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a b s t r a c t

Neuronal oscillations are an important aspect of EEG recordings. These oscillations are supposed to be
involved in several cognitive mechanisms. For instance, oscillatory activity is considered a key compo-
nent for the top-down control of perception. However, measuring this activity and its influence requires
precise extraction of frequency components. This processing is not straightforward. Particularly, difficul-
ties with extracting oscillations arise due to their time-varying characteristics. Moreover, when phase
information is needed, it is of the utmost importance to extract narrow-band signals. This paper presents
a novel method using adaptive filters for tracking and extracting these time-varying oscillations. This
scheme is designed to maximize the oscillatory behavior at the output of the adaptive filter. It is then
capable of tracking an oscillation and describing its temporal evolution even during low amplitude time
segments. Moreover, this method can be extended in order to track several oscillations simultaneously
and to use multiple signals. These two extensions are particularly relevant in the framework of EEG

data processing, where oscillations are active at the same time in different frequency bands and sig-
nals are recorded with multiple sensors. The presented tracking scheme is first tested with synthetic
signals in order to highlight its capabilities. Then it is applied to data recorded during a visual shape
discrimination experiment for assessing its usefulness during EEG processing and in detecting function-
ally relevant changes. This method is an interesting additional processing step for providing alternative
information compared to classical time–frequency analyses and for improving the detection and analysis

ngs.
of cross-frequency coupli

. Introduction

Oscillatory phenomena have been the focus of increasing inter-
st in neuroscience research. Neuronal oscillations have been
roposed as a key mechanism for the large-scale integration of cog-
itive processes through which top-down internal states influence
timulus processing (Engel et al., 2001; Varela et al., 2001). Sev-
ral models have been developed, with oscillations either serving
s a binding mechanism bringing together different perceptions
nto a unified representation (Singer and Gray, 1995; Engel and
inger, 2001) or as a dynamic substrate for neuronal commu-
ication achieved through the coherence between brain areas

Fries, 2005). Also a more precise observation of specific oscillatory
arameters can shed light on even more detailed brain processes.
or instance, the ongoing oscillatory state of the brain before a
iven stimulus has been shown to provide valuable information
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about the subsequent behavioral responses in both motor and
sensory tasks (Linkenkaer-Hansen et al., 2004; Womelsdorf et al.,
2006). Additionally, the phase of neuronal oscillations was suc-
cessfully linked to activity of single neurons (Jacobs et al., 2007).
Finally, increasing evidence indicates that responses within clas-
sical neuronal frequency bands likely interact with each other
through coupling mechanisms that remain to be identified (Jensen
and Colgin, 2007). In this framework, cross-frequency couplings
could provide a unifying mechanism for the intermingled neu-
ronal oscillations acting at different temporal and spatial scales
(Von Stein and Sarnthein, 2000), and recent studies tend to ver-
ify the existence, and the possible importance of cross-frequency
couplings, during a variety of motor, sensory and cognitive
tasks (Canolty et al., 2006; Lakatos et al., 2007; Demiralp et al.,
2007).
Taken together, these findings raise the need for efficient meth-
ods for accurate estimation of oscillatory information such as phase,
frequency and amplitude from raw signals. A well-known method
widely used to get such spectral information is the Hilbert trans-
form and its analytic signal representation (Gabor, 1946). However,

http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:jerome.vanzaen@epfl.ch
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lthough many studies have successfully identified and described
hase synchronizations by applying this method to wide-band
euronal signals, it has been shown that proper estimation of oscil-

atory parameters can be performed only on narrow-band signals
Nho and Loughlin, 1999; Chavez et al., 2006). Moreover, subse-
uent synchronization measures such as the Phase Locking Value
Tass et al., 1998) are reliable only when applied to narrow-band
ignals (Celka, 2007). Therefore, band-pass filtering was applied
o neuronal signals as a pre-processing step, in order to split the
aw signals into narrow-band oscillations of different frequencies.
lthough this filter bank approach can lead to a more reliable
nalysis of oscillatory interactions (Canolty et al., 2006), a major
rawback of such pre-processing should be mentioned. Because the
ut-off frequencies of each band-pass filter must be pre-defined and
emain constant during the whole analysis window, physiologically
isleading outputs could be produced by the filters, in the case of
frequency component crossing the cut-off frequency limit of a
lter. In such situations, it would be preferable to follow an oscilla-
ory component in a continuous manner, without constraining the
pectral content to fixed limits. This remark emphasizes the need
or adaptive methods able to track narrow-band oscillations over
ime.

