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A B S T R A C T   

The neurobiological mechanisms underlying the effects of delta-9-tetrahydrocannabinol (THC) remain unclear. 
Here, we examined the spatial acute effect of THC on human regional brain activation or blood flow (hereafter 
called ‘activation signal’) in a ‘core’ network of brain regions from 372 participants, tested using a within-subject 
repeated measures design under experimental conditions. We also investigated whether the neuromodulatory 
effects of THC are related to the local expression of the cannabinoid-type-1 (CB1R) and type-2 (CB2R) receptors. 
Finally, we investigated the dose-response relationship between THC and key brain substrates. These meta- 
analytic findings shed new light on the localisation of the effects of THC in the human brain, suggesting that 
THC has neuromodulatory effects in regions central to many cognitive tasks and processes, related to dose, with 
greater effects in regions with higher levels of CB1R expression.   

1. Introduction 

The extract of Cannabis sativa contains more than 140 different 
phytocannabinoids (Hanuš et al., 2016). Delta-9-tetrahydrocannabinol 
(THC) is the most abundant and extensively investigated cannabinoid 
in human and preclinical studies. While there is growing interest in the 
therapeutic potential of THC (Friedman and Devinsky, 2015; Smith 
et al., 2015; Davis, 2016; Marinelli et al., 2017; Collin et al., 2007; 
Abrams et al., 2007; Mücke et al., 2018; Narang et al., 2008; Svendsen 
et al., 2004; Wilsey et al., 2008), there is also considerable evidence of its 
psychotomimetic effects in healthy (Bhattacharyya et al., 2012a, 2009, 
2015a; D’Souza et al., 2004; Morrison et al., 2009; Colizzi et al., 2020) 

and vulnerable people (Bhattacharyya et al., 2012b), as well as those 
with schizophrenia (D’Souza et al., 2005), and an association between 
THC content of recreational cannabis with a greater risk of onset (Di 
Forti et al., 2015, 2019) and relapse (Schoeler et al., 2016a) of psychotic 
disorders. Thus, there is a pressing need to better understand the effects 
of THC on the human brain. 

A substantial number of studies have investigated the effects of THC- 
rich cannabis or THC isolate using single photon emission tomography 
(SPECT)/ positron emission tomography (PET) to measure cerebral 
blood flow (rCBF) (Volkow et al., 1996, 1991; Mathew et al., 1997, 
1992, 1998, 1999, 2002, 1989; Mathew and Wilson, 1993) at rest, and 
functional MRI (fMRI) to measure the blood oxygen level dependent 
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haemodynamic signal during cognitive activation (Bhattacharyya, Sep 
24 et al., 2012; Gunasekera et al., 2021) to index brain function. How-
ever, conflicting results from these studies have not resulted in a clearer 
understanding as evident from two recent systematic reviews (Gunase-
kera et al., 2021; Bloomfield et al., 2019). 

Further, the molecular underpinnings of the effects of THC on human 
brain function remain unclear. As the cannabinoid-type-1 receptor 
(CB1R), the main molecular target for THC is present throughout the 
brain (Mackie, 2005; Zou and Kumar, 2018), systemic administration of 
THC cannot selectively target receptors only in those brain regions 
involved in discrete cognitive tasks. Therefore, consistent with recent 
neuroimaging evidence that a core network of brain regions subserve a 
wide range of cognitive processes (Shine et al., 2019; Krienen et al., 
2014), it is likely that the diverse behavioural and neuroimaging effects 
of THC are, at least in part, mediated by effects on such a core network of 
brain regions. However, whether THC has neuromodulatory effects, that 
is, effects on regional brain activation or blood flow (hereafter, referred 
collectively as ‘activation signal’) that occur across diverse (as opposed 
to specific/unique) cognitive tasks and at rest on a common ‘core’ 
network of brain regions that subserve a multitude of processes, has 
never been tested. 

Therefore, to answer these questions, here we first meta-analysed 
original studies that had examined the acute effects of THC, relative to 
placebo, on brain function in humans using PET, SPECT, fMRI, and 
arterial spin labelling (ASL), with a view to investigate which brain re-
gions are modulated acutely by a single dose of THC in humans. We 
hypothesised that a single dose of THC will modulate the function of a 
distributed set of brain regions that are engaged across a range of 
cognitive tasks in line with previous literature (Shine et al., 2019; 
Krienen et al., 2014). Specifically, we predicted THC effects on dorsal 
attention (superior parietal lobule extending to the intraparietal sulcus, 
middle temporal complex and frontal eye fields), frontoparietal (lateral 
prefrontal cortex, temporoparietal junction, inferior parietal lobule and 
anterior cingulate cortex) and visual (striate and extrastriate cortex) 
networks as well as on the amygdala, striatum, thalamus and lateral 
cerebellum. Next, we used gene expression data from the Allen Human 
Brain atlas (Arnatkevic̆iūtė et al., 2019; Hawrylycz et al., 2012), to 
investigate whether the effect of THC on the activation signal across 
different brain regions, as quantified using a meta-analytic approach, 
was directly associated with regional CB1R (National Center for 
Biotechnology Information, 2017) and CB2R (UniProt, 2015) gene 
expression. Previous studies have linked gene expression levels in the 
human brain with anatomical (Manza et al., 2020) and functional 
(Hawrylycz et al., 2015; Richiardi et al., 2015) indices measured using 
neuroimaging techniques. In accordance with current understanding 
about the molecular targets of THC (Pertwee, 2008) we hypothesised 
that the pooled estimate of the effect of THC on the activation signal 
across different brain regions will be directly associated with CB1R but 
not CB2R gene expression in these brain regions. 

2. Methods 

The protocol for the meta-analytic synthesis was registered in 
PROSPERO (CRD42019145453) and we followed recommendations for 
neuroimaging meta-analyses (Müller et al., 2018). A detailed descrip-
tion of the methods is reported in Supplementary Methods. 

2.1. Search strategy 

A systematic search of published human literature was conducted 
within Ovid MEDLINE, Embase, Global Health, and PsychINFO data-
bases in accordance with the Cochrane Handbook (Higgins et al., 2019) 
and MOOSE guidelines (Stroup et al., 2000). Search terms are detailed in 
Supplementary Methods. 

2.2. Eligibility criteria 

Studies were included if they (i) assessed the effect of THC on brain 
function using an acute drug challenge paradigm in humans, (ii) used 
fMRI, PET, SPECT or arterial spin labelling (ASL) to measure brain 
function, (iii) conducted whole-brain analysis (thus excluding small 
volume correction and region of interest analyses), (iv) applied consis-
tent statistical thresholding across brain regions, and (v) published in a 
peer-reviewed journal. Additional details are reported in Supplementary 
Methods. 

2.3. Data extraction 

For all articles that met the inclusion criteria, authors or corre-
sponding authors were contacted by email with a request for providing 
whole brain statistical maps. Studies that used multiple task contrasts 
related to the same cognitive paradigm were combined. This was to 
ensure reduced variance in the analyses (Norman et al., 2016). 

Where maps were unavailable, whole-brain coordinates with their t- 
statistic were manually extracted from the published article for the 
conditions of interest (THC<PLB and THC>PLB). See Supplementary 
Methods for further details. 

2.4. Data analysis 

Voxel-wise meta-analyses of regional brain differences were con-
ducted using the anisotropic effect-size version of the Seed-based Map-
ping (AES-SDM 5.15) software package (https://www.sdmproject.com/ 
) (Radua et al., 2014, 2013). For studies for which we could not obtain 
the map, AES-SDM uses an anisotropic non-normalized Gaussian kernel 
to recreate an effect-size map and an effect-size variance map for the 
contrast between THC and placebo from peak coordinates and effect 
sizes for each individual fMRI study. Once contrasts were obtained for 
all studies, a mean map was created by performing a voxel-wise calcu-
lation of the random-effects mean of the study maps (measured as 
Hedge’s g), weighted by sample size and variance of each study and 
between-study heterogeneity. Statistical significance was determined 
using standard randomisation tests (Radua et al., 2010). Coordinates of 
cluster peaks and cluster extent are reported using MNI coordinates. 
Each cluster peak was examined using a human brain atlas in order to 
visually inspect the peak region (Adams, 1978). 

