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a b s t r a c t 

We propose a deep neural network based image-to-image translation for domain adaptation, which aims 

at finding translations between image domains. Despite recent GAN based methods showing promising 

results in image-to-image translation, they are prone to fail at preserving semantic information and main- 

taining image details during translation, which reduces their practicality on tasks such as facial expression 

synthesis. In this paper, we learn a framework with two training objectives: first, we propose a multi- 

domain image synthesis model, yielding a better recognition performance compared to other GAN based 

methods, with a focus on the data augmentation process; second, we explore the use of domain adap- 

tation to transform the visual appearance of the images from different domains, with the detail of face 

characteristics (e.g., identity) well preserved. Doing so, the expression recognition model learned from 

the source domain can be generalized to the translated images from target domain, without the need 

for re-training a model for new target domain. Extensive experiments demonstrate that ExprADA shows 

significant improvements in facial expression recognition accuracy compared to state-of-the-art domain 

adaptation methods. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

The expression recognition accuracy of face images has im-

roved significantly with the advent of deep convolutional neu-

al networks (CNN) which utilize numerous annotated data. How-

ver, collecting numerous annotated samples in various domains is

ime-consuming and expensive. In addition, due to domain shift,

NNs would suffer from performance degradation when being ap-

lied to new datasets with different distribution of samples. For

xample, neural networks trained on labeled source images col-

ected from RGB modality may not recognize target images col-

ected from a near-infrared camera correctly as target images can

ave different characteristics from the source images, such as in-

ensity distributions in which the face image is captured. To adopt

NNs trained on a source domain to a target domain, recently, un-

upervised domain adaptation has been widely investigated, where

e have access to labeled samples from source domain and only

nlabeled target samples. In particular, Generative Adversarial Net-

ork (GAN) [1] variants have made great achievements in image-

o-image translation task and mapping distributions for unsuper-

ised domain adaptation. These GAN models could be trained in
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oth with paired training data [2] and unpaired training data [3,4] .

ore Recently, the method [5] adopted GAN with cycle-consistency

onstraints to perform mapping images between domains. How-

ver, neither category information nor semantic structure can be

reserved in the synthetic images. Moreover, these methods re-

uire training a new model for every new domain, which will limit

heir applications. 

.1. Motivation 

Most of the existing face expression recognition (FER) meth-

ds are still concentrating on the recognition of frontal or near-

rontal facial images. However, the performance of these methods

ill drop significantly in an unconstrained real-world environment,

specially when there are large head pose variations. One possible

olution would be rendering simulated faces in frontal view using

 3D Morphable Model [6,7] (see Fig. 1 ). However, learning directly

rom simulated face images would be challenging due to a domain

ap between simulation and reality. 

.2. Contributions 

The rationale behind our contributions is using visual domain

daptation for simulated face images to reduce the reality gap be-

ween simulation and reality. Doing so, we propose adversarial do-

ain adaptation approach in the form of image-to-image transla-

https://doi.org/10.1016/j.patcog.2019.107111
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
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Fig. 1. Examples of simulated face images generated by [6] . Left to right : captured images from left and right cameras and simulated faces, respectively. 
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tion task for the facial expression analysis. In particular, we are in-

terested in the problem of synthesizing photo-realistic face images

in two different scenarios: first, we focus on the data augmenta-

tion process and generate face images with a desired expression

category to alleviate the common problem of class imbalance and

introduce more variations into training data thus resulting in more

robust classification system; second, we investigate the use of do-

main adaptation to transform the visual appearance of the images

from the target domain (simulated faces) into source domain (real

face images) without affecting the face details such as identity or

expression properties. Therefore, the expression recognition model

learned from the labeled source domain containing real face im-

ages with arbitrary head poses can be generalized to the translated

images from unlabeled target domain containing frontal simulated

face images, without the need for re-training a model for target

domain. Further, compared to other variants of adversarial domain

adaptation methods [4,8,9] , we demonstrate that a better perfor-

mance can be achieved through a proposed method using in-the-

wild data for emotion recognition. 

2. Related work 

Deep neural networks have brought stunning progresses in do-

main adaptation in recent years, enabling learning invariant rep-

resentations across image domains. One of the interesting lines for

domain adaptation is using Maximum Mean Discrepancy (MMD) as

a metric to measure the domain discrepancy. Tzeng et al. [10] pro-

posed a Deep Domain Confusion (DDC) by using domain confu-

sion objective to ensure that domains are indistinguishable in the

learned representation. They also used MMD loss as a regular-

izer during fine-tuning of their network. This idea has been ex-

tended by Long et al. [11,12] via embedding the joint distributions

of the network’s activations of multiple task-specific layers in a

tensor-product Hilbert space and then aligning the joint distribu-

tion based on the MMD criterion. 