Recently, we proposed a novel method for adaptively tracking
ultiple oscillations in single-trial EEG signals (Uldry et al., 2009).

n this article, we describe the tracking abilities of our algorithm
or the estimation of single or multiple frequencies in both syn-
hetic and EEG signals. The physiological relevance of well-known
ynchronization measures can be assessed using the temporal
utputs of our method. Importantly, our previous publication on
his tracking scheme is extended in order to clearly illustrate its
apabilities for adaptive frequency estimation and its advantages
ver more traditional approaches for measuring cross-frequency
ouplings. In Section 2, we present the basics of our algorithm
s well as its multi-frequency and multi-signal extensions, and
e illustrate its performance on synthetic signals. In Section 3,
e present the results of our method on real EEG single-trial

ignals in terms of adaptive frequency tracking, and demon-
trate the benefit of applying common synchronization measures
n the temporal outputs of our filters, compared to current
ethods.

. Methods

The oscillation tracking methods are presented within the
omplex-valued signal framework. This approach simplifies sev-
ral aspects of the computations. Especially, the filters are shorter
only one pole is needed for a complex band-pass filter, whereas
wo poles are required for a real band-pass filter). Of course, the
ignals of interest are real-valued in practice. But with the Hilbert
ransform one obtains the so-called analytic representation, whose
eal part is the original signal itself. Therefore, it is always possible
o revert back to real-valued signals.

.1. Frequency tracking

The frequency tracking algorithm presented in this paper is
ased on a real-valued scheme (Liao, 2005). It is composed of two
arts; a time-varying band-pass filter and an adaptive mechanism
hat controls the central frequency of the filter. The structure is
hown in Fig. 1. The input signal is defined as
(n) = d(n) + w(n) = A(n)ejω(n)n + w(n),

here A(n) and ω(n) are the amplitude and the instantaneous fre-
uency of the cisoid and w(n) is an additive white complex centered
oise. The output signal, y(n), is obtained by filtering the input
Fig. 1. Frequency tracking algorithm structure.

signal with a band-pass filter, with transfer function

H(z, n) = 1 − ˇ

1 − ˇ˛(n)z−1
. (1)

The bandwidth is determined by ˇ (0 � ˇ < 1) and ˛(n) = ejω(n) is
the adaptive parameter which controls the central frequency. This
filter has unit gain and zero phase at ω(n).

The mechanism, which tracks the oscillations and updates the
filter, is based on the complex discrete oscillator equation

d(n) = ejω0 d(n − 1) = ˛0d(n − 1). (2)

This equation is satisfied for a cisoid at frequency ω0. Therefore
given d(n) and d(n − 1), it is possible to obtain the frequency with

ω0 = Arg{˛0}, ˛0 = d(n)
d(n − 1)

.

In a time-varying and noisy scenario, the coefficient ˛(n + 1) can
be estimated by minimizing the mean square error (MSE) of the
oscillator equation (2) for the output signal, y(n), of the adaptive
filter (1):

J(n) = E{|y(n) − ˛(n + 1)y(n − 1)|2}. (3)

Setting ∂J(n)/∂˛(n + 1) = 0, the optimal solution is

˛(n + 1) = E{y(n)ȳ(n − 1)}
E{|y(n − 1)|2}

where the upper bar denotes the complex conjugate. However, this
expression is not applicable in practice. Therefore, the expectations
are replaced by exponentially weighted averages (Haykin, 2001),
and the adaptive mechanism becomes

˛(n + 1) = Q (n)
P(n)

= ıQ (n − 1) + [1 − ı]y(n)ȳ(n − 1)
ıP(n − 1) + [1 − ı]|y(n − 1)|2 (4)

where ı (0 � ı < 1) controls the convergence rate. The modulus
of coefficient ˛(n + 1) is then brought back to unity to ensure the
stability of the band-pass filter. Finally, the frequency estimate is
obtained with ω(n + 1) = Arg{˛(n + 1)}.

2.2. Multiple frequency tracking

Typically, multiple oscillatory components are active at the
same time in EEG signals. The method described previously can
be extended to the multi-component case. Now, it is assumed that
the input signal is composed of K cisoids with additive complex
noise, i.e.

x(n) =
K∑

k=1

dk(n) + w(n) =
K∑

k=1

Ak(n)ejωk(n)n + w(n)
where Ak(n) and ωk(n) are the amplitude and the instantaneous
frequency of the kth cisoid and w(n) is an additive white com-
plex centered noise. The basic idea of the extension is to use one
frequency tracking algorithm from Section 2.1 to track each com-
ponent. However, because the band-pass filters (1) are not ideal
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Fig. 2. Frequency tracking example. (top) Input signal; (b

nes, each of them will “see” the other components. This can lead
o errors, especially for components close in the frequency domain.

solution to this problem is to use all-zero filters to cancel inter-
erence from other components (Rao and Kumaresan, 2000).

