third one

s context dependent method. We have also used a non-linear
lter (NLF) approach, based on the work by [37], previous to
he execution of the K-Means and the kNN segmentation in
rder to reduce noise without blurring the edges of the image

since these two approaches do not use context information).
LF is not applied to EM neither GHMRF since the underly-

ng assumption of image intensity Gaussian distribution does
ot hold after the non-linear filtering. Thus, six different seg-
entations are finally evaluated: K-Means, EM, GHMRF, kNN,
LF + K-Means and NLF + kNN.

.2. Simulated data
s we said above, the main image used in this study comes
rom the digital brain phantom from McConnell Brain Imag-
ng Center [32]. They proposed a realistic anatomical brain

odel and a MRI simulator to generate images with different

2 Please remind that we are not focusing on the methods evalu-
ted but on the validation process itself.
interpretation of the references to color in this figure

radio-frequency (RF) non-uniformity, also called bias field. In
this work, all the methods have been applied to images with
RF non-uniformity of 0%, 20%, and 40% and noise levels of
3%, 5%, 7%, and 9%, on the T1-weighted modality. The vol-
ume is 217 × 181 × 217 voxels with isotropic 1 mm voxel size,
and non-brain tissues have been removed previously. An axial
slice of this volume is shown in Fig. 1(a), with the gold stan-
dard segmentation corresponding to that slice (Fig. 1(b)). We
will consider only the three main classes in the brain: white
matter (WM), gray matter (GM) and cerebro-spinal fluid (CSF).

3.3. Real data

While simulated data provides an excellent tool to validate
and compare method performance in presence of a variety
of artifacts, assessment on real data is ultimately needed
since the final purpose of these methods is to classify a real
MRI of the human brain for a specific application. In this
work, we consider a single real MR image of a normal brain
(female adult, no pathology): a 3D T1-weighted magnetization-
prepared rapid acquisition gradient echo (MPRAGE) sequence
(Siemens Vision®, 1.5T, Erlangen, Germany) TR 9.7 ms, TE 4
ms, FOV 280 × 280, matrix 256 × 256, 146 slices, 0.98 mm ×
0.98 mm × 1.25 mm. We show an axial slice and the gold stan-
dard segmentation in Fig. 2.

Manual segmentations were performed by five experts and
a ground truth for CSF, GM and WM was then estimated using
STAPLE algorithm [19].

3.4. Segmentation results

We show in Fig. 3 an axial slice of the results obtained from
different segmentation methods (GHMRF (a), kNN (b), K-Means
(c), EM (d), NLF + kNN (e) and NLF + K-Means (f)), applied to the
MRI data shown in Fig. 1(a).

For the GHMRF, the value of ˇ is fixed empirically to 1.2,
U(x, ˇ) follows the Potts model, and instead of computing Z, the

conditional probabilities at a given point P(xi|xNi

) are forced to
sum up one among all possible labels. For more details please
refer to [35]. The kNN segmentation has been carried out using
a training set of 194 points, and using K = 9. The non-linear
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old s
Fig. 2 – Axial slice of the real MRI (a), g

filtering [37], has been done choosing temporal step � = 100, a
size parameter � = 2, and 5 iterations.

We show in Fig. 4 only the pixels that overlap with other
classes in the same axial slice, in order to better show the
misclassified voxels in that particular slice.

3.5. Preliminary results using classic similarity
measures

In Fig. 5 we show the values of the similarity measures

described in Section 2.2.1 computed for all methods, for the
case with bias 20% and noise level 5%.