2.1. Adversarial domain adaptation 

Adversarial domain adaptation methods [13–15] have become

an increasingly popular deep learning approach to domain adap-
ation, which can learn representations to overcome the distribu-

ional variations between source and target domains. Pei et al.

16] proposed the multiple adversarial networks, each for a spe-

ific class to exploit the complex multimode structures, yield-

ng effective deep transfer learning. Motiian et al. [17] intro-

uced a deep learning model to extend adversarial learning to ex-

loit the label information of target samples in few-shot learning

egime. 

Adversarial domain adaptation approaches can be categorized

nto either feature-level [18,19] or image pixel-level [8,15] adapta-

ion methods. Feature-level adversarial domain adaptation meth-

ds seek to match the feature distributions from trained network

cross the source and target domains. However, shortcoming of

hese approaches would be to ignore semantic consistency dur-

ng domains distribution alignment. In this paper, we focus on the

econd category to perform similar distribution matching in the

aw pixel space. Recently, GAN based models [1] have achieved

romising results in many image synthesis applications, includ-

ng image-to-image translation (pix2pix) [2] and CycleGAN [4] .

or example, CycleGAN [4] can learn transformations between im-

ge domains without one-to-one mapping between domains’ train-

ng data. Li et al. [20] proposed a Deep CNN model for Identity-

ware Transfer (DIAT) of facial attributes, which can be used for

everal facial manipulation tasks. However, for each reference at-

ribute label, these methods train a separate CNN model to transfer

he input image to the desired attribute. Unlike these approaches,

e build a multi-class image-to-image translation model to gen-

rate photo-realistic face images, each having specific expression

lass. 

Similar to our approach, Zhao et al. [21] proposed a Dual-Agent

enerative Adversarial Network (DA-GAN) to synthesize realistic

rofile faces by augmenting samples with extreme face poses. In

heir framework, the simulator produces synthesis faces with arbi-

rary poses, which are fed to DA-GAN for realism refinement. The

iscriminator used in DA-GAN focuses on distinguishing the real-

sm of synthetic profile face images from a simulator using unla-

eled real data while perceiving the face identity information. Un-

ike this approach, we present a category-guided image translation

o generate a new face image using a desired expression with the

ocus on the data augmentation. 
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More recently, StarGAN [22] was proposed for multiple image-

o-image translation task. Unlike [22] , we aim to improves the

ealism of simulated face images, while preserving face image

etails such as facial identity using the proposed loss functions.

erarnau et al. [9] and Lample et al. [23] proposed image manipu-

ation methods by imposing constraints on the latent space to en-

orce it to be independent from the image attributes, which result

n loss of image details during image synthesis. Liu et al. [24] in-

roduced few-shot unsupervised image-to-image translation frame-

ork. In addition, they showed that their approach can be used

o the few-shot image classification task. Seminal work [38] pro-

osed a method to generate synthetic face images for data aug-

entation to train face expression classier. This method has been

urther developed in [39] by using additional face parsing loss to

enerate high-quality face images conditioned on the attributes of

nterest. However, these approaches cannot directly be used for do-

ain adaptation from one face dataset into another. 

In continue, we first introduce our proposed approach in

ection 3 . Then, we discuss our implementation details and exper-

mental results in Section 4 and Section 5 , respectively. 

. Proposed approach 

In this work, we study two scenarios for visual domain adapta-

ion. These scenarios include image-to-image translation from sim-

lated face image x t (belongs to target image space X 

t ) to its coun-

erpart realistic image (belongs to the source image space X 

s ). For

he first scenario, we focus on the data augmentation process and

se category-guided image translation to generate a new face image

ith desired expression while preserving other face details ( Fig. 2

 left). In the second scenario, we use an unsupervised image trans-

ation to generate realistic face images given simulated face image

 

t , so that the established classifier C s trained on the source im-

ges can be directly generalized to the generated images ( Fig. 2 -

ight). In the following, we introduce the objectives for the pro-

osed model optimization. 
ig. 2. Overview of proposed scenarios for domain adaptation at test time. Left: a categor