The number of components K is assumed to be known. Each
omponent is tracked with two adaptive filters; an all-zero fil-
er and a band-pass filter. The band-pass filter is the same as for
he single frequency case (1). The all-zero filter is composed of
− 1 complex zeros whose locations are defined by the frequencies

ωi(n)}p
i=1,i /= k

. The transfer function of the kth all-zero filter is

k(z, n) = Ck(n)
K∏

i = 1
i /= k

[1 − �ejωi(n)z−1]

here � (0 � � ≤ 1) is the modulus of the zero and Ck(n) is a
ormalization coefficient to ensure unit gain and zero phase at fre-
uency ωk(n). Because the true frequencies are unknown, they are
eplaced with their estimates in the filters.

However, the additional all-zero filters introduce perturbation
n the global response, which might not be pure band-pass any-

ore, resulting in unwanted frequencies leaking to the output.
oreover, longer filters reduce the convergence rate of the algo-

ithm. An alternative is to select only one zero for the kth all-zero
lter. This zero is placed at the tracked frequency closest to the kth

requency. This solution offers a good tradeoff between interfer-
nce suppression, tracking speed and the band-pass characteristic
f the overall filter.

.3. Multi-signal extension

In several practical situations, particularly with EEG/MEG sig-
als, the information of interest is observed with multiple sensors.
hese signals are often highly correlated. Therefore, instead of
racking the frequencies separately for each signal, the joint pro-
essing will improve the tracking performance, the convergence

peed and the robustness of the adaptive algorithm (Prudat and
esin, 2009). This joint processing is done by applying the same
lters to each signal. These filters are then updated jointly with a
eighted update. The weights are chosen in order to favor the sig-
als that better satisfy the oscillation cost function (3). Therefore,
) output signal of the single frequency tracking scheme.

the weights are obtained by dividing an estimate of the band-pass
filter output variance by an estimate of (3). The output variance is
used to yield a scale-independent scheme.

In practice, the cost function and output variance estimates are
computed with exponentially weighted averages. The cost function
instantaneous estimate Ĵk,m(n) for the kth band-pass filter for the
mth signal is defined as

Ĵk,m(n) = ıĴk,m(n − 1) + [1 − ı]|yk,m(n) − ˛k(n)yk,m(n − 1)|2

where ı is the same forgetting factor as the one used in (4), and
yk,m(n) is the output of the kth band-pass filter for the mth signal.
Analogously, the output variance instantaneous estimate Ŝk,m(n) of
the kth band-pass filter for the mth signal is given by:

Ŝk,m(n) = ıŜk,m(n − 1) + [1 − ı]|yk,m(n)|2.

The weights are then:

Wk,m(n) = Ŝk,m(n)/Ĵk,m(n)
M∑

l=1

Ŝk,l(n)/Ĵk,l(n)

.

Finally, the update of the kth tracked frequency is:

ωk(n + 1) =
M∑

m=1

Wk,m(n)ωk,m(n + 1)

where ωk,m(n + 1) is the kth frequency tracked separately for the
mth signal. The update is performed on the tracked frequencies
instead of directly updating the adaptive coefficients ˛k(n + 1) as
was done in (4). This modification is made necessary because a
weighted update of the unit-modulus ˛k,m(n + 1) will not lead to a
unit-modulus ˛k(n + 1).

2.4. Examples on synthetic signals
The capabilities of these frequency tracking algorithms are illus-
trated with a few synthetic signals. The first example illustrates the
interpretation problem of the instantaneous phase (obtained with
the Hilbert transform) when the signal is not narrow-band. A sim-
ple signal composed of two sinusoids with additive white Gaussian
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als) for condition IC and 276 trials (265 trials) for condition
NC were visually selected with the Cartool software by Denis
Brunet (http://brainmapping.unige.ch/Cartool.htm). A threshold of
±80 �V for artifact rejection was used for each epoch. Each trial
represents 2000 ms of EEG data, with the stimulus onset at 500 ms.
ig. 3. Frequency tracking example. The dashed black lines denote the true frequen-
ies.

oise (AWGN) is considered. It is defined as

(n) = sin(2�0.1n) + 1
2

sin
(

2�0.2n + �

4

)
+ w(n) (5)

here w(n) is the AWGN with variance set to 0.01 (SNR of
7 dB for the first sinusoid and 11 dB for the second sinusoid).
he frequencies are estimated with the Hilbert transform (dif-
erentiation of the phase), the single frequency tracker and the

ultiple frequency tracker (set to track two components). The
arameters of the adaptive schemes are set as follows, ˇ = 0.95,
= 0.95, � = 1. The initial frequencies are 0.15 for the single

requency tracker and 0.14 and 0.16 for the multiple frequency
racker.