Several steps were adopted to address the issue of heterogeneity. 
Firstly, to assess the level of heterogeneity between the studies included 
for analysis we used the classical measure of heterogeneity, Cochran’s Q 
(QH). QH statistics were assessed in terms of a chi-square distribution 
and reported after conversion to standard z values to create a map. This 
map was overlaid on the final mean map for visual inspection of areas of 
overlapping significant heterogeneity with areas of thresholded activa-
tion or attenuation signal. The I2 statistic was also estimated to deter-
mine the extent to which variability in estimates of effect-size in brain 
regions modulated by THC compared to placebo was a result of het-
erogeneity as opposed to sampling error. Between the studies included 
for meta-analysis, there were differences in THC dose, route of THC 
administration, type of imaging technique (e.g., fMRI, PET, ASL), and a 
presence or absence of activation tasks. Therefore, we employed a 
random-effects rather than a fixed-effects model to estimate the pooled 
effect-size. Further, to better understand the sources of heterogeneity, 
we conducted subgroup analysis to look at more homogeneous groups 
such as THC isolate, scanner magnetic field strength, and fMRI studies 
alone (when three or more contrasts were available, see Supplementary 
subgroup analyses). As heterogeneity in effect-sizes may also be a result 
of studies with extreme sizes, we also carried out jack-knife leave-one- 
out sensitivity analysis. In a jack-knife analysis, each analysis was 
repeated excluding 1 single study at a time to establish whether each 
cluster remained statistically significant. Finally, Egger’s test was used 
to assess the asymmetry of funnel plots to examine potential publication 
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bias (Egger et al., 1997). This was conducted to assess whether small or 
imprecise studies reported larger effect sizes. ‘Small’ studies with 
negative results may be less likely to be published, and conversely, large 
studies are more likely to be published even with negative findings. 
Funnel plots also highlight heterogeneity in estimates between studies 
and was therefore used as a way to assess heterogeneity between the 
studies for each significantly cluster where brain signal was significantly 
modified following THC, compared with placebo. 

2.5. Meta regression analysis: dose 

A multiple meta-regression analysis was carried out using ap-
proaches described previously (Radua and Mataix-Cols, 2009) using a 
significance threshold of P < 0.0005 (Radua et al., 2014; Radua and 
Mataix-Cols, 2009). We set out to investigate the association between 
THC dose and pooled effect-size (Hedge’s g). To control for the con-
founding effect of the route of THC administration, we also entered the 
route of THC delivery (inhalation via respiratory tract versus oral 
capsule) as categorical predictor. Cook’s distance (Cook, 2011) was 
calculated to identify any studies that were a potential outlier. 

2.6. Whole brain correlation with CNR1 and CNR2 gene expression 

Detailed description of the analytic pipeline including processing of 
genetic data from the Allen Human Brain Atlas is reported in Supple-
mentary Methods. In summary, from the neuroimaging data synthesis, 
using SDM, we extracted the effect-size estimates of the voxel of the 
centroid for each of the 78 regions of the Desikan-Killiany (Desikan 
et al., 2006) atlas from our main analysis. Then, we carried out linear 
regression analysis with the SDM effect-size estimates for brain regions 
in the Desikan-Killiany (Desikan et al., 2006) atlas as the dependent 
variable and the corresponding average CNR1 and CNR2 gene expres-
sion values derived from the Allen Human Brain Atlas as the predictor 
variables using Python 3.7.9 (Python Software Foundation, 2016). We 
followed the recommendations put forward by Arnatkevic̆iūtė and col-
leagues with regard to processing mRNA microarray expression data 
from the Allen Human Brain Atlas (Arnatkevic̆iūtė et al., 2019) and used 
the package abagen (Markello et al., 2020) to conduct a reproducible 
workflow in processing and preparing the data. 

2.7. Subgroup analysis 

We performed subgroup analysis on studies that employed similar 
cognitive paradigms to investigate the differential effect of THC on brain 
activation when three or more contrasts were available. 

3. Results 

3.1. Included studies 

A final set of 22 manuscripts met the study inclusion criteria 
(Table 1) (Bhattacharyya et al., 2012a, 2017, 2009; Jansma et al., 2013; 
Freeman et al., 2018; Bossong et al., 2012a, 2012b, 2013a, 2019, 2015b; 
Battistella et al., 2013; Lee et al., 2013; Walter et al., 2019, 2017; 
Winton-Brown et al., 2011, 2013b; Van Hell et al., 2012; Rabinak et al., 
2012; O’Leary et al., 2000, 2002, 2003; O’Leary, Apr et al., 2007). Of 
these manuscripts, 17 used fMRI (Bhattacharyya et al., 2012a, 2017, 
2009; Jansma et al., 2013; Freeman et al., 2018; Bossong et al., 2012a, 
2013a, 2015b; Battistella et al., 2013; Lee et al., 2013; Walter et al., 
2019, 2017; Winton-Brown et al., 2011; Van Hell et al., 2012; Rabinak 
et al., 2012), 4 PET (O’Leary et al., 2000, 2002, 2003; O’Leary, Apr 
et al., 2007), and 1 used arterial spin labelling (Bossong et al., 2019).  
Fig. 1 shows the PRISMA flowchart (Moher et al., 2009). Twenty-three 
separate contrasts, derived from 22 manuscripts, were included in the 
analysis due to some studies reporting multiple contrasts (see Supple-
mentary Methods). Therefore, the final sample size of participants, 

including those with multiple contrasts, was 372 (372 under THC con-
dition vs 370 under placebo condition). Our key analysis included 16 
studies that administered THC isolate (Bhattacharyya et al., 2012a, 
2017, 2009; Jansma et al., 2013; Bossong et al., 2012a, 2012b, 2013a, 
2019, 2015b; Lee et al., 2013; Walter et al., 2019, 2017; Winton-Brown 
et al., 2011, 2013b; Van Hell et al., 2012; Rabinak et al., 2012) and 6 
that administered THC-rich cannabis (Freeman et al., 2018; Battistella 
et al., 2013; O’Leary et al., 2000, 2002, 2003; O’Leary, Apr et al., 2007). 

Studies included cognitive paradigms that engaged reward (Jansma 
et al., 2013; Freeman et al., 2018; Van Hell et al., 2012), memory 
(Bhattacharyya et al., 2009; Bossong et al., 2012a, 2012b), emotion 
(Bossong et al., 2013a; Bhattacharyya et al., 2017; Rabinak et al., 2012), 
attentional salience (Bhattacharyya et al., 2012a; Battistella et al., 2013; 
Bossong et al., 2013b; O’Leary et al., 2000, 2002; O’Leary, Apr et al., 
2007) and sensory processing (Lee et al., 2013; Walter et al., 2019, 2017; 
Winton-Brown et al., 2011). One arterial spin labelling study did not use 
a cognitive task (Bossong et al., 2019). 

3.2. Main meta-analysis results: Effects of THC vs placebo 

There were 9 regions of significantly increased activation signal 
(Table 2, Fig. 2) under THC compared with placebo. Seven regions 
showed a significant attenuation of activation signal under THC 
compared with placebo (Table 2, Fig. 2). 

3.3. Sensitivity, Heterogeneity, and Publication Bias 

Jack-knife sensitivity analysis showed that out of a total of 16 clus-
ters, 87% survived following repeat analyses leaving one study out at a 
time (Supplementary Table 1). Funnel plots were created and examined 
for each cluster. Egger’s tests were performed to look for publication 
bias (see Table 2 and Supplementary Results). All brain regions had an I2 

statistic of less than 30% (except for the Rolandic operculum cluster that 
was attenuated following THC compared with placebo, I2 =31.80%) 
suggesting minimal influence of heterogeneity among the results. Visual 
inspection of overlap of meta-analytic activation maps and heteroge-
neity maps indicated no areas within our main analysis were signifi-
cantly influenced by heterogeneity. 

Different imaging modalities may be a source of heterogeneity. To 
ensure these factors minimally influenced our core findings, we con-
ducted subgroup analysis of fMRI studies (Supplementary Table 2). 
There was significant overlap between the findings of our main results 
and those from the fMRI subgroup alone (Supplementary Figure 20). 
Further results of subgroup analyses examining methodological vari-
ables including THC isolate and fMRI scanner strength, and are reported 
in Supplementary Tables 3 and 4. 

3.4. Meta-regression analysis: Dose 

Meta-regression analysis identified brain regions where there was a 
significant correlation between the pooled effect-size estimates of THC 
effect on activation signal and THC dose (6–42 mg) (Table 3, Fig. 3). 

Cook’s distance (Cook, 2011) estimate identified the study by Bat-
tistella et al. (2013) as being a potential outlier (further discussed in 
Supplementary Discussion 4). Following re-analysis without the Battis-
tella et al. dataset, the correlation between THC dose and brain signal 
modulation, indexed by Hedge’s g, persisted in the anterior cingulate / 
paracingulate (Z score= 4.41, P < 0.001) and caudate (Z score=
P = 0.03). 