ith the focus on the data augmentation; Right: an unsupervised image translation, whe

enerated images. 
.1. Category-guided image translation 

We aim to generate photo-realistic face images with a desired

xpression category from simulated face images to introduce more

ariations into training data through data augmentation, thus re-

ulting in more robust classification system (see Fig. 3 ). Having said

hat, there is also domain gap between simulated face images (tar-

et domain) and real face images (source domain), which needs to

e addressed. Doing so, we employ a variant of AC-GAN [25] to

ap the target face images drawn from target input space X 

t to-

ards the source domain space, conditioned on the face expres-

ion categorical vector y from the set of possible facial expression

abel space Y . The generated new image x t → s appears to be drawn

rom X 

s with the desired expression category while the face image

ontent remains unchanged. Our domain adaptation model consists

f a generator and discriminator networks. First, we train a single

enerator G 

t → s with the encoder G 

t→ s 
enc – decoder G 

t→ s 
dec 

networks to

roduce realistic transformed image x t→ s = G 

t→ s 
dec 

(
G 

t→ s 
enc ( x ) , y 

)
condi-

ioned on the expression classes. During training, we randomly use

 set of expression labels y to make the generator more flexible in

enerating images. We also train a discriminator D 

s using an ad-

ersarial formulation to not only distinguish between real and fake

enerated images, but also to classify the image to its correspond-

ng expression categories. 

.1.1. Adversarial loss 

We adopt an adversarial loss: 

 

t→ s 
adv = E x s 

[
log D 

s 
domain ( x 

s ) 
]

+ E x t ,y 

[
log 

(
1 − D 

s 
domain 

(
G 

t→ s 
dec 

(
G 

t→ s 
enc ( x ) , y 

)))]
(1) 

he term D 

s 
domain 

( ·) denotes a probability distribution over source

omain images. A generator used in our model is trained to max-

mally fool the discriminator in a min-max game. On the other

and, the discriminator simultaneously seeks to identify the fake

ource samples for each expression category. 
y-guided image translation to generate a new face image using a desired expression 

re the classifier C s trained on the source images can be directly generalized to the 
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Fig. 3. Illustration of ExprADA (training stage). The proposed framework contains the paired generator and discriminator, where images of two domains can be translated 

bidirectionally. The blue and red arrows illustrate the data flows of target and source data, respectively. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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3.1.2. Classification loss 

We deploy a classifier by returning additional output from the

discriminator to perform an auxiliary task of classifying the fake

and the real source data into their respective expression categories.

A classification loss of real source images L cls r to optimize the dis-

criminator, is defined as follow: 

L cls r ( D 

s ) = E x s ,y ′ 
[
− log D 

s 
cls 

(
y ′ | x s )] (2)

where the term D 

s 
cls 

( ·) represents a probability distribution over

source domain classes computed by the discriminator and y ′ de-

notes original input labels. On the other side, a domain classifica-

tion loss of fake images L cls f 
used to optimize the generator, for-

mulated as follow: 

L cls f 

(
G 

t→ s 
)

= E x t ,y 

[
− log D 

s 
cls 

(
y | x t→ s 

)]
(3)

where y is the source domain categories. Here, the generator is

trained to minimize this objective to ensure that class-consistent

images are generated. 

3.1.3. Bidirectional loss 

Using adversarial losses alone cannot guarantee that the trained

generator can maintain the detailed image contents. Inversely, we

build a source-to-target generator G 

s → t and a target discriminator

D 

t , so that images of different domains can be translated bidirec-

tionally. This pair of models are trained with a same-way adversar-

ial loss L 

s → t 
adv following the Eq. (1) . It should be noted that for tar-

get data, since class labels are not reliable, we do not use domain

classification loss. Inspired by Zhu et al. [4] , we propose a bidirec-

tional loss between transformed images, formulated using l 1 loss

as follow: 

L bi 

(
G 

s → t , G 

t→ s 
)

= E x s 
[∥∥ ˆ x s − x s 

∥
∥

1 

]
+ E x t 

[∥∥ ˆ x t − x t 
∥
∥

1 

]

ˆ x s = G 

t→ s 
(
G 

s → t ( x s ) 
)
, 

ˆ x t = G 

s → t 
(
G 

t→ s 
(
x t 

))
(4)

3.1.4. Reconstruction loss 

Using this loss, we aim to preserve class labels-excluding face

details such as facial identity before and after image translation.
y doing so, we use a pixel-wise l 1 loss to enforce the facial details

onsistency: 

 re 

(
G 

s → t , G 

t→ s 
)