The input signal (5) is shown, along with the output from the
ingle frequency tracker, in Fig. 2, while the frequency estimates
re shown in Fig. 3. Intuitively, the instantaneous frequency should
e located between the true frequencies (0.1 and 0.2), which is
ot the case in this example due to the broad-band characteris-
ic of the signal. In fact, even without AWGN, the instantaneous
requency estimate obtained with the Hilbert transform is still
pproximately the same (not shown). However, these results can be
mproved by smoothing the instantaneous frequency at the cost of
emporal resolution, because the smoothing filter should be rather
ong. Nevertheless, both adaptive schemes provide sensible results
fter approximately 100 samples. The single frequency tracker
elects only one component, depending on its power and the initial-
zation. The multiple frequency tracker converges slightly earlier
ue to the all-zero filters which attenuate the cross-frequency

nterferences. Moreover, the output signals of the trackers (the
utput of the single frequency tracker is shown in Fig. 2) are
arrow-band signals and their phase can be extracted with the
ilbert transform for further processing without interpretation
roblems.

Next, a multiple frequency tracking example is presented. The
ignal is composed of three oscillatory components and AWGN.
he SNR is set to 10 dB with respect to each component. The first
omponent is a sinusoid with a shift in frequency from 0.1 to 0.2
fter 400 samples, the second one is a chirp from 0.2 to 0.45, and
he third one is a chirp from 0.45 to 0.1. The multiple frequency

racker is applied with the following parameters and initial fre-
uencies: ˇ = 0.975, ı = 0.95, � = 0.95, f1(0) = 0.1, f2(0) = 0.2 and

3(0) = 0.45. The results are shown in Fig. 4. One observes that the
requency estimates follow closely the true frequencies (denoted
y dashed lines) and that they even can cross each other to track
he time-varying frequencies.
Fig. 4. Multiple frequency tracking example. The dashed lines denote the true fre-
quencies.

3. Results

The data we present have been taken from a previously
published study examining the spatio-temporal mechanisms of
illusory contour perception with broad-band event-related poten-
tials (Murray et al., 2002). This paradigm was chosen here as
it represents a typical situation where time–frequency analyses
based on wavelet decomposition have been extensively applied
and have led to propositions regarding the role of gamma oscil-
lations as a binding mechanism in human cortex (Tallon-Baudry
and Bertrand, 1999). Full paradigmatic details can be obtained in
the original study. Here, we provide only the most relevant details.

Participants in the study viewed arrays of ‘pac-man’ inducers
that were presented in either of two orientations. In the illusory
contour (IC) condition, the ‘mouths’ of the inducers were oriented
so as to produce the illusory perception of a central square. In the no
contour (NC) condition, the inducers were all turned 180◦ outwards
to prevent the perception of a central illusory square (see Fig. 5 for
an example). The timing of presentations was such that each stim-
ulus appeared for 500 ms, followed by a blank screen for 1000 ms.
Then a Y/N response prompt appeared and remained on the screen
until a response was made, allowing subjects to control stimulus
delivery. A blank screen (1000 ms duration) followed responses.
Use of the response prompt was motivated by the desire to dimin-
ish the impact of motor responses on the sensory event-related
potentials.

Continuous EEG was acquired through Neuroscan Synamps
from 64 scalp electrodes (impedances ≤ 5 k�), referenced to the
nose, band-pass filtered from 0.05 to 100 Hz, and sampled at
500 Hz.

The EEG signals of two subjects were investigated. For the
first subject (respectively the second subject) 279 trials (262 tri-
Fig. 5. Example of visual stimuli: illusory contour (IC, left) and no contour (NC, right).

http://brainmapping.unige.ch/Cartool.htm
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signal is difficult to assess with EEG data whose frequency compo-
nents are not known a priori. However, with synthetic signals, the
single-signal scheme can be compared rigorously to its multi-signal
extension with Monte Carlo simulations; the gain in estimation
Fig. 6. Frequency tracking on an EEG signal for the IC

nce the trials were extracted, all further processing was per-
ormed in Matlab®.