Notice that values in the TN coefficients differ from the val-
ues obtained by the other coefficients (for instance, the classes

Fig. 3 – Axial slice of the segmentation results using GHMRF (a),
NLF + K-Means (f).
tandard (b) and volume histogram (c).

are ordered different than with the other three coefficients)
and give values that hardly can differentiate the methods.
This is because it depends on the number of voxels out-
side X and Y, that can be very large in our case, therefore
leading to values near one, even if there is not too much
overlapping. The VS coefficients present non-realistic results
(notice an almost perfect classification of CSF in kNN, K-Means
and NLF + K-Means methods), that is because VS depends
only on the number of voxels of X and Y, and it can be one
even if there exists no overlapping at all. Finally the JC and

DS coefficients provide equivalent values as expected, that
are also reasonable for this application. For these reasons,
we will use the JC coefficient for our evaluation methodol-
ogy.

kNN (b), K-Means (c), EM (d), NLF + kNN (e) and
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Fig. 4 – Error images from the segmentation of the axial slice of Fig. 1, using GHMRF (a), kNN (b), K-Means (c), EM (d),
N
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LF + kNN (e) and NLF + K-Means (f).

. Evaluation methodology

n the following we present our evaluation methodology,
escribing first some new similarity measures that take into
ccount the position and the intensity from the misclassified
oxels with respect to the ground truth, and other similarity

easures based on connectivity and boundaries of the seg-
ented images. All the measures proposed range between 0

nd 1, with 0 the minimum similarity and 1 the maximum
imilarity between the segmentation and the gold standard.

ig. 5 – Classic similarity measures (JC, TN, VS and DS) compute
nd noise level 5%. (A) GHMRF, (B) kNN, (C) K-Means, (D) EM, (E) N
Finally we present the combination of the individual measures
to obtain an aggregated one.

4.1. Distance based similarity measures

We propose to use the distance defined in Eq. (6), to define
new similarity measures. The idea is to penalize more those

voxels that are more distant from their corresponding class in
the gold standard, i.e. to weight every misclassified voxel by its
smallest Euclidean distance to the correct class it belongs to.
To compute those Euclidean distances, it is enough to simply

d for all methods for the simulated data set with bias 20%
LF + kNN and (F) NLF + K-Means.
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compute the distance transformation (DT) from a given class
in the gold standard to the rest of the image, and look at the
voxels of the DT at the positions of the misclassified voxels.
We will use the squares of the distances in order to increase
the penalization effect in the misclassified voxels.

We propose a new measure that we will call JCd, defined by
substituting the values b and c from Eq. (2), by

∑
i
d2(xi) and∑

i
d2(yi) respectively, where xi are misclassified voxels of X

that should be classified as Y, yi are voxels of Y that should be
classified as X, and d( ) is the distance defined in Eq. (6):

JCd:= a

a +
∑

i

d2(xi) +
∑

i

d2(yi)
(10)

The mean and standard deviation of the distances for every
segmented class and for every method is shown in Fig. 6(a). In
Fig. 6(b), we show the values of the new similarity measure
defined, JCd.

All the values obtained now are lower than the measures
that only count voxels, because we are penalizing each mis-
classified voxel by its square distance to the nearest classified
voxel in the gold standard. These measures show the same
performance as the classic ones but increasing their differ-
ences. This can be clearly seen in the example here after.

4.2. Similarity measures including intensity values

In this section we introduce another set of similarity mea-
sures, but this time, instead of using Euclidean distances in
the image, we are going to use the intensity space. The idea
is to penalize the misclassified voxels that should belong to
a given class C, when those voxels are close to the theoretic
mean of that class C, and far from the other classes. The rea-
son is because voxels near the theoretic mean of a class and

far from the others is easier to classify, than voxels that are,
for instance, equidistant from two classes. The distance in the
intensity space has to be measured taking into account the
nature of the data. In the particular case of brain tissue seg-

Fig. 6 – Average distances and standard deviation for the miscla
JCd (b), computed for all methods and for all the simulated data s
5%, 7% and 9%).
b i o m e d i c i n e 9 6 ( 2 0 0 9 ) 108–124

mentation we can use the mean and the variance of each class,
in order to use the Mahalanobis distance from a given point
in the intensity domain, x to a given class C:

dmh(x, C) =
√

(x − �C)T�−1
C (x − �C), (11)

where �C and �C are the mean and the covariance matrix of
the class C. Using these distances, the new similarity measure
can be defined as:

