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Neuroimaging studies typically compare experimental conditions using average brain responses,

thereby overlooking the stimulus-related information conveyed by distributed spatio-temporal

patterns of single-trial responses. Here, we take advantage of this rich information at a single-trial

level to decode stimulus-related signals in two event-related potential (ERP) studies. Our method

models the statistical distribution of the voltage topographies with a Gaussian Mixture Model (GMM),

which reduces the dataset to a number of representative voltage topographies. The degree of presence

of these topographies across trials at specific latencies is then used to classify experimental conditions.

We tested the algorithm using a cross-validation procedure in two independent EEG datasets. In

the first ERP study, we classified left- versus right-hemifield checkerboard stimuli for upper and

lower visual hemifields. In a second ERP study, when functional differences cannot be assumed, we

classified initial versus repeated presentations of visual objects. With minimal a priori information,

the GMM model provides neurophysiologically interpretable features – vis �a vis voltage topographies

– as well as dynamic information about brain function. This method can in principle be applied to any

ERP dataset testing the functional relevance of specific time periods for stimulus processing, the

predictability of subject’s behavior and cognitive states, and the discrimination between healthy and

clinical populations.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In electroencephalography (EEG) research, averages of the
peri-stimulus EEG across trials are typically used to derive ERPs
at each recorded electrode and to study evoked neural responses
to external stimuli. Averaging across trials improves the signal-to-
noise ratio (SNR) and reduces the influence of physiological and
instrumental noise because it preserves only those EEG signals
that are time-locked to stimulus onset. Recently, it has become
increasingly clear that the EEG contains functionally important
signals that are not time-locked to stimulus onset and can only be
studied at the single-trial level [1–4]. The impact of such unlocked
signals is strongest when high-level cognitive factors play a role
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in task completion [5,6] and when effects of learning and plasticity
cannot be excluded [4,7,8]. Importantly, detection of stimulus-
related activity at the single-trial level can be used for developing
classification strategies to predict the subject’s functional state (i.e.
learning stage) or his behavioral output [9]. This approach has
applications ranging from anticipating subject’s preferences in a
decision-making task ([10,11] using EEG and [12] using functional
magnetic resonance imaging—fMRI) or uncovering hidden inten-
tions in a lie-detection paradigm (see [13] using fMRI).

Whereas decoding approaches are well established in fMRI
research [14–17], in the EEG domain they are mainly used in
Brain–Computer Interface (BCI) applications and are far less
common in ERP studies. This is surprising because the EEG signal,
with its high temporal resolution, may contain a great amount of
subtle stimulus-related information. By applying multivariate
techniques to the single-trial ERPs, we expect to uncover effects
that cannot be detected at the average ERP level. Previous
attempts to decode stimulus-related signals in single-trial ERPs
were based largely on a trial-and-error strategy for selecting
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those temporal periods that were most discriminant and fixed a

priori the time-window(s) of interest [10,11].
Here, we propose a general approach for decoding stimulus

categories at the single-trial level that requires minimal a priori

assumptions. Specifically our method estimates the onset and
temporal duration of the effect of interest by a data-driven
approach, does not need any electrodes selection and is indepen-
dent of the EEG reference. Therefore, we take full advantage of the
voltage measured across electrodes over the scalp, showing that
the scalp voltage topography of the EEG contains stimulus-related
information that can be detected at the single-trial level and used
to decode stimuli. This approach is rooted in a long tradition of
topographic analysis of ongoing EEG and ERPs. It has been shown
that the brain’s electric field at the scalp does not fluctuate
randomly across time, but instead remains in stable configura-
tions for periods of several tens of milliseconds, independently of
changes in response strength [18–24]. The advantage of using
voltage topographies for decoding is their neurophysiological
interpretability; changes in the scalp voltage topography forcibly
follow from changes in the underlying configuration of intracra-
nial generators [18,20,21].

We previously developed topographic clustering procedures
based on a GMM model of single-trial ERP data [25,26]. However,
these previous results applying a GMM model were based either
on a qualitative analysis of a dataset collapsed across subjects
[25] or on one subject’s data [26]. Here, we extend our method to
identify those stimulus-related topographic features that opti-
mally separate stimulus categories and can therefore be used to
classify new sets of single-trials as belonging to one condition or
the other. This multivariate decoding strategy identifies which
critical voltage topographies (and at which latencies) underlie the
functional differences between two experimental conditions.

For validation purposes, in this study we apply our methods on
two visual evoked potential (VEP) datasets with well-established
voltage topographies that occur at known latencies at the average
ERP level [27–29]. Because in these two datasets trial-to-trial
variability is expected to be minimal, we can compare the features
extracted at the single-trial level with those estimated at the
average ERP level and then evaluate the extent to which time-
unlocked activity is present at the level of single-trial EEG. In addi-
tion, we compare the topographic classification performances
based on single-trial and average ERP level and demonstrate that
single-trial topographic classification produces the higher classifi-
cation accuracy. This test is essential to show the added value of
single-trial analysis over average ERP and an important step before
the classification algorithm can be used in more general contexts.
2. Proposed method for single-trial classification

The classification algorithm described in the following can be
applied to any ERP study involving at least two experimental
conditions. In its present form, it can be applied to single subjects,
each subject being analyzed independently. In what follows we
will always refer to an ERP dataset of one subject including two
experimental conditions. This dataset consists of the concatena-
tion of peri-stimulus EEG epochs (trials). Each trial can be of any
length, but usually the post-stimulus period is much longer that
the pre-stimulus period. Moreover, at each time point, the data
across the electrode montage constitute a vector of voltage
measurements m¼{m1,m2, y, mN}, where N is the total number
of electrodes (Fig. 1a). We will refer to this vector as a topography.
These datasets are pre-processed by normalizing each topography
by its instantaneous Global Field Power (GFP) [30,31]. This nor-
malization makes the classification algorithm solely dependent
on the overall shape of the topography irrespective of its
instantaneous strength [19,20]. In the following, m will always
represent the GFP-normalized generic topography at one time
point. The algorithm is comprised of two main steps: the training
and the test phase. The training dataset is the part of the data that
is used for estimating the ERP model. In the following ‘T’ indicates
the total number of trials in the training dataset, and without loss
of generality we assume that the two datasets have the same
number of trials. The test dataset, including a selection of trials
that did not overlap with those of the training dataset, is used
for selecting the optimal model parameters. This split in training
and testing is done for each of the two conditions, separately.
Moreover, a set of trials (validation dataset) is kept completely
independent of the training and testing datasets in order to
objectively measure our methods’ performance in real-life decod-
ing applications.