The parieto-occipital electrode PO4 was selected as it is the
ne where the maximal difference was obtained in the broad-band
vent-related potential (see Murray et al. (2002) for details). This
ignal was processed as follows. It was resampled at 250 Hz and
ltered into two bands: �-band (4–8 Hz) and �-band (30–80 Hz).
inally, the single frequency tracking algorithm was applied to
hese two bands in order to obtain the filtered outputs and the fre-
uency estimates. The algorithm was initialized with the mirrored
rst 500 ms of each trial, the frequency estimates were initialized to
he central frequency of each band (6 Hz for �-band and 55 Hz for
-band) and the parameters were set to ˇ = 0.975 and ı = 0.95.
his choice of parameters results from a tradeoff between track-
ng speed and estimation variance. Practically, the tracking scheme

as applied to a subset of EEG data for various parameter values.
he frequency estimates and filtered outputs were then visually
nspected in order to select the parameters that yield the best com-
romise between convergence speed and tracking accuracy. The
rocedure for initializing the tracked frequencies is rather rudi-
entary: the central frequency of each band is selected (or evenly

paced frequencies over the gamma band for the multi-frequency
xtension). Clearly, more sophisticated methods should be inves-
igated, but, for the purpose of illustrating the tracking capabilities
f the presented scheme, this basic initialization is sufficient.

An example of oscillation tracking for the �-band is shown in
igs. 6 and 7. Fig. 6 shows the input signal in the top panel and
he output signal in the bottom panel. The output signal con-
ains only the oscillation tracked. Therefore, the tracker provides
narrow-band output signal compared to the broad-band input

ignal. In Fig. 7, frequency estimates are compared to a smoothed
seudo Wigner–Ville distribution (Flandrin, 1999) of the input sig-
al. This type of time–frequency representation leads to a slightly
etter resolution for short-duration signals compared to short-time
ourier transform. It is computed with the Time Frequency Toolbox
http://tftb.nongnu.org/). The adaptive algorithm is able to track a
iven oscillation even if its frequency and amplitude vary over time.

he sharp transition in the first 50 ms is due to the initialization
f the internal variables (Q (n) and P(n)) of the adaptive algorithm
hich increases its variability for a short duration. In order to alle-

iate this kind of problem, a narrower frequency band can be used
r the multi-frequency tracker can be applied. Nonetheless, the
ition: input signal (top) and output signal (bottom).

impact of the initialization process is very limited when applying
the tracking scheme to a time segment larger than the period of
interest. A burst of oscillatory activity at 40 Hz and 1500 ms seems
to be ignored by the tracker. In fact, it is so because the tracker is
already following another frequency component and the burst is
not powerful enough to attract it.

Another example to illustrate the multiple frequency tracker, for
the single-signal case and the multi-signal case, is shown in Fig. 8.
The parameters are the same as for the single frequency case. All
zeros are used for the zero filters and the modulus of the zeros is
set to � = 1. The initial frequencies are 42.5, 55 and 67.5 Hz. The
estimated frequencies are compared with the smoothed pseudo
Wigner–Ville distribution of the input signal. The results obtained
with one electrode (PO4) and a cluster of electrodes (PO4, P4,
PO6 and P6) are very similar. However, the multi-signal exten-
sion seems to track the oscillations more accurately by taking
advantage of the redundant information of closely spaced elec-
trodes. The gain in estimation accuracy when using more than one
Fig. 7. Frequency tracking on an EEG signal for the IC condition: the estimated fre-
quencies (white) follow closely a time-varying oscillation. The vertical white dashed
line denotes stimulus onset.

http://tftb.nongnu.org/
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ig. 8. Example of multiple frequency tracking on EEG signals for the IC condition:
racking on signal recorded with electrode PO4 (solid), tracking on signals recorded
ith electrodes PO4, P4, PO6 and P6 (dashed) and stimulus onset (vertical dashed).

ariance is approximately M for M input signals (Prudat and Vesin,
009).

.1. Statistics

Two statistics for discriminating the IC and NC conditions were
nvestigated. The first statistic is simply the mean estimated fre-
uency in the �-band, and the second statistic is the phase–phase
oupling between the �-band and the �-band obtained with a syn-
hronization measure. These statistics were estimated over sliding
indows of lengths ranging from 100 ms to 1000 ms in 100 ms steps

tradeoff between time resolution and estimation precision), with
ime shift of 10 ms. The time shift was used to inspect the variations
f the statistics over time. Then these estimates were transformed
nto approximately normal random variables, if needed, and two-
ample t-tests with unequal variance were applied to compare
onditions. Thus, the use of sliding windows provides time-varying
-values.
.1.1. Mean estimated frequency
The tracking algorithm yields an instantaneous frequency esti-

ate, which can be used to define a basic statistic. The mean

ig. 9. Mean estimated frequency computed over a 400 ms window. (top) p-value for t
requency over trials for each subject and each condition. The vertical dashed lines indica
nce Methods 186 (2010) 97–106

estimated frequency statistic is computed by averaging the fre-
quency estimates of the tracker over a sliding window. Before
comparing the two conditions with t-tests, a Jarque–Bera test
(Jarque and Bera, 1987) was applied to ensure that this statistic
follows approximately a normal distribution. The results of the
comparison of the two conditions are shown in Fig. 9. It appears
that the mean estimated frequency is significantly higher for IC
than NC condition over the intervals 200–1000 ms for subject 1
and 300–800 ms for subject 2 with respect to stimulus onset. More-
over the p-values are very small in these intervals. For example, at
t = 1000 ms, the p-value is smaller than 10−7 for subject 1 and 10−3

for subject 2.