3.5. Whole brain correlation with CNR1 and CNR2 gene expression 

Cortical and sub-cortical spatial expression of CNR1, CNR2 expres-
sion, and Hedge’s g effect size estimate of brain regions parcellated 
across the Desikan-Killiany (Desikan et al., 2006) atlas are displayed in  
Fig. 4. Multiple regression analysis indicated that there was a significant 
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Table 1 
Studies included in meta-analysis. T = Tesla, INH=inhalation, OC= oral capsule, VPA= verbal paired associates task, MIDT= monetary incentive delay task, NA= not available, DB= double blind, PC= placebo controlled, 
R= randomised, WS= within subject, ‘= minute, A= alcohol, C= cannabis, D= illicit drug, T = tobacco, NAD= nicotine addiction disorder.  

Author Route Mode Paradigm Baseline condition Scanner 
strength 
(T) 

Design Sample 
size 

Mean age 
(SD) 

Time to 
scanning 

Pre- 
scan 
screens 

Dose THC plasma level 
(SD) ng/ml 

Sex (% 
males) 

Education IQ 

Battistella (Walter 
et al., 2017) 

INH fMRI Visuo-motor 
tacking 

Visually track a 
target  

1.5 DB, 
PC, R, 
WS  

31 24.1 ( 
Smith 
et al., 
2015) 

45’ A,C,D, 
T 

42 
mg 

9.3  100 6 (2.3) (post- 
compulsory) 

NA 

Bhattacharyya ( 
Bhattacharyya 
et al., 2012a) 

OC fMRI Attentional 
processing 

Oddball vs 
standard  

1.5 DB, 
PC, R, 
WS  

15 26.7 
(5.7) 

1–2 h A,C,D 10 
mg 

1 h= 3.9 (7.3) 2 
h= 5.1 (5.6)  

100 16.5 (3.9) 98.7 (6) 

Bhattacharyya ( 
Bhattacharyya 
et al., 2009) 

OC fMRI VPA Presented with 
pairs of words- 
state if font is the 
same  

1.5 DB, 
PC, R, 
WS  

15 26.7 
(5.7) 

1–2 h A,C,D 10 
mg 

1 h= 3.9 (7.3) 2 
h= 5.1 (5.6)  

100 16.5 (3.9) 98.7 (6) 

Bhattacharyya ( 
Bossong et al., 
2012b) 

OC [11 C] 
MePPEP 
PET & 
fMRI 

Fear 
processing 

Neutral expression  1.5 DB, 
PC, R, 
WS  

14 23.8 
(4.5) 

1–2 h A,C,D, 
T 

10 
mg 

NA  100 NA 98.2 (5) 

Bhattacharyya ( 
Bossong et al., 
2013b) 

OC fMRI Go/No-Go Oddball vs 
standard  

1.5 DB, 
PC, R, 
WS  

36 26.0 
(5.5) 

1–2 h A,C,D, 
T 

10 
mg 

1 h= 3.9 (7.3) 2 
h= 5.1 (5.6)  

100 NA 97.7 (6) 

Bossong (Lee et al., 
2013) 

INH fMRI Sternberg Item 
Recognition 

Load 1 of memory 
paradigm  

3 DB, 
PC, R, 
WS  

13 21.6 
(2.1) 

5’ A,C,D, 
T 

6 
mg 

70 (40.6)  100 NA 105.4 (5.4) 

Bossong (Walter 
et al., 2019) 

INH fMRI Happy/Fearful 
Face Matching 

Sensorimotor 
control condition 
(geometric shape 
matching)  

3 DB, 
PC, R, 
WS  

14 21.5 
(2.5) 

5’ A,C,D, 
T 

6 
mg 

82.3 (45.9)  100 NA 105.6 (5.6) 

Bossong ( 
Winton-Brown 
et al., 2011) 

INH ASL Resting NA  3 DB, 
PC, R, 
WS  

33 22.6 
(4.3) 

5’ A,C,D, 
T 

6 
mg 

84.9 (43.5)  100 NA 105.7 (5.2) 

Bossong (O’Leary 
et al., 2000) 

INH fMRI Associative 
memory 

Pictural cue  3 DB, 
PC, R, 
WS  

13 21.6 
(2.1) 

5’ A,C,T 6 
mg 

58.1 (31.3)  100 NA 104.6 (5.6) 

Bossong (O’Leary 
et al., 2002) 

INH fMRI Continuous 
performance 
task 

Watch stimuli  3 DB, 
PC, R, 
WS  

20 22.9 
(4.9) 

5’ A,C,T 6 
mg 

78.4627.0 ng/ 
ml  

100 NA 105.6 (5.6) 

Freeman ( 
Battistella et al., 
2013) 

INH fMRI Musical 
Reward 

Scrambled sound  1.5 DB, 
PC, R, 
WS  

16 26.2 
(7.3) 

5’ C,D 8 
mg 

NA  50 NA NA 

Jansma ( 
Bhattacharyya 
et al., 2015b) 

INH fMRI MIDT No monetary 
reward  

3 DB, 
PC, R, 
WS  

10 25.6 
(2.1) 

5’ A,C,T 6 
mg 

82.8 HC 82.8 
NAD  

100 NA 105 (1.5) 

Lee (Van Hell et al., 
2012) 

OC fMRI Capsaicin 
induced pain 

No pain  3 DB, 
PC, R, 
WS  

12 24–34 3 h A, C.D, 
T 

15 
mg 

3.5 h= 1–1.2 
(estimated)  

100 NA NA 

O’Leary (Bossong 
et al., 2019) 

INH H2150 
PET 

Self-paced 
counting task 

NA  1.5 DB, 
PC, 
NR, 
WS  

12 21.7 
(1.4) 

10–15’ C 20 
mg 

Occasional=
17.6 (8.7) 
Chronic= 35.8 
(19.7)  

50 Occasional: 
14.7 (1.2) 
Chronic: 14.6 
(1.4) 

Occasional: 
108.6 (12.1) 

Chronic: 113.2 
(12.4) 

O’Leary (Bossong 
et al., 2013a) 

INH H2150 
PET 

Auditory 
Attention Task 

NA  1.5 DB, 
PC, 
NR, 
WS  

12 30.5 
(8.6) 

10–15’ C,D 20 
mg 

2.6 (3.6)− 37.1 
(27.1)  

50 NA NA 

(continued on next page) 
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Table 1 (continued ) 

Author Route Mode Paradigm Baseline condition Scanner 
strength 
(T) 

Design Sample 
size 

Mean age 
(SD) 

Time to 
scanning 

Pre- 
scan 
screens 

Dose THC plasma level 
(SD) ng/ml 

Sex (% 
males) 

Education IQ 

O’Leary ( 
Bhattacharyya 
et al., 2017) 

INH H2150 
PET 

Auditory 
Attention Task 

NA  1.5 DB, 
PC, 
NR, 
WS  

12 23.5 
(4.3) 

10–15’ C,D 20 
mg 

10.3 (2.5)−
107.2 (59.7)  

50 NA NA 

O’Leary (Bossong 
et al., 2012a) 

INH H2150 
PET 

Auditory 
Attention Task 

NA  1.5 DB, 
PC, R, 
WS  

5 26.2 ( 
Mücke 
et al., 
2018) 

10–15’ C 20 
mg 

NA  60 NA NA 

Rabinak (Freeman 
et al., 2018) 

OC fMRI Emotional 
processing task 

Neutral expression  3 DB, 
PC, R, 
WS  

14 20.8 
(2.6) 

2 h A,C,D 7.5 
mg 

NA  50 NA NA 

van Hell (Jansma 
et al., 2013) 

INH fMRI MIDT No monetary 
reward  

3 DB, 
PC, R, 
WS  

11 21.7 
(2.3) 

5’ A,C,T 6 
mg 

60.1 (33.7)  100 NA 104.5 (6.0) 

Walter (Rabinak 
et al., 2012) 

OC fMRI Visual DSDT Control visual cue  3 DB, 
PC, R, 
WS  

13 25.5 
(2.3) 

2 h A, C.D, 
T 

20 
mg 

NA  46 NA NA 

Walter (Rabinak 
et al., 2012) 

OC fMRI Nociceptive 
pain DSDT 

Different pain 
intensity  

3 DB, 
PC, R, 
WS  

22 26.1 
(2.9) 

2 h A, C.D, 
T 

20 
mg 

NA  50 NA NA 

Walter (Markello 
et al., 2020) 

OC fMRI Olfactory and 
pain response 

Different gaseous 
stimuli  

3 DB, 
PC, R, 
WS  

15 26.6 
(2.9) 

2 h A,C,D, 
T 

20 
mg 

NA  47 NA NA 

Winton-Brown ( 
Python Software 
Foundation, 
2016) 

OC fMRI Auditory and 
visual 
stimulation 

Independent of 
sensory load  

1.5 DB, 
PC, R, 
WS  

14 26.7 
(5.7) 

1–2 h A,C,D 10 
mg 

1 h= 3.9 (7.3) 2 
h= 5.1 (5.6)  

100 16.5 (3.9) 98.7 (7)  
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direct relationship between Hedge’s g effect-size estimate and CNR1 
(t = 2.415, P = 0.018, coefficient= 0.122, 95%CI= 0.021–0.223, Fig. 5) 
but not CNR2 gene expression (t = − 0.036, P = 0.971, coefficient=

− 0.002, 95%CI= − 0.131 to 0.126) across the 78 brain regions of the 
atlas. 