= E x t ,y 

[∥∥x t − G 

t→ s 
dec 

(
G 

t→ s 
enc 

(
x t 

)
, y 

)∥∥
1 

]

+ E x s ,y ′ 
[∥∥x s − G 

s → t 
dec 

(
G 

s → t 
enc ( x 

s ) , y ′ 
)∥∥

1 

]
(5)

.1.5. Overall objective 

Finally, the proposed training loss for the generator G joins

ll the losses. Meanwhile, the discriminator D is optimized using

n adversarial loss and domain classification loss for the real im-

ges: 

 

(
G 

s → t , G 

t→ s 
)

= L 

t→ s 
adv +L 

s → t 
adv +λbi L bi 

(
G 

s → t , G 

t→ s 
)
+λcls L cls f 

(
G 

t→ s 
)

+ λre L re 

(
G 

s → t , G 

t→ s 
)
, 

L 

(
D 

s , D 

t 
)

= −L 

t→ s 
adv − L 

s → t 
adv + λcls L cls r ( D 

s ) , (6)

here λbi , λre and λcls are hyper-parameters, which tune the im-

ortance of bidirectional loss, reconstruction loss and domain clas-

ification loss, respectively. 

.2. Unsupervised image translation 

In this training phase, our pipeline is identical to Section 3.1 ,

xcept that we remove classification stream and related losses.

herefore, the generated face images are not conditioned on the

ace expression categorical information. Our goal is to make the

rained CNN model on the source domain generally applicable to

arget dataset including simulated face images, where the label in-

ormation is not available. 

.2.1. Classification network established on source domain 

We train an expression classifier to classify the source face im-

ges correctly. The classification loss is the negative log-likelihood

f the classifier prediction C s , given the ground truth labels of face

mages from the source dataset, L SClass = −∑ N s 
i =0 

y s 
i 

log ˆ y s 
i 
, where y s 

i 

nd 

ˆ y s 
i 

are the label and prediction for the image x s 
i 
∈ X 

s , respec-

ively. Our expression recognition network is detached from the

earning of our domain adaptation model. Compared with the in-

egrated approaches, an independent classifier enables much more
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exibility and allows us to take advantage of well-known pre-

rained models. In particular, we use VGG-face model [26] , pre-

rained on the large face recognition dataset and can positively

mproves the expression recognition accuracy. Doing so, we can di-

ectly apply the established classification model C s on x t → s with-

ut re-training. 

. Implementation details 

All networks are trained using Adam optimizer

27] ( β1 = 0 . 5 , β2 = 0 . 999 ) and with a base learning rate of

.0 0 01. We linearly decay learning rate after the first 100 epochs.

e use a horizontal flipping for data augmentation. The input

mage size and the batch size are set to 128 × 128 and 8 for all

xperiments, respectively. In practice, to stabilize the training of

he GAN, the negative log likelihood in L adv was replaced by a

east-square loss. The hyper-parameters are set as: λbi = 10 and

re = 10 and λcls = 1 , respectively. The whole model is imple-

ented using PyTorch on a single NVIDIA GeForce GTX 1080

i. 

.1. Networks architectures 

Tables 1 and 2 demonstrate the detailed network architectures

f our proposed ExprADA. In particular, both generators have the

ame architecture. Regarding the generator’s decoder, we use sub-

ixel convolution instead of transposed convolution followed by in-

tance normalization [28] . 
Table 1 

The generator architecture. There are some notations; n y deno

instance normalization and residual block, respectively. 