3.1.2. Phase–phase couplings
The phase–phase couplings between the �-band and the �-

band were measured with the phase synchronization index (PSI)
(Mormann et al., 2000; Quian Quiroga et al., 2002) (for similar
approaches, see Tass et al., 1998; Lachaux et al., 1999). It is com-
puted with the phases of the signals of interest.

The phase �x(n) of a signal x(n) is extracted from the analytic
signal, Zx(n) = x(n) + jx̃(n) = Ax(n)ej�x(n), where x̃(n) is the discrete
Hilbert transform of x(n). The phase �y(n) of y(n) is defined simi-
larly. As mentioned previously, the physical interpretation of the
phase of broad-band signals can be difficult (Nho and Loughlin,
1999; Celka, 2007). The signals x(n) and y(n) are said to be a : b syn-
chronized if their (a, b) phase difference, a�x(n) − b�y(n), remains
bounded for all n, with a and b positive integers. The PSI is defined
as follows:

Px,y = | E{ej[a�x(n)−b�y(n)]} |. (6)

It will be equal to one when the phase difference is constant (signals
perfectly synchronized) and will be equal to zero when the signals
are not synchronized at all. In practice, the expectation in (6) is
replaced with the sample mean.

The PSI is computed with the phase of the �-oscillation, ��(n)
and the phase of the �-oscillation, ��(n), and for coefficients (a, b)

values (6, 1), (7, 1) and (8, 1). Additionally, in order to compare the
classical approach and the adaptive tracking approach, the phases
are extracted from the signals filtered with the fixed band-pass
filters and from the output signals of the frequency tracking algo-
rithm. Then the PSIs are transformed into approximately normal

he difference between IC and NC for each subject and (bottom) mean estimated
te stimulus onset and the horizontal dashed line is the 5% significance level.
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ig. 10. Phase–phase couplings computed with the outputs of the fixed band-pass
-value for the difference between IC and NC for each subject and (bottom) mean PSI
nset and the horizontal dashed line is the 5% significance level.

andom variables with an arcsine transform (Penny et al., 2008):

x,y = arcsin(2Px,y − 1).

inally, a two-sample t-test with unequal variance is applied to
ompare the IC and NC conditions for each subject.

The results obtained without the frequency tracking algorithm
or (a, b) = (7, 1) are shown in Fig. 10. Clearly, no significant differ-
nce between IC and NC for either of the subjects is observed.

Applying the frequency tracking scheme before computing the
SIs leads to better results, as shown in Fig. 11. The PSI, computed
ith (a, b) = (7, 1), is significantly higher for condition IC in the
nterval 330–430 ms with respect to stimulus onset for both sub-
ects. In this interval, the p-value reaches values as low as 10−3 for
ubject 1 and 10−4 for subject 2.

The results obtained with the frequency tracking algorithm,
ith (a, b) set to (6, 1) and (8, 1), are shown in Figs. 12 and 13

ig. 11. Phase–phase couplings between the �-band and the �-band over a 400 ms wind
top) p-value for the difference between IC and NC for each subject and (bottom) mean PS
timulus onset and the horizontal dashed line is the 5% significance level.
s between the �-band and the �-band over a 400 ms window, (a, b) = (7, 1). (top)
rials for each subject and each condition. The vertical dashed lines indicate stimulus

respectively. In both cases, there are significant differences (higher
PSIs for IC) between conditions IC and NC in similar intervals as
for (a, b) = (7, 1). However, from these observations, the choice of
the coupling coefficients (a, b) that yields the most significant dif-
ferences seems to be subject-dependent. For subject 1, the choice
(a, b) = (6, 1) appears to be the most appropriate, while for sub-
ject 2 it is (a, b) = (7, 1). The results obtained without the adaptive
scheme are not presented for the coupling coefficients (6, 1) and (8,
1) because they are very similar to the case (a, b) = (7, 1) and show
no significant difference.
4. Discussion