JCi= a

a +
∑N

i=1((1/Nc)
∑Nc

j=1dmh(xi, Cj)/dmh(xi, C))
, Cj /= C, (12)

where this time xi are misclassified voxels, N is the total
amount of them, C is the class xi should belong to, Cj are
the rest of classes, and Nc is the number of classes Cj. In the
previous equation each misclassified voxel contributes with
its Mahalanobis distance to C, increasing the penalization if
that distance is small, and decreasing that penalization effect
when the average distance from xi to the rest of classes Cj, is
large. This means that if a misclassified voxel xi is near the
mean of the correct class C, it was likely to be classified as C,
and thus we have to penalize it, and we also penalize xi, when
its intensity value is far from the mean of the rest of classes.

The results using this new measure are shown in Fig. 7.
Again, we obtain lower values than with the classic measures
due to the penalization on each misclassified voxel. Using
these measures we observe a different situation than with
JCd, because this measure will favor methods based on the
histogram such as K-Means or K-NN, and decrease the per-
formance of the methods that use neighborhood information
such as GHMRF and those with the non-linear filtering.

4.3. Connectivity similarity measure
Connectivity is a property that can be used to measure the
quality of a segmentation, and it is associated to the amount
of islands or the granularity of a labeled image. If a segmented

ssified voxels (a) and distance based similarity measures,
ets averaged (bias 0%, 20% and 40%, and noise levels 3%,
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Fig. 7 – Similarity measures including intensity
information computed for all methods and for all the
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Fig. 8 – Connectivity similarity measures computed for all
imulated data sets averaged (bias 0%, 20% and 40%, and
oise levels 3%, 5%, 7% and 9%).

mage has many disconnected regions, typically isolated vox-
ls, compared to the gold standard, it has a quite negative
isual impact that usually is not measured by classic simi-
arity measures. With the definition of this measure in the
valuation method we include the granularity as an indicator
f the quality of a segmentation. The connectivity of a region
, in a 3D regular grid is defined using a morphological dila-

ion operator Ds, with s a structuring element. We say that X
s connected with other region Y, if

s(X) ∩ Y /= ∅ (13)

We use a 3 × 3 × 3 structuring element, thus defining a con-
ectivity taking the 26 closest neighbors of each voxel. The
umber of connected components for each class NXc in the
egmented volume can be compared with the number of con-
ected components for the same class in the gold standard

Yc . The definition of a connectivity coefficient CC that takes
alues between 0 and 1 can be expressed as

Cc:=2
min{NXc , NYc }

NXc + NYc

(14)

The results using this new measure are shown in Fig. 8,
here this time more increased differences between methods

an be observed, making this measure useful to discriminate
etween different methods.

.4. Similarity measures on the boundaries

nother important feature to study are object boundaries, 3D
urfaces for a volume and 2D contours for images. This is

articularly important for some applications where surface
r contour accuracy is more important than classic measures
uch as volume overlapping. In a general way, we can define
new measure, given the boundaries of one segmented class
methods and for all the simulated data sets averaged (bias
0%, 20% and 40%, and noise levels 3%, 5%, 7% and 9%).

C, ∂Xc, and the boundary of that class in the ground truth, ∂Yc,
that we will call boundary JC:

BJCc:=|∂Xc ∩ ∂Yc|
|∂Xc ∪ ∂Yc| (15)

As we said in Section 4.3, the segmented images may
contain some small sets of voxels spread over the image,
presenting granularity. It is important to highlight that these
voxels will affect our boundary measure even if the main
boundary of the ground truth really fits with the boundary
of the segmented image. In order to prevent this effect, we
will use only the main boundaries, thus removing the effect
of granularity because it will provide a better measure of the
contours of surfaces of our data and because the granularity
is already measured with the connectivity measure proposed
before. Therefore, we will use a modified boundary for every
class in the segmented image ∂X′

c. We can express ∂Xc as the
union of non-connected sets

∂Xc =
⋃

i

∂Xi
c ∀i such as Ds(∂Xi

c) ∩ ∂X
j
c = ∅ and i /= j, (16)

and Ds is the morphological dilation operator, as defined
before. The new boundary ∂X′(c) is then defined as