Fig. 1. PRISMA flowchart of search strategy for meta-analysis.  

Table 2 
Main meta-analytic findings showing areas of increased and attenuated activation signal following THC, compared with placebo, obtained from the main multimodal 
meta-analysis.   

MNI coordinate SDM- 
Z 

P Voxels Region Egger’s Test 
P value 

I2 

Statistic  
x y z       

THC>PLB  6  62  -4  3.172 < 0.001  434 R medial orbital superior frontal gyrus (extending to R medial & orbital superior 
frontal gyrus, R anterior cingulate/ paracingulate gyri, R striatum, L medial orbital 
superior frontal gyrus)  

0.044  8.64   

6  34  -12  2.631 0.001  196 R medial orbital superior frontal gyrus (extending to the L+R gyrus rectus, L+R 
anterior cingulate/ paracingulate gyri, L medial orbital superior frontal gyrus)  

0.067  19.61   

48  -76  20  2.883 < 0.001  166 R middle temporal gyrus (extending to R middle occipital gyrus, R middle 
temporal gyrus)  

0.961  0.26   

38  -76  -48  2.411 0.001  152 R cerebellum crus II (extending to R lobule VIII/VIIB)  0.303  8.33   
32  -88  -8  2.451 < 0.001  76 R inferior occipital gyrus (extending to R middle occipital gyrus)  0.720  1.86   
24  0  -16  2.042 0.002  47 R amygdala (extending to R temporal pole, superior temporal gyrus, R 

hippocampus)  
0.069  28.17   

-12  -74  44  3.367 < 0.001  37 L cerebellum lobule VIIB (extending to L lobule VIIB/ VIII)  0.654  6.08   
-24  -24  54  2.177 0.001  19 L precentral gyrus (adjacent to deep white matter)  0.688  1.53   

0  -20  -12  2.134 0.001  16 L thalamus  0.817  2.64 
THC<PLB  -44  -12  8  -3.117 0.001  1118 L insula (extending to L Rolandic operculum, L temporal pole, L superior temporal 

gyrus, L Heschl gyrus, L postcentral gyrus, L supramarginal gyrus, L inferior frontal 
gyrus opercular part)  

0.037  25.30   

48  -8  10  -2.429 < 0.001  474 R Rolandic operculum (extending to R insula, R Heschl gyrus, R postcentral gyrus, 
R temporal pole, R superior temporal gyrus, R supramarginal gyrus)  

0.044  31.80   

4  -72  28  -2.48 0.001  204 R cuneus cortex (extending to R precuneus, L precuneus, L cuneus cortex)  0.238  5.40   
-56  0  20  -2.349 0.001  86 L precentral gyrus (extending to L inferior frontal gyrus, opercular part, L 

postcentral gyrus, L Rolandic operculum)  
0.971  1.29   

64  -16  -4  -2.323 0.001  65 R superior temporal gyrus (extending to R middle temporal gyrus)  0.135  7.99   
-56  60  40  -2.273 0.002  38 L angular gyrus (extending to L inferior parietal gyri, excluding supamarginal gyri)  0.902  2.60   

4  -60  -8  -2.333 0.001  26 Cerebellum lobule IV/V  0.318  10.70  
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3.6. Subgroup analyses 

We performed subgroup analysis on studies that employed similar 
cognitive paradigms to investigate the differential effect of THC on brain 
activation. 

3.6.1. Emotion processing 
Within the emotional processing subgroup, 42 participants were 

compared in a crossover design following THC compared with placebo 
while processing emotional pictures (Bossong et al., 2013a; Bhatta-
charyya et al., 2017; Rabinak et al., 2012). 

Fig. 2. Differences in brain signal following THC compared with placebo obtained from main multimodal meta-analysis. Orange= areas of increased activation 
signal (THC>placebo). Blue= areas of attenuated activation signal (THC<placebo). Left side of the brain sections indicates the left side of the brain; A= anterior. 

Table 3 
Meta-regression results showing regions where THC dose was associated with modulation of brain signal under THC compared with the placebo condition.   

MNI coordinate SDM- 
Z 

P Voxels Region  

x y z     

Positive 
correlation  

4  38  -4  5.044 < 0.001  1592 R anterior cingulate/ paracingulate gyri (extending to L+R medial orbital and medial superior frontal 
gyrus, L anterior cingulate/ paracingulate gyri, L+R gyrus rectus, L+R olfactory cortex)   

4  -32  60  3.132 < 0.001  214 R paracingulate lobule (extending to R+L paracentral lobule, R+L precuneus, R supplementary motor area, 
L median cingulate, R median cingulate)   

44  -10  60  3.042 0.001  36 R precentral gyrus 
Negative 

correlation  
-8  -18  12  -2.837 < 0.001  125 L thalamus (extending to L caudate nucleus)   

12  2  70  -2.890 < 0.001  93 R supplementary motor area (extending to R dorsolateral superior frontal gyrus)   
-48  -54  0  -2.930 < 0.001  65 L middle temporal gyrus (extending to L inferior temporal gyrus)   
14  -8  14  -2.828 < 0.001  52 R thalamus (extending to R caudate nucleus)   

-48  -66  0  -2.552 < 0.001  29 L middle temporal gyrus (extending to L inferior and middle occipital gyrus)   
-54  22  8  -2.438 0.001  26 R inferior frontal gyrus, triangular part (extending to opercular part)  
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3.6.2. Reward paradigms 
Within the reward processing subgroup, 37 participants were 

compared in a crossover design following THC compared with placebo 
while performing the MIDT (Jansma et al., 2013; Van Hell et al., 2012) 
and listening to musically rewarding stimuli (Freeman et al., 2018). 

3.6.3. Sensory stimulation paradigms 
Within the sensory stimulation subgroup, 64 participants were 

compared in a crossover design following THC compared with placebo 
(Lee et al., 2013; Walter et al., 2019, 2017; Winton-Brown et al., 2011). 

3.6.4. Memory paradigms 
Within the memory processing subgroup, 41 participants were 

compared in a crossover design following THC compared with placebo 
while performing the verbal paired associates task (Bhattacharyya et al., 
2009), Sternberg item recognition (Bossong et al., 2012a), and the 
associative memory task (Bossong et al., 2012b). 

3.6.5. Attentional salience paradigms 
Within the attentional salience subgroup, 95 participants were 

compared in a crossover design following THC compared with placebo 
while performing a visuo-motor tracking (Battistella et al., 2013), visual 

Table 4 
Areas of increased and attenuated brain signal following THC, compared with placebo, during emotional processing stimuli.  

Comparison MNI coordinate SDM-Z P Voxels Region  

x y z     

THC>PLB  34  -18  -4  2.105 < 0.001  341 R putamen (extending to: R insula, R striatum, R heschl gyrus)   
12  -24  -2  2.124 < 0.001  187 R thalamus (extending to: R hippocampus, R thalamus)   
20  20  -16  1.891 < 0.001  85 R superior frontal gyrus, orbital part (extending to: R striatum, R gyrus rectus, R olfactory cortex)   
56  -26  16  1.628 0.003  21 R superior temporal gyrus (extending to: R supramarginal gyrus)   
28  -36  10  2.071 < 0.001  17 Caudate (extending to: R hippocampus)   
44  -34  4  1.527 0.003  14 Superior temporal gyrus   
48  8  -12  1.661 0.002  13 R temporal pole, superior temporal gyrus 

THC<PLB  -44  -68  38  -2.169 < 0.001  330 L angular gyrus (extending to: L middle temporal gyrus)   
-40  -28  46  -2.129 < 0.001  241 L postcentral gyrus (extending to: inferior parietal [excluding supramarginal and angular] gyri)   
-4  24  58  -2.157 < 0.001  221 L supplementary motor area (extending to: L medial superior frontal gyrus)   

-60  8  12  -1.985 < 0.001  101 L inferior frontal gyrus, opercular part (extending to: pre and postcentral gyri)   
-8  -54  72  -1.933 0.001  16 L precuneus (extending to: L superior parietal gyrus)   

-14  -42  78  -2.046 < 0.001  16 L postcentral gyrus (extending to: L precuneus and L paracentral gyri)   
-8  -40  -8  -1.774 0.003  15 L cerebellum, hemispheric lobule IV / V  

Table 5 
Areas of increased and attenuated activation signal following THC, compared with placebo, during reward processing stimuli.  