2.1. Training phase

2.1.1. Gaussian Mixture Model estimation

The first step of our analysis comprises a modeling of the
ensemble of topographies in the training dataset for each experi-
mental condition. At this stage of the analysis, all the available topo-
graphies are pooled together disregarding the latencies at which
they are observed and the trial to which they belong (Fig. 1a).
Therefore, their temporal order is not relevant at this point.

To reduce our ensemble of topographies to a number of repre-
sentative template maps, we propose a GMM probability distribu-
tion in an N-dimensional space (Fig. 1b)

Pðm9l,rÞ ¼
XQ

k ¼ 1

pkPkðm9lk,rkÞ ð1Þ

where Pk is the kth Gaussian distribution with mean lk and
covariance rk, pk is the prior probability of the class label k and Q

is the total number of Gaussians. In the following, we will refer
to the means – lk – of the Gaussians as template maps, and for
simplicity we will replace the notation ‘‘lk, rk’’ with ‘‘ck’’ to indicate
the kth Gaussian within the GMM.

In order to estimate the GMM distribution, we use an expecta-
tion-maximization procedure [32,33] that iterates the estimation
of the model’s parameters (priors, means and covariance matrices)
in order to minimize the error function, or equivalently maximizing
the likelihood L

E¼�lnL¼�
X

n

ln
XQ

k ¼ 1

Pðm9ckÞpk

( )
ð2Þ

where the index n spans the total number of topographies in the
training dataset, i.e. the total number of topographies in one trial
multiplied by the total number of trials in the training dataset for
one condition.

In order to initiate this algorithm, a first guess of the means and
covariance matrices needs to be provided. We consider as initial
means those obtained by a k-means clustering algorithm [33]. The
initial estimation of covariance matrices is obtained by consider-
ing the topographies belonging to each cluster as estimated by
the k-means algorithm. The initial values for the priors, pk, are
obtained by the relative number of topographies for each cluster.
Due to the limited number of training samples, we reduce the
number of free parameters by constraining the covariance matrix
to be diagonal. Although in principle this assumption implies
independency among different electrodes, the use of a mixture
model can still account for dependency at a global level [34,35].

The above mentioned procedure of computing a GMM model
is performed for each condition separately, so we end up with
one model per condition. The only a priori hypothesis is the
total number of Gaussians, Q, in the model (in the example of
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Fig. 1. Schematic representation of how we model the ERP dataset of each experimental condition by means of GMM. (a) At each time-point, the topography is represented

as a vector in N-dimensional space (where N¼#electrodes) without taking into account the latency h and the trial to which it belongs. (b) Example of a GMM with three

Gaussians in the mixture. After evaluating the model’s parameters, each topography is assigned a set of posterior probabilities, the number of which equals that of the

Gaussians in the mixture. These probabilities quantify the confidence with which each topography is assigned to each Gaussian. (c) The set of posterior probability values

are re-arranged time-point by time-point and re-assigned to each of the original trials. (d) Computing the posterior probabilities across trials (Eq. (4)), we can quantify the

degree of presence of each template map in time across trials (i.e. both within and between experimental conditions).

A. Tzovara et al. / Pattern Recognition 45 (2012) 2109–2122 2111
Fig. 1b, Q¼3). In the following, we will consider two generic
values Q1 and Q2 for the first and the second condition, respec-
tively. However, we will explain below in a dedicated paragraph
how we select the optimal values for Q1 and Q2 (see Optimizing

the total number of Gaussians).
2.1.2. Evaluating the posterior probabilities of single-trial ERP data

We use GMM models to assign each topography of the original
dataset to one of the Gaussians ck. For this purpose we computed
the posterior probabilities, normally used in classification pro-
blems, because misclassification error is minimized by choosing
the class having the largest posterior probability [33].

The posterior probabilities for each Gaussian in the mixture
are defined as in the following:

Pðck9mÞ ¼
Pðm9ckÞpk

pðmÞ
ð3Þ

where p(m) is the unconditional density function, i.e. the den-
sity function for m irrespective of the Gaussian ck. In order to
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Fig. 2. Schematic representation of how we select the template maps that are

used for building the discrimination function and performing classification. (a) The

posterior probabilities of the training datasets are computed based on the corre-

sponding model (continuous and dashed lines). At each latency ‘h’ the template

map yielding the highest posterior probability across trials is selected (ih and jh in

the Eqs. (5) and (6)). (b) For each trial of the testing dataset, we compute the

logarithm of posterior probability for the map ih and the posterior probability for

map jh, averaged over H time-points responsible for the difference between

conditions (see Section 2.1.3). The discrimination function is defined as the

difference of these two values. (c) The trial is classified as belonging to the first

condition if the discrimination function is equal to or greater that zero, else it is

classified as belonging to the second.
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investigate stimulus-related information, we need to rearrange
the posterior probabilities to their original temporal order in the
data, providing a new representation of the single-trial ERPs in
time and across trials. For each trial, this rearrangement generates
a time series of the posterior probability for each template map in
the mixture (Fig. 1c).

