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Abstract

We present a method for segmenting white matter as well as the gray matter structures from diffusion tensor magnetic

resonance images (DT-MRI). The segmentation is done evolving a set of coupled level set functions. The zero level set of

each level set function forms a surface in 3D that is driven by the region-based force including all tensors belonging to a

certain region. The region-based force is defined by using a very sensitive similarity measure between DT. We apply our

method for segmenting the thalamus and its nuclei.

This technical paper proposes several new strategies for level set methods to segment efficiently complex objects as

present in DT-MRI. First of all, we present a very sensitive similarity measure that distinguishes very subtle differences

between regions within, for example, the thalamus. Secondly, we present a new way of selecting the most representative

tensor for group of tensors for these kinds of applications. We argue for the importance to use the tensor minimizing the

variation within the group of tensors instead of the mean tensor as suggested in other papers on tensor segmentation. The

third important point is the necessity of using several coupled level sets to define the background. Methods differentiating

only between foreground and background will fail when applied to complex structures such as the brain. It is crucial for a

region-based approach to consider all the surrounding structures for a correct definition of the forces driving the

segmentation.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Diffusion tensor magnetic resonance imaging
(DT-MRI) is a modality that permits non-invasive
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quantification of the water diffusion in living
tissues. The diffusion tensor (DT) provides informa-
tion about the intensity of the water diffusion in any
direction at a certain point. The water diffusion in
the brain is highly affected by its cellular organiza-
tion. In particular, axonal cell membrane and
myelin sheath are the main components restricting
water mobility [1]. Hence, the measured DT
becomes highly anisotropic and oriented in areas
.
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of compact nerve fiber organization, providing an
indirect way of fiber tract identification. Today, DT-
MRI is mostly used for determining brain con-
nectivity using fiber tractography algorithms [2–5].
In general, emphasis has mainly been put on
identifying white matter structures, but many gray
matter structures can also be revealed through this
new image modality. Most gray matter structures
contain passing fibers which will affect the mean
diffusion within the voxel and give the DT a
characteristic shape for that specific structure.

An example of such a gray matter structure is the
thalamus that can be considered as the central relay
station for brain neuronal communication. Every
sensory system (except olfaction) makes synapses
here before projecting into the cerebral cortex.
Information received from diverse brain regions is
passed on to the cortex through the thalamus. These
passing fibers will slightly influence the anisotropy
and shape of the DT. Because these axonal
projections have different orientations depending
on the region they connect to, diffusion is differen-
tially oriented. This will allow us not only to
segment the thalamus but also its nuclei.

The thalamus and its nuclei are structures that are
hardly differentiated in other imaging modalities
such as computerized tomography or conven-
tional magnetic resonance imaging (MRI), which
do not provide the necessary image contrast.
Therefore, radiological identification of individual
thalamic nuclei is not currently possible and even
detection of the precise boundaries of the thalamus
is difficult. Today the segmentation is mainly
done by atlas matching or by hand segmentation
procedures.