Part Layers Input Size → O

Conv + IN+ReLU ( h, w , 6) → ( h, 

Conv + IN+ReLU ( h, w, 64 ) → 

(
h
2

Encoder Conv + IN+ReLU 

(
h 
2 
, w 

2 
, 128 

)
→ 

Conv + IN+ReLU 

(
h 
4 
, w 

4 
, 256 

)
→ 

Conv + IN+ReLU 

(
h 
8 
, w 

8 
, 512 

)
→ 

RB:Conv + IN+ReLU 

(
h 

16 
, w 

16 
, 1024 

)
→

RB:Conv + IN+ReLU 

(
h 

16 
, w 

16 
, 1024 

)
→

RB:Conv + IN+ReLU 

(
h 

16 
, w 

16 
, 1024 

)
→

Bottleneck RB:Conv + IN+ReLU 

(
h 

16 
, w 

16 
, 1024 

)
→

RB:Conv + IN+ReLU 

(
h 

16 
, w 

16 
, 1024 

)
→

RB:Conv + IN+ReLU 

(
h 

16 
, w 

16 
, 1024 

)
→

Sub-Pixel Conv + IN+ReLU 

(
h 

16 
, w 

16 
, 1024 +

Sub-Pixel Conv + IN+ReLU 

(
h 
8 
, w 

8 
, 512 

)
→ 

Decoder Sub-Pixel Conv + IN+ReLU 

(
h 
4 
, w 

4 
, 256 

)
→ 

Sub-Pixel Conv + IN+ReLU 

(
h 
2 
, w 

2 
, 128 

)
→ 

Image output :Conv + Tanh ( h, w , 64) → ( h

Side output :Conv + Tanh ( h, w , 64) → ( h

Table 2 

The discriminator architecture. FC and m denote fully conn

tively. 

Part Layers Input Size → O

Conv + Leaky ReLU ( h, w, 6 ) → 

(
h 
2 
, 

Conv + Leaky ReLU 

(
h 
2 
, w 

2 
, 64 

)
→ 

(
h
4

Discriminator Conv + Leaky ReLU 

(
h 
4 
, w 

4 
, 128 

)
→ 

(

Conv + Leaky ReLU 

(
h 
8 
, w 

8 
, 256 

)
→ 

(

Conv + Leaky ReLU 

(
h 

16 
, w 

16 
, 512 

)
→ 

Conv + Leaky ReLU 

(
h 

32 
, w 

32 
, 1024 

)
→

Outputs Output Layer :Conv 
(

h 
64 

, w 
64 

, 2048 
)

→
Output Layer :FC 

(
h 

64 
, w 

64 
, 2048 

)
→

. Experimental results 

.1. Datasets 

.1.1. Driver emotion dataset 

We present the driver emotion dataset; a dataset of images that

aptured the driver’s emotion using a near-infrared (NIR) camera

n a real driving environment. The drivers show six basic facial

xpressions including anger, disgust, fear, happiness, sadness, sur-

rise plus neutral faces. In our experiments, we use video frames

peak expressions) of 20 subjects for training and validation, and 6

ubjects for the test, respectively. 

.1.2. BU-3DFE 

The Binghamton University 3D Facial Expression Database (BU-

DFE) [29] contains 3D models from 100 subjects. Each subject has

3 different poses ranging from −90 to 90 ◦ in 15 ◦ steps. The sub-

ects show a neutral face as well as six basic facial expressions and

t four different intensity levels. 

.1.3. KDEF 

The KDEF dataset [30] is a multi-view emotion dataset that con-

ains 35 females and 35 males displaying seven discrete expres-

ions (anger, fear, disgust, happiness, sadness, surprise and neutral)

nd each expression comes with 5 different yaw angles. 

.1.4. MMI 

The MMI dataset [31] consists of 236 image sequences from 31

ubjects, from which 208 sequences captured in frontal view were

elected in our experiments. Each sequence is annotated as one of
tes the dimension of one-hot vector. IN and RB denote 

utput Size Filter Size Stride Padding 

w , 64) 7 × 7 1 3 
 

 

, w 
2 

, 128 
)

4 × 4 2 1 (
h 
4 
, w 

4 
, 256 

)
4 × 4 2 1 (

h 
8 
, w 

8 
, 512 

)
4 × 4 2 1 (

h 
16 

, w 
16 

, 1024 
)

4 × 4 2 1 

 

(
h 

16 
, w 

16 
, 1024 

)
3 × 3 1 1 

 

(
h 

16 
, w 

16 
, 1024 

)
3 × 3 1 1 

 

(
h 

16 
, w 

16 
, 1024 

)
3 × 3 1 1 

 

(
h 

16 
, w 

16 
, 1024 

)
3 × 3 1 1 

 

(
h 

16 
, w 

16 
, 1024 

)
3 × 3 1 1 

 

(
h 

16 
, w 

16 
, 1024 

)
3 × 3 1 1 

 n y 
)

→ 

(
h 
8 
, w 

8 
, 512 

)
3 × 3 2 1 (

h 
4 
, w 

4 
, 256 

)
3 × 3 2 1 (

h 
2 
, w 

2 
, 128 

)
3 × 3 2 1 

( h, w, 64 ) 3 × 3 2 1 

, w , 3) 7 × 7 1 3 

, w , 3) 7 × 7 1 3 

ected layer and the number of target classes, respec- 

utput Size Filter Size Stride Padding 

w 
2 

, 64 
)