The posterior probabilities across trials1,

XT

t ¼ 1

logðPðck9mthÞÞ�ðT�1ÞlogðpkÞ ð4Þ

typically reveal a pattern of presence of a given template map that
is structured in time (Fig. 1d, 4a, c and 7a), where mth is the topo-
graphy of tth trial, at time-latency h. This posterior probability is
computed at each latency and for each Gaussian ck in the GMM
model for each experimental condition.

In the following, we will make the assumption that the pk are
all equal. In fact, this posterior probability refers to just one point
in time h, whereas the priors pk were computed independently of
time. Note that, given this assumption, the second term in Eq. (4)
is constant and equal for both conditions; therefore it will not
play a role in the algorithm implementation.

At this point we are able to compare the two conditions by
taking advantage of the model estimated on each of the two
conditions separately.

2.1.3. Identifying discriminative time periods between conditions

We compute the posterior probabilities of each of the two
models and datasets. This is equivalent to considering a joint
model for the entire dataset given by the sum of each of the two
GMMs with equal weights [36,37]. In the following we indicate
with m1th and m2th the topography of Condition 1 and Condition
2, respectively, appearing at the trial t and latency h; ci and cj

refer to two generic Gaussians in the GMMs for the two condi-
tions (and therefore 1r irQ1 and 1r jrQ2). Based on the two
models and datasets, we compute Pðci m1thÞ

�� and Pðcj m2thÞ
�� .

At each time-point h, we consider one Gaussian per model,
i.e. the one that yields the highest posterior probability across
trials (Eq. (4); Fig. 2a, cyan curves):

ih ¼ argmax
iA1:Q1

PT
t ¼ 1 logPðci9m1thÞ

T

( )
ð5Þ

jh ¼ argmax
jA1:Q2

PT
t ¼ 1 logPðcj9m2thÞ

T

( )
ð6Þ

where iA1 : Q1 and jA1:Q2 denotes the range of maps for the
first and second model, respectively. If the two GMMs capture
the difference between the two conditions, we expect that the
Gaussians cih and cjh

are characterized by different parameters
(i.e. different template maps), that is to say cih and cjh

are very
specific to Condition 1 and Condition 2, respectively. However
this might be the case only along a specific time period within the
overall trial. Therefore, we refine our strategy by looking only at
those time points at which cih and cjh are selectively representa-
tive of Condition 1 and Condition 2. It is worth noting that the
parameters of the Gaussians cih and cjh

are estimated on the over-
all datasets and therefore do not depend on the specific latency
‘h’; however, we use the indexes ih and jh to emphasize that the
selection of the Gaussians depends on h.

We use the Bayes factors (BF; Eqs. (7) and (8)) to identify
periods over which each condition is better explained by its own
1 Note that without loss of generality in the following we use the logarithm

of the posterior probabilities expressed in Eq. (3) and the equivalence:

logð
QT

t ¼ 1 Pðck9mthÞÞ ¼
PT

t ¼ 1 logðPðck9mthÞÞ and we will use the notation /log PS
in the figures to indicate this sum.
model, across trials:

BF1¼
Pðcih 9m1thÞ

Pðcjh 9m1thÞ
ð7Þ

BF2¼
Pðcjh 9m2thÞ

Pðcih 9m2thÞ
ð8Þ

Because we have considered equal priors, the ratio of the
likelihoods in Eqs. (7) and (8) is the same as the ratio of the
posteriors probabilities. The BF can be computed at each latency
and for every trial, separately, and gives the confidence with
which we can assign a specific observation to a given template
map of one of the models. This quantity in Bayesian statistics is
similar to the p-value in classical statistics [38]. In fact, if the BF is
greater than one it means that the template map that appears in
the numerator (i.e. cih for BF1 and cjh for BF2) better explains the
specific observation (m1th for BF1 and m2th for BF2). Moreover, if
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BF1 is found to be greater than 20, this can be interpreted as a
strong evidence of cih over cjh [39].

Here, we computed the BF1 and BF2 at every trial and time
latency and retained a specific latency if BF1 or BF2 was greater
than 20 in at least 60% of the trials. This 60% threshold was chosen
so as to obtain above chance levels results when it comes to
classification of new trials. Overall, we obtain H time points over
which the two conditions differ.
2.2. Testing phase

2.2.1. Discrimination function

The posterior probabilities defined in the previous paragraph,
Pðcih mthÞ

�� and Pðcjh
mthÞ
�� , are computed on the test dataset and along

the temporal period H that was estimated in the training phase.
Based on the Bayes factor, the discrimination function for the trial t

(equivalent to a log-likelihood ratio) is defined as: (Fig. 2b, c)

DFt ¼
X
hAH

½logPðcih 9mthÞ�logPðcjh
9mthÞ� ð9Þ

The idea is that we assign a trial from the test dataset to
Condition 1 if the posterior probability of the most likely Gaussian
for the first model (Eq. (5)) is higher than the posterior probability
of the most likely Gaussian for the second model (Eq. (6))2, and
vice versa.

The discrimination function is restricted to those time-points
where the two conditions were most different so as to enhance
their separation. This is the reason why we only use the H time-
points obtained from the abovementioned comparison instead of
the overall trial.
2.2.2. Optimizing the total number of Gaussians

In order to find the optimum values for Q1 and Q2, a set of
models is generated with Q1 and Q2 number of Gaussians, respec-
tively, with each of these two parameters ranging from three to
eleven for both experiments. The optimal values of Q1 and Q2
are decided on the basis of mean classification performance
across ten splits in the cross-validation procedure. Classification
performance is computed for each test dataset in the cross-
validation by manipulating the threshold in the discrimination
function (Eq. (9)) and evaluating the area under the ROC curve
(AUC; [40]).