The thalamic cytoarchitecture is divided into
several nuclei, each with a specific function. The
thalamic nuclei have traditionally been studied with
histological methods and their number varies
depending on the method used. However, most
studies identify 11 major nuclei, some of them being
subdivided. Wiegell et al. [6] have shown how DT-
MRI can differentiate the principal thalamic nuclei,
non-invasively, based on the characteristic fiber
orientation, which is assumed to stay the same
within one certain nucleus and varies from one
nucleus to another. Identification of the thalamic
nuclei in DT-MRI has also been done by Behrens et
al. [7] by performing tractography between the
thalamus and the cortex. Thalamic subregions
where identified through their specific cortical
connectivity.
Only recently, DT-MRI has started being used
for segmentation purposes. The first approaches
began by performing a fiber tractography and then
used the result for segmentations [8]. Identification
of the thalamic nuclei has been made by Behrens
et al. [7] by mapping the connections between the
thalamus and the cortex. Wiegell et al. [6] were one
of the first to segment DT-MRI directly from the
data by using a k-means algorithm. As mentioned
before, this method was also used to segment the
thalamic nuclei. The most recent approaches have
been to use partial differential equations (PDE),
variational methods and level sets [9–15]. In [9] we
presented a geometric flow implemented with level
set methods for fiber tract segmentation by measur-
ing the diffusive similarity between voxels. The
method is based on the assumption that adjacent
voxels in a tract have similar diffusion properties
but that the diffusion at different location of the
tract can be very different. Similarity measures
based on the whole tensor information was used for
propagating the flow. Since then, several papers
have provided a well developed theory on PDE and
segmentation in DT-MRI [12–17]. Wang et al. [12]
were the first to define regions from the DT and
used region-based forces for the front propagation.
The region-based force is defined from a distance
metric between tensors. Wang et al. presented in [16]
the very interesting approach of Kullback–Leibler
(KL) distances. The KL distance is a frequently
used concept in information theory and is a measure
of the natural distance between two random
variables. From this distance, Wang et al. [16] have
derived similarity measures and segmented 2D
tensor fields. Lenglet et al. [17] extended their work
for 3D images and explored the statistics of the KL
distances to segment tensor fields with higher
internal variance. In this paper however, we are
not interested in allowing a high internal variance,
rather in detecting the very small variances that exist
between the thalamic nuclei.

Our method consists in propagating a set of
coupled level sets through a region-based force
according to Paragios et al. [18]. The force is defined
from the similarity measure between the most
representative tensor of each level sets and its
neighboring voxels. All surfaces evolve while
remaining dependent on each other through a
coupling force [18].

First, we will briefly present the concept of DT
and basic theories on region-based front propaga-
tion with level set implementation. We will then
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show how to use similarity measures for DT to
propagate a surface and how this can be used for
white and gray matter segmentation. The results are
compared to anatomical atlases.

2. Theory

2.1. DT imaging and tensor similarity measures

DT-MRI is an imaging modality that provides a
second-order DT, a 3 by 3 symmetric and positive
definite matrix in every voxel. Under the DT model,
the shape of the diffusion probability density
function in every voxel is estimated by an aniso-
tropic Gaussian.

The diffusion coefficient in a certain direction, x̂,
where x̂ is a unit vector in R3, is given by the double
contraction of the DT with the vector:

dðx̂Þ ¼ x̂T Dx̂. (1)

A way of directly comparing the diffusion in two
different voxels is to compare the diffusion coeffi-
cient over all directions, x̂, covering the unit sphere,
S2. We define the integrated similarity (IS) between
two tensors (D1;D2) as

ISðD1;D2Þ ¼
1

4p

Z
S2
min

d1ðx̂Þ

d2ðx̂Þ
;
d2ðx̂Þ

d1ðx̂Þ

� �
dx̂, (2)

where d1ðx̂Þ is the diffusion in direction x̂ for the DT
D1. The IS gives us a percentage of the common
diffusion for the two tensors. Several other mea-
sures of similarity between tensors exist, see [19], but
this similarity measure is particularly, sensitive to
very subtle changes between tensors which is useful
when separating structures such as the thalamic
nuclei.

To find the most representative tensor among a
group of DTs, Jones et al. [20] use a distance metric,
d12, between two tensors, ðD1;D2Þ:

d12:¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD1 �D2Þ : ðD1 �D2Þ

p
, (3)

where : stands for the tensor scalar product. This is
a measure of the overlap between two tensors:

D1 : D2 ¼ TraceðD1D2Þ ¼
X3
j¼1

X3
i¼1

l1il2jðe1ie2jÞ
2,

(4)

where l1i; l2i, are the eigenvalues and e1i; e2i the
eigenvectors of the DT D1 and D2, respectively. For
determining the most representative tensor of a data
set, this distance is computed between each pair of
tensors. Thus, for each tensor we compute ci:

ci ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1;jaid

2
ij

q
n� 1

, (5)

where n is the number of tensors within the region.
The most representative tensor is then the tensor
with lowest value of ci.