Oscillatory phenomena have gained increasing importance in
the field of neuroscience, particularly because improvements in
analysis methods have revealed how oscillatory activity is both

ow computed with the outputs of the frequency tracking algorithm, (a, b) = (7, 1).
I over trials for each subject and each condition. The vertical dashed lines indicate
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ig. 12. Phase–phase couplings between the �-band and the �-band over a 400 ms
top) p-value for the difference between IC and NC for each subject and (bottom) m
timulus onset and the horizontal dashed line is the 5% significance level.

highly efficient and also information-rich signal. One paradig-
atic shift in the conceptualization of oscillatory activity has been

o consider not only changes within a particular frequency band,
ut also the interactions and synchronizations between frequencies
f brain activity that are in turn thought to coordinate responses
etween widespread brain areas and may represent a key “binding”
echanism necessary for perception, consciousness and actions.

he methods developed here focus on the non-invasive and quan-
itative assessment of such oscillatory activity. In particular, the
daptive tracking scheme developed here can precisely extract a
ime-varying oscillation as well as estimate its frequency. It com-
ines, to a certain extent, the advantages of narrow and wide

and-pass filters while avoiding many of their drawbacks. More-
ver, extensions to multiple components and multiple signals are
ossible that take into account some important characteristics of
EG data: several oscillations are active simultaneously and redun-

ig. 13. Phase–phase couplings between the �-band and the �-band over a 400 ms wind
top) p-value for the difference between IC and NC for each subject and (bottom) mean P
timulus onset and the horizontal dashed line is the 5% significance level.
ow computed with the outputs of the frequency tracking algorithm, (a, b) = (6, 1).
SI over trials for each subject and each condition. The vertical dashed lines indicate

dant information can be carried across sensors. In what follows we
first discuss the implications of these methods from a signal anal-
ysis perspective. We then consider some potential applications of
these methods to neuroscientific research.

The adaptive algorithm and its extensions described in this
paper are specifically aimed at tracking oscillations. The updating
mechanism is designed to minimize an oscillatory criterion (3). An
important point is that it is not based on a signal model, but merely
assumes that oscillatory activity is an important aspect of EEG data.
With such a cost function, oscillations can be extracted even during
low amplitude data segments. This provides additional informa-
tion compared to traditional time–frequency analysis where, below

a certain power level, an oscillation can no longer be observed.
Moreover, the oscillations are extracted with an adaptive band-pass
filter, which can be made extremely narrow (at the cost of track-
ing speed). This filter has unit gain and zero phase at its central

ow computed with the outputs of the frequency tracking algorithm, (a, b) = (8, 1).
SI over trials for each subject and each condition. The vertical dashed lines indicate
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requency, which is extremely important for further processing
hen phase extraction is involved. With these characteristics, this

racking method is a particularly appropriate tool for EEG (and
EG) data processing and analyses.
Traditional methods for extracting oscillations rely on fixed

and-pass filtering. While this approach has proved to be useful,
t has a few drawbacks. If a wide frequency band is chosen to take
nto account the time-varying frequency of the considered oscilla-
ion, noise and interfering oscillations will leak through the filter.
herefore, the output signal will not be narrow-band, and its instan-
aneous phase will be difficult to interpret. If, on the contrary, a
arrow band-pass filter is selected, the phase of the output sig-
al will be reliable. However, a time-varying oscillation will not
e extracted over its whole duration, because its frequency will
ometimes be outside of the chosen frequency band. The track-
ng scheme presented here is motivated by this tradeoff between
espective benefits of a wide filter and a narrow filter. The filtering
peration will damp the transients, but this problem is inherent to
ll methods based on filters. Nevertheless, when investigating cou-
ling mechanisms, this adaptive scheme might still prove useful.

Some limitations of the present approach are also worth men-
ioning. Due to the adaptation process, it would be difficult to track
n oscillatory component whose frequency varies very rapidly. But,
n most cases for EEG signals, the changes in frequency are relatively
mooth, letting the adaptive filter follow the considered oscillation
recisely (maybe with a slight delay after abrupt changes). It can
till track oscillatory components with shifting frequency as long
s the shifts are not too large and not too frequent. Short-duration
ursts of oscillatory activity might also be missed by the pro-
osed method, especially bursts isolated in the frequency domain.