Comparison MNI coordinate SDM-Z P Voxels Region   

x y z     

THC>PLB  -24  -4  44  1.829 < 0.001  155 L middle frontal gyrus (extending to: L precentral gyrus, L superior dorsolateral frontal gyrus)   
8  44  30  1.957 < 0.001  142 R median cingulate / paracingulate gyri (extending to: anterior cingulate gyrus and medial superior frontal 

gyrus)   
18  68  0  2.41 < 0.001  78 R superior frontal gyrus, dorsolateral   
12  58  -8  2.344 < 0.001  57 R superior frontal gyrus, medial orbital (extending to: R striatum)   

-40  -64  8  1.733 0.001  41 L middle temporal gyrus (extending to: L middle occipital gyrus)   
-16  12  70  1.692 0.002  42 L superior frontal gyrus, dorsolateral (extending to: L middle frontal gyrus)   
-8  -44  -60  1.811 0.001  24 Cerebellum    
-4  -56  -52  1.68 0.002  14 L cerebellum, hemispheric lobule IX 

THC<PLB  40  -32  -16  -4.284 < 0.001  176 R parahippocampal gyrus/ fusiform gyrus   
-60  -44  12  -3.008 < 0.001  115 L superior temporal gyrus (extending to: L middle temporal gyrus)   
16  -26  40  -3.148 < 0.001  111 R median cingulate / paracingulate gyri   

-54  4  -4  -3.037 < 0.001  109 L superior temporal gyrus (extending to: L rolandic operculum, L temporal pole, L heschl gyrus)   
48  12  -28  -3.207 < 0.001  83 R temporal pole, middle temporal gyrus (extending to: R superior temporal gyrus)   
-8  -104  0  -3.096 < 0.001  64 L middle occipital gyrus (extending to: L superior occipital gyrus)   
32  8  54  -2.847 0.001  56 R middle frontal gyrus (extending to:R precentral gyrus)   
52  -28  48  -2.999 < 0.001  36 R postcentral gyrus (extending to: R inferior parietal [excluding supramarginal and angular] gyri)   

-48  16  44  -2.589 0.002  33 L middle frontal gyrus   
-12  44  -10  -2.527 0.002  16 L superior frontal gyrus, medial orbital   
64  -28  -8  -2.498 0.003  16 R middle temporal gyrus   

-56  -28  20  -2.419 0.004  10 L supramarginal gyrus  

Table 6 
Areas of increased and attenuated activation signal following THC, compared with placebo, during sensory processing stimuli.  

Comparison MNI coordinate SDM-Z P Voxels Region  

x y z     

THC>PLB  4  -24  28  1.67 0.004  73 R mid cingulum (extending to R median cingulate/ paracingulate gyri)   
52  -42  -6  2.05 0.001  37 R middle temporal gyrus (extending to R inferior frontal gyrus)   
14  -86  -10  1.69 0.004  25 R lingual gyrus   
26  -82  -4  1.70 0.003  14 R fusiform gyrus (extending to R lingual gyrus)   
52  -42  44  1.67 0.004  14 R supramarginal gyrus (extending to R inferior parietal gyri) 

THC<PLB  -12  16  12  -1.72 < 0.001  77 L caudate nucleus  

B. Gunasekera et al.                                                                                                                                                                                                                            



Neuroscience and Biobehavioral Reviews 140 (2022) 104801

9

oddball (Bhattacharyya et al., 2012a), continuous performance (Bos-
song et al., 2013b), and auditory attention tasks (O’Leary et al., 2000, 
2002; O’Leary, Apr et al., 2007). 

4. Discussion 

In this meta-analytic synthesis, we examined the acute effect of THC 
isolate and THC-rich cannabis (hereafter referred to as THC) on human 
brain activation signal measured using different neuroimaging modal-
ities including fMRI (Bhattacharyya et al., 2012a, 2017, 2009; Jansma 
et al., 2013; Freeman et al., 2018; Bossong et al., 2012a, 2013a, 2015b; 
Battistella et al., 2013; Lee et al., 2013; Walter et al., 2019, 2017; 
Winton-Brown et al., 2011; Van Hell et al., 2012; Rabinak et al., 2012), 
PET (O’Leary et al., 2000, 2002, 2003; O’Leary, Apr et al., 2007), and 
ASL (Bossong et al., 2019). Using pooled summary data from 372 par-
ticipants who were tested using a within-subject repeated measures 
design under experimental conditions acutely (5 min to 3 h after 
administration) following a single dose of THC (ranging from 6 to 
42 mg) or placebo administered orally or through inhalation, we tested 
whether a single dose of THC modulates the brain activation signal in a 

‘core’ network of brain regions that subserve a multitude of processes. 
When combining data from all studies, we found that THC modulated 
the function of 16 brain regions. Within our predicted network of re-
gions, THC augmented the activation signal relative to placebo in the 
anterior cingulate, superior frontal cortices, temporal pole, middle 
temporal and middle and inferior occipital gyri, striatum, amygdala, 
thalamus, and cerebellum crus II. There was also an attenuation of 
activation signal under the influence of THC in the temporal pole, 
middle temporal gyrus (spatially distinct from the cluster with 
THC-induced increase in activation signal), superior temporal gyrus, 
angular gyrus, precuneus, cuneus, inferior parietal lobule, and the cer-
ebellum lobule IV/V. Further, we also found that THC augmented acti-
vation signal in regions that we had not predicted, including the 
paracingulate and precentral gyri (adjacent to deep white matter), gyrus 
rectus and the hippocampus. An attenuating effect of THC was also 
observed in other brain regions that we had not predicted in the insula, 
Rolandic operculum, Heschl’s gyrus, precentral (spatially distinct from 
increase in activation signal) and postcentral gyri (see Table 2 for 
coordinates). 

Our second prediction was that the acute effect of THC on activation 

Table 7 
Areas of increased and attenuated activation signal following THC, compared with placebo, during memory processing.  

Comparison MNI coordinate SDM- 
Z 

P Voxels Region  

x y z     

THC>PLB  -28  48  22  2.169 < 0.001  253 L middle frontal gyrus (extending to L superior frontal gyrus, dorsolateral & medial)   
-34  -56  -40  2.352 < 0.001  100 L cerebellum   
32  24  54  2.099 0.001  23 R middle frontal gyrus (extending to R superior frontal gyrus, dorsolateral)   

-14  40  16  1.996 0.002  20 L anterior cingulate cortex (extending to L medial superior frontal gyrus)   
-52  36  2  2.165 < 0.001  19 L inferior frontal gyrus, triangular part   
28  48  16  1.87 0.003  17 R middle frontal gyrus (extending to R superior frontal gyrus, dorsolateral)   
48  -72  28  1.959 0.002  16 R middle occipital gyrus (extending to R middle temporal gyrus)   
44  16  32  1.875 0.002  13 R inferior frontal gyrus, opercular part   

-12  44  40  1.897 0.002  13 L superior frontal gyrus, dorsolateral   
-24  -64  -56  2.241 < 0.001  10 L cerebellum, hemispheric lobule VIII 

THC<PLB  -48  -6  -4  -2.397 0.002  350 L superior temporal gyrus (extending to L rolandic operculum, L heschl gyrus, L superior temporal gyrus, L 
insula, L supramarginal gyrus, L postcentral gyrus)   

12  -40  0  -3.11 < 0.001  223 R lingual gyrus (extending to R precuneus, L thalamus, R parahippocampal gyrus, R hippocampus, cerebellum 
vermic lobule IV/V)   

4  -48  56  -2.397 0.002  149 R precuneus (extending to L precuneus, R superior parietal gyrus, R paracentral lobule, R postcentral gyrus, L 
precuneus)   

4  -72  24  -2.397 0.002  140 R cuneus cortex (extending to R precuneus, R superior occipital gyrus, R superior parietal gyrus, L precuneus)   
-8  -32  -16  -2.772 < 0.001  98 L cerebellum (extending to L fusiform gyrus, L pons, L parahippocampal gyrus, L hippocampus, L cerebellum 

hemispheric lobule III)   
-30  -28  -6  -2.391 0.002  43 L hippocampus (extending to L parahippocampal gyrus)   
-14  -58  58  -2.388 0.002  42 L precuneus   
10  -58  -50  -2.388 0.002  34 R cerebellum, hemispheric lobule IX   

-52  6  16  -2.366 0.002  16 L precentral gyrus (extending to L inferior frontal gyrus, opercular part)   
-56  -22  44  -2.385 0.002  15 L inferior parietal (excluding supramarginal and angular) gyri   
22  -68  54  -2.388 0.002  14 R superior parietal gyrus  

Table 8 
Areas of increased and attenuated activation signal following THC, compared with placebo, during attentional processing.  