We will use this approach later to define the most
representative tensor of the set of tensors contained
within our level set.
2.2. Geometric flows and level set implementation

Geometric flows and especially curvature or curve
shortening flows are today important tools in
computer vision. A curvature flow is a curve or
surface that evolves at each point along the normal
with the velocity depending on the curvature at that
point. This process leads to a smoothing of the
curves or surfaces and eliminates noise effects. The
theory is well developed for the two-dimensional
case and even though some of the properties of the
2D curves, such as the property of shrinking to a
point under curvature flow, do not hold in the 3D
case, the main part of the theories remains valid and
works well for segmentation of 3D objects.

To use the geometric flows for image segmenta-
tion, the evolution of the curve or surface has to
depend on external properties determined by the
image features. A classical speed function to
segment gray scale images is based on the gradient
of the images and goes to zero when the surface
approaches an edge [21].

A general flow for a 3D closed surface can be
described as

qS
qt
¼ ðF þ kÞN, (6)

where F is an image-based speed function which in
our case is dependent on the diffusion image, k is
the mean curvature of the surface, S defines the
surface, N is the normal to the surface and t is the
time.

To solve this time dependent PDE we use the level
set method, introduced by Osher and Sethian [22],
where the evolving surface is considered as a
constant level set of an embedding function. This
leads to a numerically stable algorithm that easily
handles topology changes of the evolving surface.
The embedding function is called the level set
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function, fðtÞ, of the evolving surface. It has been
shown by Osher and Sethian [22] that the evolution
of the zero level set coincide with the evolution of
SðtÞ. Thus, the evolution of the level set function is
described by

qf
qt
¼ ðF þ kÞjrfj. (7)

Image segmentation using region-based statistics
have been presented in several early papers [23–26].
Our method is based on a model that was
introduced a few years later, the geodesic active
region model by Paragios and Deriche [18]. The key
hypothesis is that the image is composed of
homogeneous regions and that the probability of a
pixel belonging to a certain region can be deter-
mined from the intensity histogram.

In our case, the probability of a voxel belonging
to a certain region is determined by the tensor
similarity between a voxel and the most representa-
tive tensor, computed according to (3) and (5), for
that region. Every voxel in the vicinity of the
evolving surfaces is then associated to a region by
computing the similarity between the tensor in that
voxel and the representative tensors of each level
set. The similarity measure that we use for compar-
ing the tensors is the integrated similarity presented
in (2).

The similarity measure is the percentage of the
common diffusion each tensor has with the
different regions. This percentage can be considered
as a probability measure of a voxel belonging
to a certain region. A region-based force can then
be defined according the theories of Paragios et al.
[18]:

Fi ¼ � log
ISðD;Dtyp;iÞ

maxðISðD;Dtyp;jaiÞÞ

� �
, (8)

where IS is the integrated similarity described in (2).
Dtyp;i is the most representative tensor associated
with the level set, fi and is computed according to
(5). It is continuously recalculated as the surface
evolves. F i grows the surface, Si, in the direction of
the voxels of diffusion most similar to Dtyp;i. This
choice of representative tensor instead of a mean
tensor is important when dealing with tensors that
are neither clearly anisotropic nor clearly isotropic.
When computing the mean of the tensors within for
example the thalamus the mean tensor will develop
towards an isotropic tensor.
2.3. Coupling forces

When propagating several curves, overlapping
can occur. To avoid this, a constraint has to be
applied. This is done by adding an artificial force in
the direction of the normal, to the corresponding
level set motion equations. The force will penalize
voxels which have been attributed to more than one
region. If necessary, voxels that have not yet been
labelled will also be penalized to force each voxel to
belong to a region. The coupling forces for each
surface, Hi, are defined as in [18]:

Hiðj;fjðsÞÞ ¼
1

N � 1

þ1 if fjðsÞ4a;

�
1

tanð1Þ
tanðfjðsÞ=aÞ if jfjðsÞjpa:

8><
>:

(9)

Here, a is a parameter to decide within which
distance the coupling force shall act.