∂X′
c =

⋃
i

∂Xi
c ∀ i such as ∂Xi

c ∩ ∂Yc /= ∅ (17)

and ∂Xi
c are disjoint sets as before. With this new boundaries

the modified measure is:

BJC′
c = |∂X′

c ∩ ∂Yc|
′ (18)
|∂Xc ∪ ∂Yc|

The measure results using this new measure can be seen
in Fig. 9. We also show in Fig. 10(a) a slice with the misclas-
sified surface voxels for the GM in green, and in Fig. 10(b) the
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Fig. 9 – Boundary JC similarity measures computed for all
methods and for all the simulated data sets averaged (bias

0%, 20% and 40%, and noise levels 3%, 5%, 7% and 9%).

misclassified surface is shown in red for a surface rendering
of the GM. In this latter case only exterior surface errors can
be seen.

4.5. Aggregated multimodal similarity measure

We propose to use the above definitions to combine different
features to obtain more objective and reliable assessments. In
this work we state that, as well as in the human vision, an
intelligent system should employ several features to decide
between different segmentation results. For that reason, a bet-
ter similarity measure would emerge from the combination of
the measures proposed before, a multidimensional similarity
measure, that can be applied to any evaluation study. In order
to define an aggregated similarity measure, let’s construct a
vector of similarity measures for a given class C:
vc = [JCc, JCdc, JCic, BJC′
c, CCc] (19)

Fig. 10 – Boundary error voxels of the GM for a 2D slice,
shown in green (a), and surface rendering of the GM with
the exterior boundary errors in red (b). (For interpretation of
the references to color in this figure legend, the reader is
referred to the web version of the article.)
b i o m e d i c i n e 9 6 ( 2 0 0 9 ) 108–124

which is a vector composed of the classic Jaccard coefficient
JC, the distance based Jaccard coefficient (JCd), the intensity
Jaccard coefficient (JCi), the modified boundary Jaccard coeffi-
cient (BJC′), and the connectivity measure (CC). The aggregated
similarity measure for a given class C, will be defined
as

Gc:=[vcKvT
c ]

1/2
(20)

where K is a matrix whose elements Kij weights the different
measures between them. For simplicity, we will use the iden-
tity matrix for K, but depending on the application, it could
be useful to increase or decrease some of the matrix coeffi-
cients, to give more importance to some of the measures with
respect to others. To obtain a final value for the entire seg-
mentation, we propose to combine the values obtained for
each class, using the number of voxels of each class at the
gold standard, |Y(c)|, as the weights:

G:=
∑

c
Gc|Yc|∑
c
|Yc|

(21)

4.6. Graphical data representation: Principal
Component Analysis

The aggregated measure presented in the previous section
reduces the information contained in the similarity mea-
sure vectors to just one scalar value, which constitutes a
simplification of the overall method. To overcome this situa-
tion, the multidimensional information of these vectors can
be exploited in order to represent graphically the informa-
tion contained for each segmentation method. In order to
obtain effective graphical representations, that show clearly
the behavior of the segmented data, we propose to use 2D plots
of the obtained data. Two solutions are followed in this work
to obtain these plots. The first one consists simply in the rep-
resentation of pairs of measures, removing the information of
the rest. An example of these plots are presented in the Section
5.3. However, using two similarity measures constitutes a limi-
tation in the data representation, and therefore, we propose to
use all the information included in the vectors in a second two
dimensional plot of the data. This consists in a dimensionality
reduction on the vectors, using a well-established tool such as
PCA. In this case, let us consider the N × d matrix X containing
the d different similarity measures obtained for N segmen-
tation experiments. Using PCA, the linear transformation is
given by

Y = XH (22)

where Y is the obtained N × d′ matrix of results (d′ ≤ d), and
H is the transformation matrix whose columns are the eigen-

vectors corresponding to the d′ largest eigenvalues of the d × d

covariance matrix of the input data, X. Using this transforma-
tion, we can reduce the dimensionality of the matrix of results
so as to visualize it while retaining as much information as
possible. In Section 5.4, the graphical representations results
using this technique are presented.
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Table 1 – Confusion tables for the simulated data with 20% bias and 5% noise level. (A) GHMRF, (B) kNN, (C) K-Means, (D)
EM, (E) NLF + kNN and (F) NLF + K-Means. Values are in %.