Because we have considered ten splits of the data, for each pair
of models with Q1 and Q2 number of Gaussians, we obtain ten
values of AUC. The best number of Gaussians is determined so as
to maximize the mean AUC across the ten splits. This procedure is
done for individual trials or sub-sets of trials when the perfor-
mance obtained when classifying single-trials is not significantly
above chance (in this case the notation ‘t’ specifies the average of
the sub-sets).

In the following for completeness we will also report the
average absolute accuracy computed across the ten data splits
although it is not used for parameters’ selection. This absolute
accuracy is computed by setting a threshold in the discrimination
function for each split separately and evaluating the percentage of
correctly classified trials in the test dataset.
2.2.3. Classification accuracy on the validation dataset

So far, we have used a cross validation procedure for selecting
an optimal model. The corresponding classification performance
2 In practice, each term in the sum of Eq. (9) is computed as an average along a

time window u5H to allow for a possible jitter in time of the appearance of the

template maps. In the following we will set u equal to 7 ms.
is only indicative of the classifier’s performance because it is
obtained on the same dataset used for optimizing models’ para-
meters. A more reliable assessment of the classification perfor-
mance is based on a validation dataset that is not used either for
training or testing. This classification performance is quantified
with the AUC on a set of completely unknown trials.
2.3. Single-trial classification based on the average ERP model

In order to deeper investigate the classification results and the
actual advantage we gain by using the single-trial information,
we considered the following approach: instead of using all the
single-trial data of the training dataset to compute the GMM
models, we used the ERP averaged data (of the training dataset).
Apart from the different model estimation, we repeat the same
procedure as described above (see Section 2). The only difference
is that we cannot take advantage of the trial repetitions, so we
consider as periods of difference H the periods where the Bayes
factor for one or the other condition’s average ERP is higher than
20. In the testing phase, we classify single-trials as described in
the previous section.
3. Experimental paradigm

The data analyzed in this study were acquired from two
separate VEP experiments. The first entailed passive presentation
of checkerboard stimuli to each of the four visual quadrants
(hereafter, ‘‘Checkerboard Experiment’’). The second entailed
active discrimination of novel versus repeated line drawings of
common objects (hereafter, ‘‘Priming Experiment’’). Full details
for the paradigm and data acquisition can be found in published
studies of the VEPs [29,27,28].
3.1. Checkerboard Experiment: subjects, stimuli and task

We used data from 4 subjects (1 female), aged 18–28 years
with normal or corrected-to-normal vision. The subjects were all
right-handed [41]. Informed consent was obtained before the
experiment and the procedures were in accordance with the
Declaration of Helsinki and approved by the local ethics committee.

Stimuli were presented on a ViewSonic G90fþCRT screen with a
75 Hz refresh rate. Maximal screen luminance was �80 cd/m2.
Subjects were seated one meter from the monitor in an electrically
shielded room. The checkerboard stimuli consisted of quarter annuli
with an inner radius of 11 of visual angle and an outer radius of 81
from the center of the screen. The annuli edges were offset 31 from
the horizontal and vertical meridian to limit contamination across
quadrants in the evoked response. The annuli were filled with a
111�81 rectangular checkerboard in which the size of each rect-
angle was proportional to the annulus width.

Subjects were instructed to fixate a green fixation point
(5.5 arcmin) at the center of the screen and to press a hand-held
button when its color changed to red. This occurred approxi-
mately 10 times per recording run at random intervals. We
instructed observers to emphasize accuracy over speed and to
refrain from moving and blinking during the recording. Checker-
board stimuli appeared for 147 ms in one quadrant of the visual
field at a time with a randomized inter-stimulus interval (ISI) of
300–800 ms. Presentation order was randomized with the restric-
tion that the same quadrant was never stimulated twice in a row.
Two blocks of four runs of 240 trials each were recorded for each
subject. In total, 480 checkerboards were presented to each
quadrant.



A. Tzovara et al. / Pattern Recognition 45 (2012) 2109–21222114
3.2. Checkerboard Experiment: EEG acquisition

Continuous EEG data were recorded with a BioSemi Active
Two system (BioSemi, Amsterdam, the Netherlands) using 192
Ag–AgCl sintered active electrodes. The recording was referenced
to the CMS–DRL ground, a feedback loop that keeps the montage
potential close to amplifier zero. The electro-oculogram (EOG)
was recorded with electrodes 1 cm above and below the right eye,
and 1 cm lateral to the left and right outer canthus. The recording
sampling rate was 2048 Hz (offline the data were down-sampled
to 512 Hz). There were 200 trials in response to each visual
quadrant that were included in the analyses. Peri-stimulus EEG
epochs spanned from 98 ms pre-stimulus to 293 ms post-stimu-
lus. The remainder of the pre-processing steps was common to
both experiments and is described below.

3.3. Priming Experiment: subjects, stimuli and task

Four paid volunteers (1 female), aged 23–27 years provided
written, informed consent to participate in the experiment, the
procedures of which were approved by the Ethics Committee of
the University Hospital of Geneva. All subjects were right-handed
[41], had no neurological or psychiatric illnesses, had normal or
corrected-to-normal vision and reported normal hearing. Subjects
performed a continuous recognition task comprised of equal
numbers of initial and repeated presentations of line drawings
(cf. Fig. 1 in [27]). This task had subjects indicate whether each
visual stimulus was appearing for the first time or had appeared
previously. Visual stimuli were comprised of line drawings of
common objects selected from either a standardized set [42] or
obtained from an online library (http://dgl.microsoft.com) and
modified to stylistically resemble those from the standardized set.
Images appeared black on a white background and were centrally
presented for 500 ms on a computer monitor (Sony Trinitron
Multiscan model no. GDM-20SE1VT) located 150 cm from the
subject. While the original experiment included four conditions to
examine the impact of multisensory stimulus encoding on visual
memory retrieval, here we considered only those trials where
visual stimuli were never coupled with sounds on their initial or
repeated presentation. Stimuli were blocked into a series of 136
trials, with equal likelihood of initial and repeated presentations.
During a block of trials, each image was repeated once, indepen-
dently of how the image was initially presented. The average
number of trials between the initial and repeated presentation
of any given stimulus was 13 (73) images. The timing of trials
was such that stimuli were presented for 500 ms, followed by a
1200–1500-ms period of randomized stimulus onset asynchrony
(SOA). Each subject completed eight blocks of trials.