4 × 4 2 1 
 

 

, w 
4 

, 128 
)

4 × 4 2 1 
h 
8 
, w 

8 
, 256 

)
4 × 4 2 1 

h 
16 

, w 
16 

, 512 
)

4 × 4 2 1 (
h 

32 
, w 

32 
, 1024 

)
4 × 4 2 1 

 

(
h 

64 
, w 

64 
, 2048 

)
4 × 4 2 1 

 

(
h 

64 
, w 

64 
, 1 

)
3 × 3 1 1 

 F Cm - - - 



6 B. Bozorgtabar, D. Mahapatra and J.-P. Thiran / Pattern Recognition 100 (2020) 107111 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n  

i  

a  

e

5

 

o  

t  

o  

s  

w  

i  

p  

i  

i  

p  

a  

[  

G  

m  

t

a  

m  

t  

n  

e  

e

5

 

E  
the six basic facial expressions. Each sequence starts from a neu-

tral expression, reaches a peak phase in the middle of a sequence,

and ends up with a neutral expression again. Since there is no an-

notation for the peak frames, we chose three frames in the middle

of each sequence as the peak frames and labeled them with the

provided labels for a related sequence, resulting in a total of 624

images for our experiments. 

5.2. Baselines 

We study the performance of our two baseline methods: 

• ExprADA CGIT : Our proposed model using category-guided

image translation; 
• ExprADA UIT : Our proposed model using unsupervised image

translation. 

5.3. Qualitative evaluation 

For the qualitative evaluation, we consider a visual domain

adaptation experiment on the BU-3DFE dataset [29] . For this pur-

pose, a simulated frontal face image is generated using standard

rendering pipeline [7] from images of two camera views. We use

a 3D Morphable Model using bilinear face model [7] to render a

simulated face image. The results of our proposed ExprADA CGIT have

been compared with the SimGAN method [8] (see Fig. 4 ). From the

results, it is obvious that our facial expression transfer results are

more realistic and facial expression is well distinguishable demon-

strating the importance of classification objective function. 

5.3.1. Comparison with SimGAN 

SimGAN [8] considers learning from simulated and unlabeled

real images through adversarial training. However, we present a
Fig. 4. Comparison of facial expression transfer task by (a) our ExprADA CGIT and (b) SimG

exhibited expressions including angry, disgusted, fearful, happiness, neutral, sadness and sur
ew objective to prevent the image content distortion during the

mage translation and to preserve face image details e.g., face pose

nd identity, whereas SimGAN was proposed for simpler scenarios

.g., eye image refinement. 

.4. Quantitative evaluation 

We perform quantitative evaluation of our ExprADA UIT baseline

n generating images to tackle unsupervised domain adaptation

ask. Doing so, we used the VGG-Face model [26] as the backbone

f our classifier, which was further fine-tuned on source domain

amples from the driver emotion dataset. We trained our classifier

ith subject-independent subsets (20 subjects for training and val-

dation and 6 subjects for the test). Then, we performed our unsu-

ervised image translation scheme ( ExprADA UIT ) by improving real-

sm to the simulated faces (target domain) to generate transformed

mages x t → s and obtain the expression recognition result. We com-

ared our method with the state-of-the-art unsupervised domain

daptation schemes including CycleGAN [4] , StarGAN [22] , SimGAN

8] , Adversarial Discriminative Domain Adaptation (ADDA) [19] ,

enerate To Adapt (GTA) [32] and Cycle-Consistent Adversarial Do-

ain Adaptation (CyCADA) [5] , which are formulated as image-

o-image translation task. As can be seen in Fig. 5 , ExprADA UIT 

chieves the highest classification accuracy, demonstrating that our

ethod could generate the most realistic expressions among all

he methods compared. In addition, we estimate the t-SNE compo-

ents after using our domain adaptation model ( Fig. 5 ). The differ-

nt colored points represent the clusters in the embedding space,

ach corresponding to a different expression category. 