Reference FP Reference FP

CSF GM WM CSF GM WM

A B
CSF 89.77 1.03 0.01 1.04 CSF 94.29 2.27 0.02 2.29
GM 10.23 98.16 17.39 27.61 GM 5.71 91.13 7.07 12.79
WM 0.00 0.81 82.60 0.81 WM 0.00 6.60 92.91 6.60

FN 10.23 1.84 17.40 FN 5.71 8.87 7.09

C D
CSF 93.58 2.89 0.02 2.91 CSF 89.12 0.88 0.00 0.89
GM 4.60 90.50 7.07 11.67 GM 10.88 97.79 19.70 30.58
WM 0.00 6.60 92.91 6.60 WM 0.00 1.33 80.30 1.33

FN 4.60 9.49 7.09 FN 10.88 2.21 19.70

E F
CSF 94.84 2.60 0.02 2.62 CSF 94.27 2.29 0.02 2.31
GM 5.16 93.58 10.17 15.34 GM 5.72 89.47 5.45 11.17
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WM 0.00 3.82 89.81 3.82

FN 5.16 6.42 10.19

. Experiments and results

n this section some experiments and results are shown. First,
he results using the confusion tables obtained for one simu-
ated data set are presented, in order to show the classic way to
ompare segmentation methods, then some validation exper-
ments are described. The first one is an experiment showing
he improvement in the similarity measures when distance
nformation is included, using a synthetic data set. After that,
wo validation studies are shown, one for the simulated data
ets shown in Section 3.2 and other for the real data set of
ection 3.3.

.1. Results with confusion tables

n Table 1, we show the confusion tables for the GHMRF, kNN,
-Means, EM, NLF + kNN and NLF + K-Means methods respec-

ively, using the simulated data set with 3% noise and 0% bias.
e also show the false positive and false negatives values

btained in each case.

.2. Validation experiments for distance based
easures
imilarly to the new JCd coefficient proposed in Section 4.1, we
an define the D Sd, TNd, and VSd coefficients, also replacing
and c in Eqs. (3)–(5) by

∑
i
d2(xi) and

∑
i
d2(yi) respectively, as

one before. In order to show the effect of the distance in these

Fig. 11 – Synthetic data. In white the gold standard square
WM 0.00 8.24 94.53 8.24

FN 5.72 10.53 5.47

new coefficients, we have carried out an experiment using the
synthetic data shown in Fig. 11. A squared shape embedded
in a 256 × 256 2D image is considered as the ground truth, and
a similar square rotated from 2◦ to 30◦ every 2◦ clockwise are
considered as the segmentations. In Fig. 12 we show the val-
ues of the similarity measures for the rotated images using
the JC, TN, VS and DS coefficients, and also for the JCd, TNd,
VSd and DSd coefficients, in order to compare the behavior of
the new measures with the distances incorporated. Compared
to the classic similarity measures, it is clear that the sensitiv-
ity of the new distance based measures is higher, so they can
be used to evaluate more accurately similar segmentations.
Notice that in this case, the VS coefficient does not change
because it only decreases if |X| /= |Y|, and in this case both val-
ues remain always the same. This is the main reason that VS
is not suitable to measure dissimilarity for label maps. When
the distance is incorporated to VS, it becomes more useful, but
still the other coefficients are preferable.

The distance values, coded in grayscale color map, from the
misclassified voxels to their corresponding nearest classes are
shown in Fig. 13, for the case where the square is rotated 30◦

from its original position. This image is used to compute the
new similarity measures that we have proposed here.