2.4. Final evolution

Each one of our surfaces, i, is now evolving
according to:

qSi

qt
¼ ðFi þ ki þHiÞN

!
, (10)

where Fi is the region-based force (11), ki is the
mean curvature and Hi is the coupling force.

3. Material and methods

3.1. Implementation details and parameters

The method has been implemented in Matlab 6.1
(The MathWorks, Inc.) except for the reinitializa-
tion of the signed distance function, which has been
implemented in C and compiled with the mex-
library.

3.1.1. Convergence

The evolution of the surfaces is automatically
stopped when the zero level set only have moved
insignificantly after 10 iterations.

3.1.2. Preserving the signed distance function

The evolving surface is considered as the zero
level set of its level set function. Due to local
dependence of the propagation speed the evolution
of the other level sets differs from the zero level set.
This could create irregularities that would deform
the level set function. A correct level set function is
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Fig. 1. A cut of the synthetic tensor field used to test the

segmentation method. The form of the tensors can be seen in each

voxel displayed on a color map representing the anisotropy and

principal direction [31].
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crucial for a correct and smooth evolution of the
surface, since both computation of normals and
curvatures are directly dependent on it. Therefore, a
reinitialization of the level set function is made
regularly as it is usually performed in the level set
literature. See [27,28] for more information con-
cerning this issue. It is implemented using the fast
marching method to solve the Eikonal equation
(PDE) [29]:

jrfj ¼ 1. (11)

3.1.3. Weighting the speed terms

The diffusion dependent, F i, and the curvature
dependent, ki, speed for each surface Si, are not
always of the same order. For a satisfactory
regularization without inhibiting the front propaga-
tion it is therefore important to set the weighting
factor between them correctly. Hence, we have the
following relation:

qSi

qt
¼ ðaF i þ bki þ gHiÞN

!
, (12)

where a, b, g are weighting parameters.
Finally, the level set function has the following

evolution:

qfi

qt
¼ ðaFi þ bki þ gHiÞjrfij. (13)

The parameters have been determined empirically
and are set to a ¼ 10, b ¼ 1 and g ¼ 1 for all
experiments.

3.2. Synthetic and real data set

The method has been tested on synthetic data and
on diffusion data from two healthy volunteers.

3.2.1. Synthetic data set

The method was first validated on a synthetic
tensor volume containing regions of tensors with
slightly different diffusion properties. Values from
different regions of the thalamus were used. These
tensors were then placed in six regions in a 3D
volume and Rician noise was added [30]. A cut of a
slice through the regions can be seen in Fig 1. To
initialize the surfaces we ran a k-means clustering
algorithm as in [6] and the center points of the
obtained clusters were then used as initialization
points.

The algorithm was then applied to the tensors
fields with a Rician ratio (SNR) of 32. With a lower
SNR such similar regions cannot be distinguished
so for segmentation of the thalamic nuclei we will
clearly need good imaging acquisitions with a
reasonably good SNR.
3.2.2. Real data set

The images were obtained with a single shot EPI
sequence on a 3T Intera scanner from Philipps. Six
diffusion weighted images and one without diffu-
sion weighting were acquired. TR and TE were,
respectively, 4858 and 78ms and b value was set to
1000mm=s2. We acquired 24 axial slices in a 256 by
201 matrix that was interpolated to a 256 by 256
matrix, covering the region of the deep cerebral
nuclei. The voxel size was 1.0mm by 1.0mm with a
slice thickness of 2.0mm without gap. The data
were again interpolated to 1.0mm by 1.0mm by
1.0mm.

Informed consent was obtained in accordance
with institutional guidelines for all of the volunteers.