3.4. Priming Experiment: EEG acquisition

Continuous EEG was acquired with a Geodesics Netamps
system (Electrical Geodesics, Inc., USA) from 123 scalp electrodes
(impedanceso50 kO; vertex reference; 500 Hz digitization;
band-pass filtered 0.1–200 Hz). After pre-processing 190 trials
from each experimental condition and subject were included in
the analyses. Peri-stimulus EEG epochs spanned 100 ms pre-
stimulus to 500 ms post-stimulus onset.

3.5. EEG pre-processing common to both experiments

Pre-processing of the EEG data was performed using the
Cartool software (http://brainmapping.unige.ch/Cartool.htm).
Data were band-pass filtered 0.1–40 Hz using a Butterworth filter
with �12 db/octave roll-off. A semi-automated 7100 mV artifact
rejection criterion was applied to all scalp channels. Data were
also visually inspected to identify electrodes with poor electrode-
skin resistance or other noise transients. Trials with blinks or
containing eye movements were excluded. Data were re-refer-
enced offline to the common average reference. For the Checker-
board Experiment there were 200 trials accepted per visual
quadrant (upper left, upper right, lower left and lower right)
and subject. For the Priming Experiment there were 190 trials
accepted per condition (initial and repeated) and subject. Data
were then interpolated using 3-D splines [43] and then down-
sampled to a 62-channel montage that is comprised of the 10–10
electrode positions. Note that no pre-stimulus baseline correction
was applied. By contrast, each topography was normalized to its
instantaneous global field power [30,31] so as to remove response
strength modulations.

For each experiment, the data were separated into training
and test datasets. The training dataset included 90% of the trials
for each condition and subject (i.e. 180 for the Checkerboard
Experiment and 171 for the Priming Experiment). The test dataset
was comprised of the remaining trials. This separation between
training and test datasets was performed 10 times in a way that
the test datasets were all independent (i.e. did not contain any
overlapping trials amongst each other). This was done so as to
cross-validate the results as detailed below. In addition, this
procedure is in agreement with guidelines to avoid circularity in
statistical analyses (e.g. [44]). In the following we will use the
terms split or shuffle to indicate each subset of the data that was
used for one model training.
4. Results

4.1. Checkerboard Experiment

4.1.1. Average VEP

Visual inspection of the grand-average VEPs in response to
stimuli at each visual quadrant revealed the typical pattern of
amplitude modulations corresponding to classical VEP compo-
nents [45–47]. Specifically, electrode Pz exhibited an early peak at
64 ms post-stimulus onset for all four conditions (Fig. 3a and b).
This component, often referred to in the literature as the C1
component, was positive for the lower visual field and negative
for the upper. The subsequent P1 and N1 components are shown
at exemplar electrodes P7 and P8 together with the corresponding
topographies on the scalp. The P1 component had a positive focus
over the contralateral scalp, here peaking at �90 ms. The N1
component had a bilateral posterior negative distribution, with a
peak at �160 ms post-stimulus onset.

4.1.2. GMM model estimation and difference between experimental

conditions

Parameter selection for the GMM was cross-validated for each
subject for pairs of experimental conditions. Here, contrasts
always entailed left versus right visual field presentations for
upper and lower quadrants, separately. The selected total number
of Gaussians in the mixture was in the range of three to nine for
each of the two conditions in a given contrast.

Visual inspection of the resulting posterior probabilities across
trials revealed a highly structured modulation of template maps
appearance during the post-stimulus period for all conditions and
subjects (see Fig. 4 for the results from an exemplar subject and
Supplemental Fig. 1 for results from the other 3 subjects). Based
on these posterior probabilities for each shuffle of the classifica-
tion test, we found temporal differences starting at �70 ms post-
stimulus onset (i.e. during the C1 component of the VEP described
above). For the exemplar subject that is shown in Fig. 4, this
difference persisted up to 120 ms, covering also the latency of the
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Fig. 3. Grand average VEPs are shown at three exemplar electrodes and for the four conditions corresponding to left (panels a and c) and right (panels b and d) visual field

presentations and for upper and lower quadrants (black and red lines, respectively). Voltage topographies are shown at the same latencies of the peaks of the amplitude

modulations for each of the electrodes. These peaks correspond to the classical VEP components often referred to as C1 (panels a and b), N1 and P1 (panels c and d). Black

dots superimposed on the voltage maps correspond to the maximum and minimum of the voltage values. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)
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P1 component. Also a later difference around 140–180 ms was
found during the time interval corresponding to the N1 compo-
nent. The periods of difference for the other three subjects are
shown in Supplemental Fig. 1. The thick yellow line on the x-axis
of Fig. 4 shows those time intervals for which the difference
between conditions was found. Moreover, this difference was
observed in at least 8 of the 10 shuffles.
4.1.3. Classification results

The average ROC curves and their range across shuffles are
shown in Fig. 5 (mean7s.e.m. across shuffles is shown in the
inset for each of the ROC curves) and are summarized in Table 1
(first columns). For all four subjects, we found an average AUC
significantly higher than chance (unpaired t-test, po0.0001). The
average AUC across subjects was 0.80 and 0.81 for upper and
lower quadrants, respectively. The absolute accuracy of classifica-
tion across shuffles was 0.73 on average for both upper and lower
quadrants. The classification accuracies were also above chance
level for every subject (unpaired t-test, po0.0001). In the valida-
tion dataset (including thirty trials per condition and per subject)
the average AUC was 0.73 and 0.72 for upper and lower quad-
rants, respectively.