5.3. Experiment on a simulated data set
We show in Fig. 14, the values for the aggregated similarity
measures per class and for the whole segmentation, in the
six methods studied, and in order to compare, we show in

and in gray a square rotated from 0◦ to 30◦ every 6◦.
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Fig. 12 – Similarity measures computed for the synthetic data of
using distances (b).

Fig. 13 – Distances from the misclassified voxels to the
nearest class they should belong to, in the square rotated
by 30◦.
Fig. 14 – Aggregated similarity measures averaged for all the sim
5%, 7%, 9%), separated by classes (a) and averaged (b).
Fig. 11 for several angle values, without distances (a) and

Fig. 15 the JC averaged values, scaled to a range of the same size
(0.2). In both figures the ordering of the methods are: GHMRF,
NLF + K-Means, NLF + kNN, K-Means, kNN, and EM, being the
differences using the aggregated measures more noticeable
than only using JC.

A quick look at all the similarity measures can be done
also using a boxplot, see Fig. 16. Note that there is substan-
tially more variability in the ratings of CC than in the rest of
measures.

As mentioned in Section 4.6, in order to better represent
the similarity measures, we have drawn a series of 2D plots
of the similarity measure values, choosing pairs of them: one
in the x-axis and the other in the y-axis. In these plots each

point corresponds to the mean value across the three classes
(CSF, GM and WM) of each segmentation. For each method an
ellipse is also plotted representing the covariance of the data
group, with the center representing the mean of the group.

ulated data sets (bias: 0%, 20%, 40% and noise levels: 3%,



c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 6 ( 2 0 0 9 ) 108–124 119

Fig. 15 – JC similarity measures averaged for all the
simulated data sets (bias: 0%, 20%, 40% and noise levels:
3%, 5%, 7%, 9%).

Fig. 16 – Boxplot representation of similarity measures, for
the simulated data set (bias 0%, 20% and 40%, and noise
levels 3%, 5%, 7% and 9%) and all methods.

Fig. 17 – Joint similarity measures for the simulated data set, with bias 0% and noise levels 3%, 5%, 7% and 9%. JC vs JCd (a),
JC vs JCi (b), CC vs JCi (c) and BJC vs JCd (d).
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Fig. 18 – 2D plot representation using PCA, for the
simulated data set (bias 0%, 20% and 40%, and noise levels
120 c o m p u t e r m e t h o d s a n d p r o g r a m

The sizes of the ellipses are proportional to the variance of
the data.

Using this representation we can see more clearly the dif-
ferences between several methods than in one-dimensional
plots. Fig. 17 illustrates some of these plots for the simulated
data, for bias 0%, and each group of points corresponds to dif-
ferent noise levels: 3%, 5%, 7%, and 9%. The center of each
group has a marker of higher size, to distinguish it from the
other markers. Notice that a perfect situation will be a circle
of radius zero placed at the (1,1) position, therefore in order to
see which method performs better than others we also show
dotted circles centered at (0,0) with increasing radius values. It
can be seen in Fig. 17, that GHMRF is the best method in most
cases, the second one is NLF + K-Means, and the order of the
others changes depending on the figure.

5.4. Principal Component Analysis

Representing two similarity measures in a 2D plot provides a
useful insight into the differences between several segmen-
tation methods, but the similarity measures vectors can be

used more efficiently using the PCA representation detailed in
Section 4.6. In the PCA study shown here, the two first prin-
cipal components (eigenvectors) represent the 83% and the
14.5% of the variance of the data. Thus, a representation using

Fig. 19 – JC (a) and (b) and aggregated similarity measures
3%, 5%, 7% and 9%) and all methods.

these two components, explain most of the variance in our
data. This is shown in Fig. 18, where two first principal compo-
nent coefficients are represented together for all methods and

experiments. To understand such plot we have to be aware of
the coefficients of the linear combinations of the original vari-
ables that generate the principal components. The first two

(c) and (d) for the real data, by classes and averaged.
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rincipal component coefficient vectors are:

1st principal component :

[−0.1384, −0.3346, −0.0683, −0.0711, −0.9269],

2nd principal component :

[−0.2460, −0.4598, −0.7966, −0.1395, 0.2721],

here the corresponding similarity measures for these coeffi-
ients are as in Eq. (19). All the coefficients of the first principal
omponent have the same sign, making it a weighted average
f all the original variables.