To validate the results, the segmented thalamus
was defined according to the plane crossing the
anterior (AC) and the posterior (PC) commissures
(AC–PC referential) and co-registered with digital
images of the Schaltenbrand and Wahren stereo-
tactic atlas (SWSA) [32].



ARTICLE IN PRESS
L. Jonasson et al. / Signal Processing 87 (2007) 309–321314
4. Results

In Fig. 2 the regions have been segmented on the
synthetic tensor field without any noise added. The
results are compared with the k-means algorithm
[6]. We see that our method manages better to
segment regions that are more elongated. The k-
means clustering algorithm weights the distance
between the tensors as well as the similarity between
them and when they are far apart they get more
easily attributed to an other region. If the algorithm
puts more weight to the similarity than the spatial
distance the clusters becomes less centered and non-
connected clusters can appear. In Fig. 2 the same
segmentations have been made on a field with a
SNR ¼ 32.
Fig. 2. A cut of the segmentation result on a synthetic field. First line co

is the results with the method presented in this chapter. First column sho

32. The level set methods results in a better segmentation for elongated s

noise.
4.1. Segmentation of the thalamus

For the segmentation of the thalamus, a bloc of
the complete images containing the desired
structure was selected. With an a priori know-
ledge of brain anatomy several surfaces were
initiated manually in the different structures by
looking on color maps [31]. A typical choice of
initial surfaces can be seen in Fig. 3. The high
resolution of our images makes a strong dis-
tinction between the anterior and posterior regions
of the thalamus. We therefore initiate two surfaces
for the thalamus, one surface for the anterior part
and one surface for the posterior part. The posterior
part itself is one of the nuclei, the pulvinar
nuclei.
ntains the results from the k-means algorithm [6]. The second line

ws results without any noise added. Second column with SNR ¼

tructures and when noise is present and also seems more robust to
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Fig. 3. Placing of the initial surfaces for the segmentation of the thalamus. (a) Color map of a horizontal section of a tensor field. (b) The

selected cut where the segmentation algorithm is run with the initial surfaces. They aim to segment the following structures: (A) thalamus

anterior, (B) thalamus posterior (pulvinar nuclei), (C) capsula interna, crus posterius (cortico spinal tract), (D) radiato optica and

fasciculus longitudinalis superior, and (E) the third ventricule.

Fig. 4. The segmentation of the thalamus displayed as a 3D surface on a horizontal cut of the fractional anisotropy map. The anterior (red

surface) and posterior part (pulvinar nuclei, blue surface) are segmented separately.

L. Jonasson et al. / Signal Processing 87 (2007) 309–321 315
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Fig. 5. The segmentation of the thalamus displayed on horizontal cuts of the fractional anisotropy map. The anterior (red surface) and

posterior part (pulvinar nuclei, blue surface) are segmented separately.

Fig. 6. The segmentation of the thalamus displayed on coronal cuts of the fractional anisotropy map. The anterior (red surface) and

posterior part (pulvinar nuclei, blue surface) are segmented separately.

L. Jonasson et al. / Signal Processing 87 (2007) 309–321316
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Fig. 7. The segmentation of the thalamic nuclei displayed on horizontal cuts of the fractional anisotropy. Segmentation is made in 14

parts. The color of the contours represent the direction of the principal direction of the representative tensor of the region.

L. Jonasson et al. / Signal Processing 87 (2007) 309–321 317
The thalamus has been segmented on two
different subjects. The results for one of the subjects
can be seen in Figs. 4–6.

Taking the segmentation one step further we have
segmented the thalamic nuclei. For this the thala-
mus segmentation is used as a mask. The surfaces
are initialized by running the k-means algorithm by
Wiegell et al. [6]. The center of each cluster was the
used as initial points for the surfaces.

The results can be seen in Figs. 7–9. The colors of
the contours represent the direction of the principal
direction of the representative tensor of the region.
We see that the color varies very slightly between
the different segmented nuclei but we can see a
significant difference between the anterior and
posterior nuclei. No significant difference can be
seen in the values of fractional anisotropy between
the nuclei, the fractional anisotropy varies between
0.26 and 0.33 with a standard deviation around 0.7.
For the thalamus as a whole these values are 0.27
and 0.7. From the result the different nuclei have
been identified by an expert.