.4.1. Data augmentation 

We also demonstrate quantitatively the usefulness our

xprADA CGIT baseline in generating photo-realistic face images
AN [8] on the BU-3DFE dataset [29] . Left to right : input simulated face and seven 

prised , respectively. 
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Fig. 5. Left: The t-SNE components of the target embedding of the driver emotion dataset after domain adaptation. Right: Results (expression recognition accuracy %) on 

the driver emotion dataset for unsupervised domain adaptation. (For interpretation of the references to color in text, the reader is referred to the web version of this article.) 

Table 3 

Results (expression recognition accuracy %) on the driver emo- 

tion dataset using generated images for data augmentation. 

Method 1K 2K 5K 

CycleGAN [4] 66.8 ± 0.4 68.5 ± 0.3 71.2 ± 0.1 

StarGAN [22] 69.2 ± 0.2 72.7 ± 0.2 75.4 ± 0.3 

SimGAN [8] 72.5 ± 0.1 74.6 ± 0.3 76.8 ± 0.2 

ExprADA CGIT 82.2 ± 0.3 84.5 ± 0.4 86.9 ± 0.6 
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ontrolled by the expression category (see Table 3 ). Doing so, we

ugment real images from the driver emotion dataset with the

mages generated by ExprADA CGIT and then compare with other

ategory-guided image translation methods to train our backbone

xpression classifier. The purpose of this experiment is to enrich

ource dataset further to improve the expression recognition per-

ormance. In particular, from each of the six expression categories,

e generate 1K, 2K and 5K images, respectively. The performance

f all methods starts to become saturated when more images

30K) are used. We achieved a higher recognition accuracy value

sing the images generated from ExprADA CGIT than other category-

uided image translation methods e.g., CycleGAN. This shows that

ur model has learned to generate more diverse realistic images. 

.4.2. Pose normalization & improving realism 

We tested our unsupervised image translation method on the

U-3DFE dataset [29] and compared with two GAN-based domain

daptation techniques for realism refinement of the simulated face

mages. For the first experiment (first row in Table 4 ), we only

valuated the performance of the trained classifier for non-frontal

ace images without pose normalization or rendering simulated

aces. We performed 5-fold cross validation using 100 subjects.

raining data includes images of 80 subjects, while test data in-
Table 4 

Results (expression recognition accuracy %) on

domain adaptation and varying face pose angle

Method ± 1

Test Set (without domain adaptation) 70.

CycleGAN [4] 71.

SimGAN [8] 71.

ExprADA UIT 73.
ludes images of 20 subjects with varying poses. For our classi-

er, we fine-tuned VGG-Face model on the real frontal face im-

ges from BU-3DFE dataset. Then, we rendered frontal face images

rom test images of non-frontal faces and conducted experiments

sing different image translation methods. It can be observed from

able 4 that image translation on the simulated frontal faces con-

ributes significantly to the expression recognition performance for

he non-frontal faces (ranging from 15 to 45 ◦ in 15 ◦ steps) and

rings additional gains. 

.4.3. Facial expression transfer 

To further evaluate the generality of our proposed method, we

ested transferring a subject’s facial expression to different ex-

ressions using our proposed category-guided image translation

xprADA CGIT . Facial expression transfer between two unpaired im-

ges is a challenging task due to the individual variances. For this

xperiment, we do not use simulated face images, but rather the

ource and target domains represent different facial expressions.

e evaluate our expression transfer framework on two facial ex-

ression datasets: KDEF [30] and MMI [31] . For both datasets, we

ollowed the same settings and trained a facial expression clas-

ifier with (90%/10%) splitting for training and test sets, respec-

ively. We opt a ResNet-50 [33] as our expression classifier and

eported the average accuracy of both datasets and for all expres-

ions in Tables 5 and 6 . We then trained each of baseline expres-

ion transfer models including CycleGAN, IcGAN and StarGAN using

he same training set and performed image-to-image translation

n the same unseen test set. Finally, we classified the expression of

hese generated images using the above-mentioned classifier. Our

xprADA method, showing a close result to real images, generates

hoto-realistic expression transfer results while preserving identity

nformation. 
 the BU-3DFE dataset for unsupervised 

s. 

5 ± 30 ± 45 

9 ± 0.2 65.9 ± 0.2 59.3 ± 0.2 

6 ± 0.3 67.3 ± 0.3 61.5 ± 0.2 

8 ± 0.2 67.7 ± 0.2 62.3 ± 0.2 

2 ± 0.1 69.4 ± 0.1 65.1 ± 0.1 
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Table 5 

Quantitative results of expression transfer (recognition 

accuracy %) on the KDEF dataset. 