In the new PCA space, three groups of similar performance
an be distinguished. Similarly to previous 2D plots, we bold
he values that represent the mean of each method (among all
he simulated images) and this is the center of a circle of radii
ariance of the data. The best performance is achieved clearly
y GHMRF method (on the left part), followed by the meth-
ds with non-linear filtering: NLF + K-Means, NLF + kNN (on
he middle), and finally with similar values: K-Means, EM and
NN (on the right part of the plot). Note however that the most
egative the first component value is in the PCA, the best the
ethod performs. This is because the linear transform coeffi-
ients are all negative. Actually, if we focus on the projection
f such values to the first component only (83% of the variance
xplained), we conclude the same behavior than in Fig. 14 but
n a more discriminant manner, except for the EM and kNN

ethods that present quite similar values.

Fig. 21 – Joint similarity measures for the real data, CC v
Fig. 20 – Boxplot of similarity measures for real data set.

5.5. Experiments on real data

We have performed an evaluation using the real MR data
set shown in Fig. 2. In Fig. 19(a) and (b), the JC obtained is

shown into separated classes and averaging among them,
whereas in Fig. 19(c) and (d), we show the aggregated sim-
ilarity measure obtained, all of them scaled to a range of
the same size (0.5). Notice that the order of performance

s JCd (a), BJC vs JCd (b), JC vs JCd (c) and JC vs JCi (d).
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of the methods is almost the same in both cases. Look-
ing at the aggregated similarity measures, the best method
is GHMRF, as we expected, whereas kNN performs better
under the JC measure. The rest of methods are ordered in
the same way. In this real case, as opposite as in the simu-
lated data, kNN performs better than EM, and EM performs
better than K-Means, which is a more realistic order. We
can also conclude that methods using filtering (NLF + kNN
and NLF + K-Means) are not better than the methods with-
out filtering (kNN and K-Means), which means that filtering
affects the performance, probably because a excess of filter-
ing have been applied. However, the most important result
derived from the values obtained here is that the aggregated
measures proposed are more discriminant than standard J C
measures.

As we did in the previous section, we show in Fig. 20 the
behavior of each similarity measure. In this case, JCi is the
measure that show most variance of values across all meth-
ods. We also present 2D plots of pair of similarity measures in
Fig. 21. GHMRF is the best method in most of the cases, and
the rest of them are ordered different in each plot. However, we
can see that EM and kNN methods are close to each other in all
the figures, as well as K-Means and NLF + K-Means, showing
similar behaviors in each pair of methods.

Here also a PCA analysis is done (Fig. 22). In this case the
first two components represent well all the variance of the
data (78% and 20%). Two first component representation is
shown in Fig. 22. However, in this case we have only one point
per method, so we cannot draw estimate the variance of the
data. Please note that the linear transformation coefficients
are not all of the same sign and thus, no conclusion can be
drawn on which method performs better depending on their
position in the PCA plane:

1st principal component :
[−0.1567, −0.2084, −0.9245, −0.0819, 0.2657]

2nd principal component :

[0.3305, 0.7058, −0.0406, 0.0518, 0.6231]

Fig. 22 – 2D plot representation using PCA for the real data
and all methods.
b i o m e d i c i n e 9 6 ( 2 0 0 9 ) 108–124

We can see that the six methods are clustered in a dif-
ferent way than in the simulated data analysis. In this case,
K-Means algorithm distinguishes from kNN and EM, the fil-
tered methods are more separated between each other, and
GHMRF remains differentiated as in the simulated data.