Comparison MNI coordinate SDM- 
Z 

P Voxels Region  

x y z     

THC>PLB  -4  56  -8  3.171 < 0.001  1422 L medial superior frontal gyrus (extending to R medial superior frontal gyrus, L+R gyrus rectus, L+R anterior 
cingulate/ paracingulate gyri, L+R olfactory cortex)   

-52  0  -40  2.126 0.002  34 L inferior temporal gyrus   
32  14  -14  2.001 0.004  13 R insula 

THC<PLB  -34  -2  12  -2.842 < 0.001  1556 L insula (extending to L Rolandic operculum, L superior temporal gyrus, L Heschl gyrus, L lenticular nucleus 
putamen, L supramarginal gyrus, L postcentral gyrus)   

36  -4  8  -3.230 < 0.001  1266 R insula (extending to R Rolandic operculum, R lenticular nucleus putamen, R Heschl gyrus, R striatum, R 
postcentral gyrus, R precentral gyrus, R superior temporal gyrus, R inferior frontal gyrus)   

0  -60  -8  -2.490 < 0.001  481 Cerebellum vermic lobule IV/V   
-58  0  22  -2.283 0.001  51 L precentral gyrus (extending to L postcentral gyrus)   
10  -76  16  -1.912 0.005  42 R calcarine fissure   
-8  -4  4  -2.215 0.001  38 L thalamus (extending to L caudate nucleus)   
16  -26  12  -2.195 0.001  15 L thalamus  
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Fig. 3. Meta-regression analysis showing relationship between THC dose (mg) and Hedge’s g effect-size estimate of brain signal modulation by THC compared to 
placebo. Bubble size= inverse of effect-size variance. Bubble intensity= overlap of contrasts. a) Effect-size estimates from right anterior cingulate/ paracingulate 
cluster. b) Effect-size estimates from left thalamus cluster. c) Effect-size estimates from right supplementary motor area cluster. d) Effect-size estimates from right 
thalamus cluster. 
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Fig. 4. Cortical spatial gene expression of (A) CNR1, (B) CNR2, and (C) Hedge’s g effect size estimate derived from the main meta-analytic findings displaying 
regions of increased activation (THC>PLB), and attenuated activation (THC<PLB). Sub-cortical spatial distribution of (D) CNR1, (E) CNR2, and (F) Hedge’s g effect 
size estimate derived from the main meta-analytic findings displaying regions of increased activation (THC>PLB), and attenuated activation (THC<PLB). 
Figures produced using ggseg (Plotting Tool for Brain Atlases, 2021) in R studio (RStudio, 2021) parcellated across 78 regions of the Desikan–Killiany brain atlas 
(Desikan et al., 2006). Hedge’s g was extracted from the centroid of each brain parcel. Gene expression data was obtained from the Allen Human Brain Atlas 
(Microarray Data, 2021). 
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signal across different brain regions will be directly associated with 
pooled CNR1 but not CNR2 gene expression data from a set of 6 unre-
lated healthy volunteers (who did not take part in the neuroimaging 
studies reported here) in the same brain regions, as obtained from the 
Allen Human Brain atlas. As predicted, we found that there was a direct 
relationship between the effect of THC on brain activation signal with 
CNR1 gene expression, a proxy measure of CB1R distribution. 

One of the main motivations for the present study and the analytic 
approach adopted here was to answer questions that previous individual 
studies in isolation could not address. Consistent with this objective, we 
identified that at the meta-analytic level, THC has effects on components 
of a common core network of brain regions, that has been described as a 
‘domain-general’ core network that facilitates cross-task cognitive 
function (Shine et al., 2019). In their study, Shine et al. performed 
principal component analysis (PCA) (Brendel et al., 2011) to identify an 
‘integrative core’ network of brain regions engaged across seven diverse 
cognitive tasks (Shine et al., 2019) which spatially mapped onto dorsal 
attention, frontoparietal and visual networks as well as the striatum, 
thalamus, cerebellum and amygdala (Shine et al., 2019). The spatial 
overlap between the modulatory effects of THC that we report here and 
the regions within the domain-general core described by Shine and 
colleagues, which subserve a multitude of cognitive processes, might 
explain the diverse cognitive, behavioural, and neural effects of THC. 
Previous experimental work in cannabis users has shown that cannabis 
has wide-ranging effects on regional brain activation across numerous 
tasks (Blest-Hopley et al., 2018), as well as effects on behavioural per-
formance during those tasks (Bloomfield et al., 2019). Please see Sup-
plementary Discussion 1 for additional discussion regarding the effects 
of THC on activation signal in brain regions that were not part of the 
hypothesised core network, and results of analyses of cognitively ho-
mogenous subgroups of studies. 

From a neurobiological perspective, effects on a common core 
network of brain regions makes sense: THC acts primarily via partial 
agonism of CB1R (Zou and Kumar, 2018; Pertwee, 2008) which are 
ubiquitously distributed throughout the brain, with particularly high 
densities in cortex, amygdala, basal ganglia outflow tracts and cere-
bellum (Mackie, 2005). THC does not selectively target CB1R only in 
those brain regions involved in a specific cognitive task, and instead has 
effects on receptors throughout the brain. In turn, THC affects the 
neurophysiology of these brain regions which subserve a multitude of 
cognitive and emotional processes. This was further demonstrated by 
our fMRI subgroup analysis (see Supplementary Results). We combined 
cognitive-specific effects from fMRI paradigms and intoxication-related 
effects from THC. Overlap in the brain substrates modulated by THC was 

observed across our main findings and the fMRI subgroup analyses. 
Shine and colleagues also demonstrated that the dynamic function of 
this integrative core is strongly influenced by the modulatory effect of 
neurotransmitters, and propose that any dysregulation in neurotrans-
mitter systems, for example, in the context of neuropsychiatric disorders 
or as induced through pharmacological manipulation, could conceiv-
ably facilitate or impede neurotransmission through actions on this 
integrative core (Shine et al., 2019). In this regard, the endocannabinoid 
system itself may be an exemplary candidate, poised at the synapse as a 
critical mediator of neural homeostasis and signalling: endocannabi-
noids are released postsynaptically and via retrograde signalling, bind to 
presynaptic CB1 where they inhibit neurotransmitter release. The 
administration of exogenous cannabinoids such as THC may subvert this 
on-demand fine-tuning by indiscriminately binding CB1 receptors, and 
therefore may cause widespread alterations to synaptic signalling 
resulting in impairment of the function of the common core network 
which, in turn may explain the diverse acute and long-term behavioural 
and cognitive consequences of cannabis use (Di Forti et al., 2019; 
Schoeler et al., 2016b, 2016c). 

As the CB1R has been shown to inhibit GABA and glutamate release 
from presynaptic terminals (Gerdeman and Lovinger, 2001; Katona 
et al., 1999), it may be argued that THC will increase activation in brain 
regions where CB1R tends to be expressed primarily on GABA terminals, 
while it will decrease activation in the brain regions where the CB1R are 
predominantly located on glutamatergic terminal. While we did not 
formally test this issue, upon exploring this possibility further in our 
sample no clear pattern seems to emerge. In non-human primates, the 
CB1R has been observed to be expressed by GABAergic neurons in the 
neocortex, hippocampus, and the amygdala (Eggan and Lewis, 2007; 
Katona et al., 2001; Hoffman et al., 2003). Therefore, regions with CB1R 
expression in GABAergic terminals seem to overlap with regions where 
we observed an increase in brain signal following THC, relative to pla-
cebo. However, in regions where the CB1R has been observed to be 
expressed by glutamatergic neurons, including the amygdala, hippo-
campus, striatum, midbrain, prefrontal cortex, and the somatosensory 
cortex (Robbe et al., 2001; Rodríguez et al., 2001; Köfalvi et al., 2005; 
Domenici et al., 2006; Fitzgerald et al., 2019), we did not observe an 
attenuative effect of THC, relative to placebo, on the pooled effect-size 
estimate of brain signal. Further, in the insula, parietal cortex, pre-
frontal cortex, postcentral and the superior temporal gyri, regions where 
the CB1R is also expressed in GABAergic neurons (Eggan and Lewis, 
2007; Katona et al., 2001; Hoffman et al., 2003), we found an attenu-
ative effect of THC, relative to placebo, on the activation signal instead 
of an increase in activation signal as would be expected if the direction 

Fig. 5. Scatterplot showing the relationship between CNR1 expression values and Hedge’s g effect size estimate of THC effect compared with placebo across the brain 
(based on parcellation implemented in the Desikan Killiany atlas). P = 0.018, t = 2.415, R2 

= 0.073, coefficient= 0.122, 95%CI= 0.021–0.223). Shaded band around 
the regression line indicates 95% confidence interval. 
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of signal change was solely related to regional distribution of CB1R on 
GABAergic or glutamatergic neurons. Therefore, this suggests that the 
effect of THC on modulating the brain activation signal may not be 
solely related to the effect of THC on the CB1R in one region alone, but 
also related to THC effects on CB1 receptors in other regions that may be 
connected to that specific region. 