Moreover, we tested the robustness of these results and the
effect of initialization on the computed GMM models for the
exemplar subject and the selected total number of Gaussians.
The models were recomputed with ten different initializations of
the k-means algorithm across the ten shuffles of the training
dataset [48], and classification was performed on the test data-
sets, as described above. For the upper visual field the AUC was
on average across shuffles and across the ten initializations
0.8170.003, ranging from 0.80 up to 0.83. For the lower visual
field the mean AUC was 0.8570.003, or ranging from 0.84 to
0.86. In the results we report, this subject had an average across
shuffles AUC value of 0.84 and 0.85 for upper and lower visual
fields, respectively.
4.1.4. Classification based on the average ERP model

In the case where we re-trained the models using the average
ERP data and classified the single-trials of the test datasets
(Table 1a and b, second columns), there was a significant drop
in classification performance for three out of four subjects, for
both upper and lower visual fields (Table 1a and b, third columns;
paired t-test, po0.05). More specifically, we remind the reader
that for the upper visual field the average AUC when using the
models trained on the single-trial data was 0.80. When using the
models trained on the average ERPs it was 0.67 on average,
resulting in an average drop of 17%. For the lower visual field
the average AUC using the single-trial models was 0.81 and when
using the average ERP models was 0.73 and had an average drop
of 10%.
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4.1.5. Comparison between template maps and average ERP maps

Posterior probabilities across trials as shown in Fig. 4 provide
an estimation of the frequency of each template map at a given
latency across trials. For example, a posterior probability across
trials of 0.4, indicates that in 40% of the trials the corresponding
template map is the one that best fits the data at that latency.
More generally, we can reconstruct the topography at a specific
time point across trials as a sum of the template maps, each of
which is weighted by the corresponding posterior probability.
This ‘reconstructed ERP’ can then be compared to the actual
average ERP observed as a function of time. To quantify similarity
between these two sets of maps, we computed the spatial
correlation at each time point over the post-stimulus period.
We computed the average correlation along this post-stimulus
period for each subject and condition, separately. The spatial
correlations ranged between 0.70 and 0.81 for three out of four
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Table 1
AUC values for all the Checkerboard Experiment based on the single-trial models

and the average ERP models. The first column displays the AUC (7standard error)

in the case where the classification is based on models computed using all the

single-trial data, while the second shows the results using the average ERPs. The

relative change column refers to the relative difference in the AUC, when

computed using the average ERP model in comparison with the case where we

use the single-trial models (asterisks indicates those differences that were

significant; paired t-test, po0.05).

Single-trial Average ERP Relative change (%)

(a) Checkerboard Experiment—upper visual field

S1 0.8470.02 0.6870.03 �21n

S2 0.7370.02 0.6370.02 �15n

S3 0.9170.01 0.6870.04 �29n

S4 0.7170.02 0.6970.04 �3

(b) Checkerboard Experiment—lower visual field

S1 0.8570.02 0.7870.03 �9n

S2 0.8170.05 0.7270.03 �12n

S3 0.8970.01 0.7770.05 �15n

S4 0.6770.02 0.6370.03 �6
subjects and from 0.60 to 0.73 for the fourth (see Supplemental
Material 4 for an overview of these maps). We also computed the
Global Explained Variance (GEV; [21]) in the same post-stimulus
period for each condition. In three of the subjects, values ranged
from 0.58 to 0.84 (and from 0.43 to 0.57 in the fourth subject).
It should be noted that these values were computed using the
reconstructed average from the model whose total number of
template maps were selected as explained above; the models
were not optimized so as to best fit each of the two conditions; a
point to which we return in the ‘Discussion Section’.

4.2. Priming Experiment

4.2.1. Average VEP

Visual inspection of the grand-average VEPs in response to
initial and repeated stimulus presentations revealed the typical
pattern of amplitude modulations corresponding to classical P1
and N1 VEP components, though no clear C1 component was
observed (Fig. 6). Electrode Pz exhibited P1 and N1 peaks at �115
and �170 ms, respectively. The topographies of these compo-
nents were highly similar across conditions. From �250 ms post-
stimulus onset onwards, there was a clear amplitude modulation
between conditions at this electrode, which is in accord with pub-
lished examples of repetition suppression (e.g. [49] for review).
The topography over this time period, although similar, appeared
to differ subtly between conditions (in contrast to the more
striking topographic differences in the Checkerboard Experiment
above).
4.2.2. GMM model estimation and differences between experimental

conditions

Parameter selection for the GMM was cross-validated for each
subject for pairs of experimental conditions. Here, we contrasted
initial versus repeated presentations of identical object stimuli.
The optimal number of Gaussians in the mixture was in the range
of four to ten for each of the two conditions. The resulting
4μV

-4μV

00ms

main peaks of amplitude modulation are shown for the initial presentation (black

. Black dots superimposed on the voltage maps correspond to the maximum and

gure legend, the reader is referred to the web version of this article.)



Initial

Probabilities across trials Template maps

Repeated
Q1=9
Q2=6

1.5μV

-1.5<
lo

gP
>

0

0.4

0.3

0.1

0.2

0
100 200 300 400 msec

Fig. 7. Posterior probabilities across trials of the Priming Experiment and corresponding template maps. (a) Logarithm of the posterior probabilities of the initial

presentation (continuous line) and repeated presentation (dashed line) of identical objects and related periods of difference between conditions (thick yellow line on the

x-axis) (the values of /log PS are normalized so as to range between 0 and 1 (see also footnote 1)); these two sets of probabilities are based on their corresponding GMM.

The values of Q1 and Q2 shown in the inset are the total number of Gaussians that provide the maximum classification accuracy across shuffles for this exemplar subject.