Method Accuracy 

Real Images 87.1 ± 0.1 

CycleGAN 82.4 ± 0.4 

IcGAN 78.3 ± 0.3 

StarGAN 84.5 ± 0.2 

ExprADA CGIT w/o L bi 82.8 ± 0.2 

ExprADA CGIT w/o L re 85.3 ± 0.3 

ExprADA CGIT 86.9 ± 0.2 

Table 6 

Quantitative results of expression transfer (recognition 

accuracy %) on the MMI dataset. 

Method Accuracy 

Real Images 72.25 ± 0.1 

CycleGAN 63.5 ± 0.2 

IcGAN 60.1 ± 0.2 

StarGAN 66.8 ± 0.3 

ExprADA CGIT w/o L bi 67.1 ± 0.1 

ExprADA CGIT w/o L re 68.5 ± 0.2 

ExprADA CGIT 70.7 ± 0.1 
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5.4.4. Ablation study 

We investigated the sensitivity of the results for each compo-

nent of our objective function including bidirectional loss and re-

construction loss, respectively. For each ablation experiment, we

turn-off one of the loss terms in the final objective function and

then we generate the related results for evaluation. Our ExprADA

trained with each of the proposed loss terms, resulting in a perfor-

mance gain in expression recognition accuracy for the translated

images ( Tables 5 and 6 ). 

5.4.5. Comparison with other image-to-image translation methods 

Compared to other adversarial image-to-image translation

methods such as CycleGAN [4] and DIAT [20] , which can be used

for facial manipulation task, our method is more efficient as it for-

mulated a multi-class image-to-image translation task in a single

model while other approaches need to train a separate model for

each reference attribute to transfer the input image to the desired

attribute. 

More recently, StarGAN [22] and STGAN [34] were proposed to

manipulate multiple attributes for image-to-image translation task.

STGAN [34] incorporated difference attribute vector and selective

transfer units (STUs) to perform arbitrary image attribute editing.

Unlike these approaches, our objective is to improve the realism of

simulated face images using domain adaptation. We propose a new

objective to prevent the content distortion during the image trans-

lation and to preserve face image details. In addition, our method

involves latent representation using an encoder-decoder architec-

ture and models the relation between the latent representation

and the facial expressions. 

Relevant recent work [35–37] proposed facial attribute transfer

methods with the objective of generating visually more pleasing

results. For example, Yin et al. [35] proposed GeoGAN, a geometry-

aware flow representation to address the problem of instance-level

facial attribute transfer. Tang et al. [36] presented a Multi-Channel

Attention Selection GAN (SelectionGAN) to address image synthe-

sizing task by conditioning on a reference image and a target seg-

mentation map. Chen et al. [37] presented a face attribute manipu-

lation method, where they decompose semantic components from

high-level attributes to control the face attribute transfer through

the user. In comparison to these methods, our method is capable

to model the transformation between simulated face images and

real images, despite of the large gap between the source and tar-
et face images without using additional information e.g., segmen-

ation map. 

. Conclusion 

In this paper, we propose a method to simultaneously achieve

mage-to-image translation, discriminative modeling, and adversar-

al domain adaptation. More importantly, we present a new ob-

ective to prevent the content distortion during the image trans-

ation and to preserve face image details. We present two mod-

ls within our framework, where one uses multi-domain image-

o-image mapping with a focus on the data augmentation pro-

ess to alleviate the common problem of class imbalance, and the

ther transforms the visual appearance of the images between do-

ains in an unsupervised way. We have shown the superiority

f our approach over existing visual domain adaptation methods

sing experiments on face datasets recorded in real world condi-

ions. The results demonstrate the generality of our domain adap-

ation model. Furthermore, during evaluation, our approach does

ot need re-training a model (initially trained on the source data)

or a new target dataset, which is a necessary aspect when deploy-

ng such models in practice. 

.1. Limitations 

While our adversarial domain adaptation method could trans-

er appearance changes across face image domains, it requires ac-

ess to many images in both source and target image domains at

raining time. The generalization ability from a few samples of a

ew image domain based on prior knowledge is entirely beyond

he scope of this paper. We argue that this issue limits the use

f ExprADA for the real scenario, where we need an unsupervised

mage-to-image translation algorithm that works on previously un-

een target image domains that are available, at test time, only by

 few example images. A possible future extension of this work

ould be to support few-shot generalization by leveraging few im-

ges of the target domain given at test time. 
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