ndeed, such bursts are too short to have a decisive impact on
he tracker. Nevertheless, the tracking scheme can still be applied
s a pre-processing tool when investigating cross-frequency cou-
lings. Indeed, several studies measured such couplings on long
ime segments (Canolty et al., 2006) wherein extremely short oscil-
atory bursts have very limited impact. Another issue concerns
he multi-component extension. By cascading several all-zero fil-
ers, the resulting filter loses its pure band-pass response. But this
roblem can be handled by picking only the closest zero, at the
ost of slight interference leaking (as mentioned in Section 2.2).
nother important aspect is that this oscillation tracking scheme
till requires fixed band-pass filtering. Usually the power spectral
ensity is inversely proportional to frequency (1/f ˛ spectrum) in
EG data (Freeman et al., 2000). Thus, the presented algorithm
ill not be able to extract a high-frequency oscillation if the high-

mplitude low-frequency components have not been filtered out.
evertheless, it is clearly possible to use wide band-pass filters
efore applying the tracking scheme, as was done in Section 3.1.2.
n important aspect should still be emphasized for the single fre-
uency tracker: it can only extract one frequency component and

n a wide frequency band there is usually more than one active
scillation at a given time. Thus, some information might be lost.
his problem is also present when using the multi-frequency exten-
ion but its impact is much less important. Indeed, the present
ethod cannot detect the appearance or disappearance of oscil-

ations. Therefore, when the multi-frequency extension is applied
ith three filters (for example), it is not able to handle a fourth com-
onent and simply ignores it. Nonetheless, we hope to improve the
racker in order to detect arising and fading components and adapt
he number of filters.

The tracking capabilities of the presented adaptive algo-

ithm were first evaluated with synthetic signals. An important
spect is its robustness for frequency estimation compared to
he Hilbert transform for signals that are not strictly narrow-
and. Moreover, several time-varying oscillations can be extracted
imultaneously.
ce Methods 186 (2010) 97–106 105

The oscillation tracking method was applied to EEG data in order
to assess its usefulness for EEG processing. Two statistics revealed
significant differences between experimental conditions (here the
presence/absence of an illusory visual percept) recorded during a
visual evoked potential experiment. The first statistic indicates that
the frequency increase in the �-band is significantly higher for the
IC than for the NC condition. The second statistic shows a higher
phase–phase coupling between the �-band and the �-band for IC
than NC trials. An interesting point is that significant effects were
only obtained with the oscillation tracking scheme. So it seems
that the oscillation of interest is overshadowed by interference
and noise when measuring phase–phase couplings over the whole
band. An alternative, though in our view unlikely possibility, is that
the present methods are overly prone to false positives.

The differences between experimental conditions were signifi-
cant for the coefficients (6, 1), (7, 1) and (8, 1). This suggests that the
�-oscillation is 6–8 times faster than the �-oscillation, or, alterna-
tively, that during one �-cycle, there are between 6 and 8 �-cycles,
depending on the individual. While further research is required to
establish objective and quantitative methods for the selection of
a particular coefficient, the present results nonetheless highlight
how functionally relevant inter-individual variations in oscillatory
brain activity can also be detected and discerned using the current
approach. In addition, these methods can likely facilitate the eval-
uation of putative hierarchical relationships between oscillatory
phenomena (Schroeder and Lakatos, 2009a,b). Still, a clear direc-
tion for continued development will be the application of these
tracking procedures to estimated intracranial signals throughout
the brain volume (Gonzalez Andino et al., 2005a,b; Martuzzi et al.,
2009).

The development of the methods described in this manuscript
has been driven by an increased understanding of the role of
neuronal oscillations in sensory-cognitive information processing.
There is now widespread consensus that sensory-cognitive pro-
cessing is actively controlled by top-down influences, instead of
treating external stimuli in a passive, purely bottom-up manner
(Varela et al., 1991; Engel et al., 2001). Recent findings support the
fundamental role of oscillatory activity in the top-down control of
perception and brain responses (Buzsaki, 2006). Several hypothe-
ses have been formulated in order to describe the role of oscillations
and their relations with specific brain functions and behaviors. But,
at this time, these relations remain poorly understood. Another
aspect of the brain oscillatory activity is the interaction of oscil-
lations in different frequency bands. These interactions take place
through coupling mechanisms (Jensen and Colgin, 2007). Such
cross-frequency couplings could be the mechanism by which oscil-
lations in different frequency bands are unified. Cross-frequency
couplings can manifest as interactions between amplitude, phase
and frequency of the observed signal, including nested oscillations
(Canolty et al., 2006) or a:b phase synchrony (Tass et al., 1998).
They can be quantified with different measures, like the PSI, the
envelope-to-signal correlation (Bruns and Eckhorn, 2004) or the
modulation index (Canolty et al., 2006). The adaptive methods pre-
sented in this paper are especially relevant in such cases. Indeed,
these coupling measures could take advantage of signals where the
oscillations are precisely extracted.

In conclusion, this novel adaptive scheme can be used as an addi-
tional processing step for the analysis of EEG data. It is particularly
attractive when precise oscillation extraction is required or when
coupling measures based on phase are applied (like the PSI).
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