Our second major finding was that the effect of THC on the pooled 
effect-size of regional brain signal was related to a proxy measure of 
regional CB1R density. The brain regions found to be modulated by THC 
in our core analysis, including the anterior cingulate, amygdala, stria-
tum, and cerebellum are known to be rich in CB1R (Mackie, 2005). We 
show, for the first time, that a linear relationship exists between the 
effect of THC on increases in brain signal (as indexed by the pooled 
effect-size estimate) and CNR1 gene expression levels (as estimated on 
the basis of an average from 6 post-mortem brains of healthy individuals 
obtained from Allen Human Brain Atlas), a proxy measure of CB1R 

availability, across the whole brain (National Center for Biotechnology 
Information, 2017). These findings are important as the CB1R is the 
main molecular target of THC in the human brain, where it has 
partial-agonist effects (Pertwee, 2008; Bossong et al., 2014). Our find-
ings thus provide novel —albeit indirect— evidence that the effects of 
THC on human brain function are in part related to local CB1 receptor 
availability, and complement independent experimental evidence that 
the acute effects of THC on human behaviour may be mediated by its 
effects on CB1R. See Supplementary Discussion 2 for additional dis-
cussion on CB1R mediating the effects of THC. 

The multiple linear regression model identified no significant rela-
tionship between CNR2 gene expression (a proxy measure of CB2R (Zou 
and Kumar, 2018)) with the effect size estimate. This is perhaps un-
surprising as there is lower CB2R expression in the brain relative to 
CB1R expression (Howlett et al., 2002). Therefore, it may be argued that 
inclusion of CB2R data in the regression model was not meaningful. 

Fig. 6. Emotional processing: a) Areas of increased activation signal after THC compared with placebo, b) Areas of attenuated activation signal after THC compared 
with placebo. 
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However, consistent evidence from non-human primates and rodents 
has shown that CB2Rs are moderately expressed in specific 
sub-populations of neurons as opposed to a ubiquitous low level 
throughout the brain (Chen et al., 2017; Lanciego et al., 2011; Zhang 
et al., 2014; Brusco et al., 2008; Gong et al., 2006; Ashton et al., 2006; 
Baek et al., 2009; Albayram et al., 2016; Liu et al., 2009; García-Gu-
tiérrez et al., 2012; Navarrete et al., 2012; Li and Kim, 2015; Stempel 
et al., 2016; Galiègue et al., 1995; Van Sickle et al., 2005; Viscomi et al., 
2009). THC also has high affinity to CB1R and CB2R, however, binds 
with less efficacy to CB2R, compared with CB1R, in vitro (Pertwee, 
2008). Therefore, we reasoned that the effects of THC on brain function 
are likely a net result of its effect on regional CB1R but also CB2R and 
therefore partly determined by regional distribution of both receptors, 
albeit to a greater or lesser extent and entered both as potential pre-
dictors in the regression model. 

Our third key result was the identification of a relationship between 
THC dose and the effect-size estimates of activation signal across a range 
of brain substrates. We found a positive relationship between THC dose 
and its effects in the anterior cingulate cluster (comprising the dorsal 
and ventral regions), and a negative relationship in the supplementary 
motor area. These findings are significant as the anterior cingulate is 
believed have a role in social evaluation (Rigney et al., 2018) and 
cognition (Apps et al., 2016), with functional alterations in individuals 

with high trait anxiety (Paulus et al., 2004) and psychosis (Smieskova 
et al., 2014; Nielsen et al., 2012). Therefore, the dose-dependent effect 
of THC on the ventral cingulate may explain the findings of THC chal-
lenge studies (D’Souza et al., 2004; Curran et al., 2016) that investigated 
cognitive and psychological outcomes and have reported an association 
between higher doses of THC and increased psychotomimetic, anxio-
lytic, and cognitive impairments. Cannabis use has also been associated 
with motor impairments (Prashad and Filbey, 2017) with epidemio-
logical reports suggesting a dose-related risk of motor vehicle accidents 
(Ramaekers et al., 2004). Two fMRI studies in adults and one in ado-
lescents, employing a motor task, have reported attenuated anterior 
cingulate activation in cannabis users relative to healthy controls 
(Lopez-Larson et al., 2012; Pillay et al., 2004, 2008). However, one 
study has reported increased supplementary motor cortex activation 
with reduced psychomotor performance in chronic cannabis users dur-
ing visual motor tasks (King et al., 2011). Interestingly, greater undi-
rected functional connectivity between the dorsal anterior cingulate and 
supplementary motor area has been observed during proactive vs 
reactive motor control task conditions (Asemi et al., 2015). In this 
context, it is also worth noting that the main meta-analysis identified a 
robust modulation of activation signal in the cerebellum following THC 
compared with placebo. The cerebellum is rich in CB1R (Herkenham 
et al., 1991; Marsicano and Kuner, 2008) and has a significant role in 

Fig. 7. Reward processing: a) Areas of increased activation signal after THC compared with placebo, b) Areas of attenuated activation signal after THC compared 
with placebo. 
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postural (Ioffe et al., 2007, 2013) and motor control (Manto et al., 
2012). Acute THC and THC-rich cannabis administration has been 
associated with increased postural sway in cannabis users (Liguori et al., 
2002, 2003, 1998; Klumpers et al., 2012; Zuurman et al., 2010). Altered 
postural sway has also been observed in regular cannabis users, relative 
to non-drug using controls (Pearson-Dennett et al., 2017; Bolbecker 
et al., 2018). Moreover, fMRI studies have highlighted significantly 
attenuated activation of the cerebellum in adolescent cannabis users 
relative to healthy controls (Lopez-Larson et al., 2012). Therefore, our 
results highlight a modulatory effect of THC on the cerebellum, medi-
ated through the CB1R, which may underlie the reported effects of THC 
and THC-rich cannabis on posture and motor control. Together, these 
findings suggest that the dose-response effects of THC on psychomotor 
dysfunction may, in part, be mediated by its effects on these brain re-
gions, which could have implications for understanding how THC im-
pairs the operation of heavy machinery in everyday life in cannabis 
users or patients prescribed THC-based medications. Emotional and 
cognition-agnostic effects of THC and its relationship with frontal 
cortical executive functioning as well as top-down control of subcortical 
structures are further discussed in Supplementary Discussion 3. 
Although, in our dose-response analyses, we identified the study by 
Battistella et al. (2013) as being a potential outlier, we refrained from 
excluding the study from dose-response association analyses in accor-
dance with current thinking in this regard (please see further elabora-
tion of this in Supplementary Discussion 4) and instead advise 
appropriate caution in the interpretation of the dose-response results. 

4.1. Limitations 

The results presented here are to be considered in light certain key 

limitations. Firstly, our results are based on summary data from indi-
vidual studies rather than individual participant level imaging data from 
the same participants carrying out multiple different cognitive and 
emotional processing tasks as well as actual baseline CB1R data in the 
same participants measured using PET imaging. This would have 
allowed more direct testing of our hypotheses. While future endeavours 
should aim to carry out such studies, conducting them in over 300 
participants as reported herein is likely to be challenging both in terms 
of resources as well as logistics. The present meta-analysis, in contrast, 
provides an early insight into these questions using existing data. 
Another key caveat to be considered while interpreting our meta- 
analytic results is related to the issue of heterogeneity across the 
included studies. General sources of heterogeneity consisted of comor-
bid exposure to alcohol, nicotine and other drugs between participants 
included in the various studies. Moreover, many studies did not control 
for the length of cannabis abstinence prior to scan acquisition, an issue 
when considering THC sensitisation. Broadly, participant cannabis his-
tory can be grouped into 1–25 uses in their lifetime (Bhattacharyya 
et al., 2012a, 2009, 2017, 2015b; Battistella et al., 2013; Winton-Brown 
et al., 2011; Rabinak et al., 2012) and 30–1415 uses in their lifetime 
(Jansma et al., 2013; Freeman et al., 2018; Bossong et al., 2012a, 2013a, 
2019, 2012b, 2013b; Van Hell et al., 2012; O’Leary et al., 2000, 2002; 
O’Leary, Apr et al., 2007). One study was conducted within cannabis 
naïve participants (Lee et al., 2013), one was conducted within those 
with nicotine addiction (Jansma et al., 2013), and one used half a 
sample of those with chronic cannabis use (O’Leary et al., 2003). This 
heterogeneity is an accepted limitation, however, to assess the influence 
of individual studies on the main findings we conducted jack-knife 
leave-one-out sensitivity analysis, as detailed in Supplementary 
Table 1. The 22 studies included in this analysis were re-analysed, each 