Fig. 10 shows the correlation between axial slices
of the segmented thalamus performed 2 and 7mm
above AC–PC plane and co-registered with the
slices of the SWSA performed at the same levels. Pu:
pulvinar, Ce: nucleus centralis, M: nucleus medialis,
A: nucleus anterior, Lp: nucleus lateropolaris :
Zc+Zim+Zo: nucleus Zentrooralis caudalis, inter-
medius and oralis, Tmth: tractus mamillothalami-
cus, Vc: nucleus ventrocaudalis, Vim: nucleus
ventralis intermedius, Vo: nucleus ventrooralis.

5. Discussion and conclusion

We have presented a new method for segmenting
DT-MRI by using diffusive similarity. The similar-
ity is used to define a region-based force that drives
a set of coupled 3D surfaces towards the optimal
segmentation. The method is implemented using the
level set method and has been applied to DT-MRI
of white matter as well as gray matter. The method
has shown to be capable of distinguishing and
separating regions with only very subtle differences
in diffusion such as the difference between the
thalamic nuclei.

The method we propose to segment the thalamus
and the thalamic nuclei is a continuation of our
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Fig. 8. The segmentation of the thalamic nuclei displayed on coronal cuts of the fractional anisotropy. Segmentation is made in 14 parts.

The color of the contours represent the direction of the principal direction of the representative tensor of the region.

Fig. 9. The segmentation of the thalamic nuclei seen in 3D.

Segmentation is made in 14 parts. The color of the contours

represent the direction of the principal direction of the

representative tensor of the region.

L. Jonasson et al. / Signal Processing 87 (2007) 309–321318
work on fiber tract segmentation. It distinguishes
itself on three main points. The first main difference
of our approach is the similarity measure we use. It
is capable of detecting very subtle changes between
tensors. When segmenting gray matter structures
these subtle differences are more important than for
white matter segmentation.

The second important point in our work is the
choice of the most representative tensor of each
level set. The approach proposed by Wang et al. [12]
is to compute a mean tensor for each region. For
regions with high inter-resemblance, the mean
tensor has a tendency of developing towards an
isotropic tensor and all regions will then be
associated to similar tensors. This can be avoided
by using a method proposed by Jones et al. [20] that
was originally used to find the tensor image that
best represented a whole set of images. We have
transformed this method to find the tensor that best
represents the set of tensors contained within a
surface. The third important difference is the use of
several coupled level sets that each represent a
region we wish to segment. When segmenting
structures with such complex architecture as the
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Fig. 10. The segmentation of the thalamic nuclei co-registered with SWSA.

L. Jonasson et al. / Signal Processing 87 (2007) 309–321 319
brain, simply separating foreground and back-
ground is mostly insufficient. Using such a simpli-
fication leads to either an over- or under
segmentation of the desired structure. Using several
coupled level set that each represents a region,
increases robustness of the method.

When comparing results with the k-means algo-
rithm we can state that the advantages of the k-
means algorithm are that it is fast and does not
require any pre-initialization. The advantages of our
methods are a higher flexibility regarding the shape
of the nuclei and that it diminishes the influence of
noise due to the self-regularization of the surfaces.

The method generates good results for segmenta-
tion of the thalamus. As for the thalamic nuclei, the
validation shows that the level set method applied
on DT-MRI of the thalamus provides an overall
consistent segmentation of the thalamic nuclei
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related to their anatomical position defined by the
SWSA. For some nuclei (pulvinar), it was even able
to show subdivisions within the structure, already
described in the SWSA. For others (nucleus
ventralis or zentrooralis), it could not recognize
the caudal, intermediate and oral portions of the
nucleus. Comprehension of these observations is
beyond the scope of this paper and should be better
analyzed in a further study.
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