6. Conclusions and future works

We have described in this paper several similarity measures
for the evaluation of segmented images, given a ground truth,
and we have applied it to the segmentation of the brain into its
three main tissues, CSF, GM and WM. Using the segmentation
of a simulated and a real MRI data set, we have presented a
new evaluation framework.

We have shown that classic similarity measures can pro-
vide non-realistic results, as illustrated graphically in Fig. 5.
That is the case of TN and VS coefficients that give values
that could arise in erroneous decisions, as discussed in Sec-
tion 3.5. Other classic measures, such as JC and DS coefficients,
give reasonable values and therefore JC has been used in this
evaluation study. We have proposed a set of new similarity
measures, adding complementary criteria to the sizes of vol-
ume overlapping. We propose new measures based on the
position and intensity values of the misclassified voxels, as
well as measures related to the granularity and the bound-
aries of the segmented images. As a result we have proposed
a new aggregated multidimensional similarity measure that
combines the similarity measures proposed to obtain better
reliability in the evaluation of several segmentation methods,
which is the main contribution of this work. This method
provides more detailed and objective information about the
quality of each method and presents some ideas of how much
better one method can be with respect to others, and also how
much a class can be better classified than the others within a
given method. This is especially useful for 3D data sets, where
the segmentation results are often difficult to assess visually,
and in general for the evaluation of any segmentation result,
disregarding the application, when a gold standard is avail-
able. As far as we know, the new measures described (JCd,
JCi, CC and BJC) are completely new, and this is the first time
that multiple similarity measures are combined in this way
for segmentation evaluation.

We have also presented 2D plots of pairs of similarity mea-
sures that show how the combination of several measures
improves the visual representation of the difference between
several methods, and motivate the validity of the multidi-
mensional aggregated measure proposed here. We have also
developed a successful 2D representation using PCA in order
to show in one single 2D plot the relation between all meth-
ods, and if the principal component coefficients are all the
same sign it is possible to compare the performance of each
method in such dimension. To overcome this limitation, and
to obtain 2D plots with comparable values, we have to look
for projection directions with all the coefficients of the same
sign. Unfortunately this cannot be done with a standard PCA

decomposition, and therefore, other methods for dimension-
ality reduction should be employed instead.

Taking into account the amount of information used, we
can say that our methodology improves the segmentation
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valuation (visually and numerically) as compared to classic
easures. We have therefore changed the classic evaluation

hilosophy where the objective was to look at how many vox-
ls are correctly or wrongly segmented, with a new philosophy
here the objective is to look at how many voxels are well

egmented, how distant are the wrong voxels from their cor-
ect position (in the image and in the intensity domain), how
ood are the boundaries, and how good is the segmentation
ranularity, taken this all together.

The correspondence between visual inspection (by look-
ng at one slice, see Fig. 4), and the numeric values of our
ggregated measure fits quite well, resulting in a classifica-
ion in order of decreasing quality: GHMRF, NLF + K-Means,
LF + kNN, K-Means, kNN and EM in the experiment with sim-
lated data. This result is in part as expected, because GHMRF
ethod is designed specifically for this particular application

o it should be the one with better results, and the methods
ith a non-linear filtering give better results than without

hem. On the other hand, it is not expected that one sim-
le clustering method such as K-Means performs in general
etter than EM and kNN, which only means that the simu-

ated data is well suited for such clustering method. This is
ot the situation with real data, where the order is GHMRF,
NN, EM, NLF + kNN, K-Means, and NLF + K-Means, which is a
ore natural result.
The evaluation study done here is not intensive, and it

hould be considered as a good example of how our pro-
osed evaluation method can be applied. This methodology
an be also used to compare the results of a given method
sing different parameters in order to select the correct set
f parameters. Notice also that new measures not related to
ccuracy, for instance measures based on reproducibility, effi-
iency and user interaction, can be included in our model, as
roposed by Udupa et al. [18]. As a final remark, the coeffi-
ients of the matrix K should be selected appropriately for
very application in order to provide an objective aggregated
imilarity measure.
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