Fig. 8. Sensory processing: a) Areas of increased activation signal after THC compared with placebo, b) Areas of attenuated activation signal after THC compared 
with placebo. 
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time excluding 1 single study at a time to establish whether each cluster 
remained statistically significant. Following this analysis there was an 
87% cluster survival rate leaving one study out at a time. The high 
survival rate suggests that the results were unlikely to be driven by one 
largely influential study. Moreover, when leaving out the study with 
cannabis naïve participants, 14 out of the 16 clusters survived. 
Excluding the nicotine study and chronic cannabis study resulted in 12 
out of the 16 clusters surviving. All brain regions had an I2 statistic of 
less than 30% (except for the Rolandic operculum cluster that was 
attenuated following THC compared with placebo, I2 =31.80%) sug-
gesting perhaps a modest influence of heterogeneity on the results. 
Furthermore, visual inspection of overlap of meta-analytic activation 
maps and QH heterogeneity maps indicated that no areas in our main 
analysis were influenced by significant heterogeneity. When qualita-
tively comparing the clusters that were significantly modulated by THC, 
relative to placebo, following methodological subgroup analyses with 
the results of the main meta-analysis there was overlap in key cortical 
and sub-cortical regions. This suggests that the results in the main 

meta-analysis were unlikely to be driven by the sources of heterogeneity 
investigated in our sub-group analyses (further discussed in supple-
mentary materials). While this is inherent to any meta-analytic 
endeavour, our steps to examine the extent to which they may have 
influenced our results indicate that they are unlikely to have substan-
tially affected our key conclusions. 

A further limitation of this study is that we used mRNA expression to 
approximate cannabinoid gene expression. Therefore, we report an 
index of gene transcriptional activity as an indirect proxy of cannabinoid 
receptors, which is ultimately determined by gene translation. This 
distinction is important as previous reports highlight significant vari-
ance between mRNA and protein levels within a tissue (Futcher et al., 
1999; Gygi et al., 1999; Greenbaum et al., 2003). This is particularly 
noteworthy in the present context as CB1R are located typically at axon 
terminals and mRNA is typically located in the cell bodies, indicating 
that their expression will not be identical in projection neurons (Stincic 
and Hyson, 2008). This may be reflected in the observation that gene 
expression (transcriptional activity) and protein abundance 

Fig. 9. Memory processing: a) Areas of increased activation signal after THC compared with placebo, b) Areas of attenuated activation signal after THC compared 
with placebo. 
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(translational activity) are not always positively correlated (Margin-
eantu et al., 2007; Schwanhüusser et al., 2011). Therefore, although the 
mRNA measures are derived from tissue homogenates (including both 
axon terminals and cell bodies) where everything is averaged together, 
this represents a further caveat that needs to be considered while 
considering the present results. This limitation is also coupled with the 
caveat that the spatial of association between CB1R and the effect size 
estimate may not necessarily imply a causal association. 

In addition, in present study, the gene expression data was obtained 
from 6 independent participants, downloaded from the Allen Human 
Brain Atlas database, who were not included in any of the neuroimaging 
studies of this meta-analysis. This prevented direct examination of the 
relationship between the acute effects of THC, compared to placebo, on 
brain function and CNR1 expression in the same participants. However, 
the core spatial architecture of receptor systems in the brain has been 
suggested to be consistent across individuals based on evidence from a 
number of previous studies (Rizzo et al., 2016; Veronese et al., 2016; 
Selvaggi et al., 2019). As the relative availability of CB1R and CB2R 

across brain regions are likely to be similar at the population level, the 
results presented here demonstrate an association between approximate 
population level estimates of CNR1 mRNA expression (as obtained from 
the Allen Human Brain Atlas database) and population level estimates of 
THC effects on brain signal (as obtained from meta-analytic effect-size 
estimates from included studies). Correlation between individualized 
mRNA expression data and neuroimaging data will allow a more precise 
delineation of the strength of the association between CNR1 expression 
and THC effect on brain signal and how inter-individual variation in 
receptor availability may underlie variability in brain functional 
response to THC (e.g as we have shown before (Bhattacharyya et al., 
2017) and should be investigated in future studies. Similar approaches 
have been employed in independent studies to relate the spatial archi-
tecture of gene expression data (particularly using data from the Allen 
Human Brain Atlas database) to neuroimaging-based indices of brain 
function both in the absence of (Richiardi et al., 2015; Gryglewski et al., 
2018; Vértes et al., 2016; Anderson et al., 2020; Martins et al., 2021) and 
under pharmacological manipulation conditions such as reported here 

Fig. 10. Attention processing: a) Areas of increased activation signal after THC compared with placebo, b) Areas of attenuated activation signal after THC compared 
with placebo. 
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(Selvaggi et al., 2019). Further, in a separate study, neuroimaging-based 
brain functional indices have been shown to be correlated with brain 
expression data from unrelated samples across multiple datasets indi-
cating the robustness of relationship between gene expression in the 
brain and brain function indices measured using fMRI at the population 
level, similar to the approach we have employed here (Wang et al., 
2015). Limitations are discussed in greater detail in Supplementary 
Discussion, Methodological considerations & heterogeneity. 

Notwithstanding these limitations, the three major findings of the 
current study extend previous evidence on the effects of THC to specif-
ically link (a) the molecular effects of THC at the CB1 receptor to (b) its 
physiological (haemodynamic) effects on regional brain signal activa-
tion, which together may underlie (c) the acute cognitive and behav-
ioural consequences of cannabis use. Only through meta-analytic 
synthesis of 22 studies across 372 participants in computational unison 
were we able to demonstrate that the pleiotropic effects of THC at each 
of these levels of observation may be related to its molecular target—the 
CB1 receptor. Here we present a potential mechanistic explanation for 
the pleiotropic effects of THC by reporting its effects on a ‘integrative 
core’ of brain regions engaged across diverse cognitive and emotional 
processes (Shine et al., 2019), where its effects are in turn related to the 
availability of its main central molecular target across the brain. 
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Galiègue, S., Mary, S., Marchand, J., Dussossoy, D., Carrière, D., Carayon, P., et al., 1995. 
Expression of central and peripheral cannabinoid receptors in human immune 
tissues and leukocyte subpopulations. Eur. J. Biochem. 54–61. 〈https://onlinelibrar 
y.wiley.com/doi/full/10.1111/j.1432-1033.1995.tb20780.x〉. 

García-Gutiérrez, M.S., García-Bueno, B., Zoppi, S., Leza, J.C., Manzanares, J., 2012. 
Chronic blockade of cannabinoid CB2 receptors induces anxiolytic-like actions 
associated with alterations in GABAA receptors. Br. J. Pharmacol. 951–964. 〈https:// 
onlinelibrary.wiley.com/doi/full/10.1111/j.1476-5381.2011.01625.x〉. 

Gerdeman, G., Lovinger, D.M., 2001. CB1 cannabinoid receptor inhibits synaptic release 
of glutamate in rat dorsolateral striatum. J. Neurophysiol. 85 (1), 468–471 [cited 
2022 May 31]. 〈https://pubmed.ncbi.nlm.nih.gov/11152748/〉. 

Gong, J.P., Onaivi, E.S., Ishiguro, H., Liu, Q.R., Tagliaferro, P.A., Brusco, A., 2006. 
Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain 
Res. 1071 (1), 10–23. Feb 3.  

Greenbaum, D., Colangelo, C., Williams, K., Gerstein, M., 2003. Comparing protein 
abundance and mRNA expression levels on a genomic scale [Internet]. Genome Biol. 
BioMed. Cent. Vol. 4, 117 [cited 2021 Mar 29]. 〈http://genomebiology.biomedcen 
tral.com/articles/10.1186/gb-2003-4-9-117〉. 

Gryglewski, G., Seiger, R., James, G.M., Godbersen, G.M., Komorowski, A., 
Unterholzner, J., 2018. Spatial analysis and high resolution mapping of the human 
whole-brain transcriptome for integrative analysis in neuroimaging. Neuroimage 
176, 259–267. 

Gunasekera, B., Davies, C., Martin-Santos, R., Bhattacharyya, S., 2021. The yin and yang 
of cannabis: a systematic review of human neuroimaging evidence of the differential 
effects of δ9-tetrahydrocannabinol and cannabidiol. Biol. Psychiatry Cogn. Neurosci. 
Neuroimaging 6 (6), 636–645 (Available from). 〈https://pubmed.ncbi.nlm.nih. 
gov/33414100/〉. 

Gygi, S.P., Rochon, Y., Franza, B.R., Aebersold, R., 1999. Correlation between protein 
and mRNA abundance in yeast. Mol. Cell Biol. 19 (3), 1720–1730 (Available from). 
〈https://pubmed.ncbi.nlm.nih.gov/10022859/〉. 
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