Color assignment is only for display purposes, it does not carry any information used by the classifier. The total number of maps for each of the two conditions, Q1 and Q2,

are shown in the inset. The thick yellow line on the x-axis indicates the temporal periods of difference between conditions. (b) Template maps (back dots localize the

maximum and minimum voltage values), previously normalized by Global Field Power. Frame colors correspond to the posterior probabilities shown in panel a. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

TP

0.74±0.06
0.66±0.08
0.79±0.05

1

0.6

0.8

0.2

0.4

0

0.75±0.04

A. Tzovara et al. / Pattern Recognition 45 (2012) 2109–21222118
posterior probabilities across trials revealed a structured modula-
tion in the post-stimulus period for all subjects (see Fig. 7 for the
results of an exemplar subject and Supplemental Fig. 2 for results
from all other subjects).

The Bayes factors revealed differences between initial and
repeated stimuli starting at 270 ms post-stimulus onset and per-
sisting up to 350 ms for the exemplar subject shown in Fig. 7.
Later differences were also observed starting around 455 ms. The
corresponding periods of difference for the rest of the subjects are
shown in Supplemental Fig. 2. These periods of difference overlap
with earlier VEP findings not only of the same dataset [28], but
also with many prior studies [49]. The posterior probabilities
shown in Fig. 7 are the ones that yielded this difference and were
then used for classification on the test dataset. The thick yellow
line on the x-axis in Fig. 7 shows the time intervals for which the
difference was found in at least 8 of the 10 shuffles.
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Fig. 8. ROC curve area for each of the subjects collapsed across shuffles (FP and TP

stand for rate of false positive and rate of true positive respectively) for

the Priming Experiment. Each of these ROC curves result from classifying

sub-averages of 5 trials corresponding to initial versus repeated presentation of

identical visual objects. Model selection (number of Gaussians in the two GMM

models) was optimized for each of the subjects. Mean values across shuffles of the

average AUC are shown (mean7s.e.m.) from subject S1 to S4. All these values are

significantly above chance but that of subject S2 (t-test; p40.06). The exemplar

subject shown in Fig. 7 corresponds to S4 for both upper and lower visual field

(the others are shown in the Supplemental Material 2).
4.2.3. Classification results

The classification based on AUC with single-trial test data was
not significantly different from chance. However, it should be
noted that in contrast to the above Checkerboard Experiment, in
which differences were predicted from known retinotopic repre-
sentations, topographic differences between task conditions are
likely to be more subtle. An alternative approach, often applied in
BCI, is to improve the signal-to-noise ratio by averaging a small
number of trials and then performing the classification [50–52].
When we applied this strategy here, using averages of five trials
instead of single responses, we found an average across subjects
AUC of 0.74 and for three out of four subjects classification rates
were significantly above chance level (unpaired t-test, po0.05).
The averaged ROC curves are shown in the inset of Fig. 8
(mean7s.e.m.). For display purposes, the ROC curves are shown
after collapsing the results across shuffles. The absolute value of
classification accuracy was 0.63 on average across subjects and
was found above chance levels for all subjects (unpaired t-test,
po0.05) but the second (S2 in Supplemental Material 2).

The average AUC in the validation dataset (including 20 trials
per condition and per subject) was on average 0.61. This average
is computed across three subjects only, because for one of the
subjects (S2 in Supplemental Material 2) we did not have enough
artifact-free trials to be considered as a separate dataset for
validation.
The robustness of these results and the effect of the expecta-
tion-maximization initialization on the GMM models were also
tested, as in the Checkerboard Experiment. We recomputed the
GMM models for the exemplar subject and then selected the total
number of Gaussians using ten different initializations on the
k-means [48]. Across the initializations and shuffles the AUC was
on average 0.7170.02 ranging from 0.63 up to 0.78 for different
initializations. The previously reported AUC value for this subject
was 0.75.
4.2.4. Classification based on average ERP model

In the case where we re-trained the models using the average
ERP data and classified the averages of five trials of the test



Table 2
ROC curve areas for all the Priming Experiment based on the single-trial models

and the average ERP models. The first column displays the ROC curve areas

(7standard error) in the case where the classification is based on models

computed using all the single-trial data, while the second shows the results using

the average ERPs. The relative change column refers to the relative difference in

the ROC curve area, when computed using the average ERP model in comparison

with the case where we use the single-trial models (asterisks indicates those

differences that were significant; paired t-test, po0.05).

Single-trial Average ERP Relative change (%)

S1 0.7470.06 0.6570.06 �13

S2 0.6670.08 0.7370.05 þ10

S3 0.7970.05 0.7270.04 �9n

S4 0.7570.04 0.6770.06 �11n
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datasets, there was a significant drop in AUC for two out of four
subjects (S3 and S4 in Table 2; paired t-test, po0.002). There was
no significant difference for the other two subjects (pZ0.35).
When using the models trained on single-trial data, the average
AUC was 0.73 for these two subjects, while in the case of using the
models trained on average ERPs the average AUC was 0.70, or had
a decrease of 6%.

4.2.5. Comparison between template maps and average ERP maps

As explained for the Checkerboard Experiment, ‘reconstructed
ERP’ maps can be generated from a weighted average of the
template maps according to their posterior probabilities at every
time-point. These maps, compared to the average ERP topographies,
yielded a high spatial correlation in the entire post-stimulus period
(ranging from 0.73 to 0.86 for three out of four subjects for both
conditions and 0.58 to 0.65 for the fourth), which resulted in Global
Explained Variance values ranging from 0.66 to 0.85 for three out
of the four subjects and from 0.61 to 0.71 for the fourth subject
(see Supplemental Material 4 for an overview of these maps).
5. Discussion

We presented a novel approach for classifying single-trials
(or sets of a few single trials) of ERPs based on voltage topogra-
phies with minimal a priori constraints. In two independent VEP
datasets we provided evidence that voltage topographies can be
used to accurately classify differences between experimental
conditions, both when topographic differences are expected based
on retinotopic functional anatomy (Checkerboard Experiment),
and when topographic differences are evaluated in a more
exploratory manner (Priming Experiment).

The main advantage of this approach is that topographic
features are readily interpretable in terms of their neurophysio-
logic basis; a change in their presence across trials and between
conditions forcibly reflects a change in the underlying generator
configurations. Moreover, as these maps were previously normal-
ized by the overall strength of the field potential on the scalp
(GFP), this difference cannot be due to active generators with the
same spatial configuration that modulate their activity strength.
However, it is noteworthy that taking into account GFP modula-
tion in addition to topographic information would potentially
boost our classification accuracy, because we would take advan-
tage of some possible strength modulation effects. On the other
hand, this would limit our results’ interpretability as we would
not know whether the difference between the experimental
conditions is due to a different source configuration and/or to a
modulation in the strength of the same sources. In particular in
the Priming Experiment, even if we did not exploit any repetition-
related reductions in neural activity [49] – i.e. modulations in
response strength – we nonetheless obtained above-chance classi-
fication performance in three of the four subjects.

By using a cross-validation, our procedure assures that above-
chance classification performance is not the result of over-fitting.
Training and testing were performed on separate splits of the
data, and the ten test datasets were obtained by non-overlapping
(independent) dataset shuffles. However a final conclusion on the
algorithm’s performance could be obtained by applying the
classification on a validation dataset, independent from the one
used for model selection. As expected, in both experiments we
obtained a lower performance in the validation dataset with
respect to what was obtained in the test datasets. Nevertheless,
we obtained on average above-chance classification accuracy in
both experiments.

The cross-validation offers a general solution to optimize the
number of template maps in the GMM models of the two
conditions for each subject. This optimization was reached so as
to maximize the discrimination power of the classifier and not to
best fit each of the conditions separately. Nevertheless, even if we
did not take into account the GEV in our selection criteria, the
GEV of the two datasets was on average 64% for the Checkerboard
Experiment when contrasting the upper quadrants and the same
value on average across subjects when contrasting the lower
quadrants. The GEV was also high in the Priming Experiment
yielding an average of 76% across subjects and conditions.

The latencies at which we obtained a reliable difference
between conditions were estimated for each training dataset for
ten splits of the data. By this procedure it was possible to deter-
mine the robustness of these differences. Indeed, across the ten
shuffles and in both experiments, we observed a high level of
consistency in the temporal periods over which the two condi-
tions differed. Given this consistency, we could retain as reliable
those data-points over which a difference between conditions
was estimated in at least eight of the ten shuffles.

These periods of temporal differences were based on comput-
ing the Bayes factor at the same latency for the two conditions
(see Sections 2.1 and 2.1.3). However, the single-trial classifica-
tion exploits temporally unlocked contributions in two steps of
the implementation. First, the models are computed using the
ensemble of trials without taking into account their specific
latency. Second, in the test phase the posterior probabilities are
computed allowing for a temporal jitter (u5H) in time points
(footnote 2); that is to say we consider the possibility that the
difference found in the training dataset between the two condi-
tions could appear shifted in time. Indeed, introducing this jitter
increases the classification accuracy.

5.1. Comparison with classification based on average ERP model

We evaluated the benefit of using single-trial topographic
classifiers by comparing classification results based on single-trial
models with those based on the average ERP response. We
expected higher classification performance for models based on
the single trial ERP responses because those exploit both signals
that are time-locked to stimulus onset, and those that are not.
This was indeed our empirical observation. We obtained a signifi-
cantly higher AUC for three out of four subjects in the Checker-
board Experiment and for two out of four subjects in the Priming
Experiment (Tables 1 and 2). Importantly, we never obtained a
significantly lower AUC when training the model on the single-
trial ERP. This confirms that single-trial data contains useful infor-
mation for stimulus classification despite the fact that average
ERP has obviously higher SNR. This shows that non stimulus-
locked activity plays a significant role in elementary sensory
processes even in simple paradigms where minimal cognitive
factors are involved.



A. Tzovara et al. / Pattern Recognition 45 (2012) 2109–21222120
5.2. Comparison with average ERPs

The classifier extracted features that overlapped with the
averaged ERP topographies in both experiments. In the Checker-
board Experiment, the features resembled scalp topographies that
may be expected based on retinotopic functional anatomy
[45,46]. In particular, we found for all the subjects early differ-
ences between conditions starting at around the latency of the C1
component extending up to the N1 latency (depending on the
subject). At these latencies, the template maps exhibited the
correct polarity and the appropriate contra-laterality with respect
to those found in average data, as can be seen by comparing
the template maps in Fig. 4 to the average ERP maps in Fig. 3. The
average spatial correlation between the template and the average
maps was 0.74 during the post-stimulus period, across subjects
and conditions.

For the Priming Experiment, we compared our results with the
averaged ERP results [28]. Although the latencies of our effects fall
within those observed at the group-level, this previous study also
revealed an early topographic effect starting at 36 ms post-stimulus
onset. Possible explanations for the discrepancy between the two
analyses are that the current one used only a subset of the subjects,
and that the original dataset was down-sampled to fewer electrodes
(i.e. nearly half). The consequent lower spatial resolution is possibly
hiding some subtle topographic differences between conditions. An
important direction for future research, particularly for clinical
applications, will be to determine the sensitivity of the methods to
the spatial sampling of the electric field at the scalp, as this will
impact the suggested number and distribution of scalp electrodes.

5.3. Relation to other classification methods

EEG single-trial classification is the focus of a continuous effort
for developing BCI machines [53,54]. While we can definitely
benefit from a longstanding tradition in this domain, it is worth
noting that BCI puts its emphasis on online classification accu-
racy, whereas the application to ERP studies and more generally
to neuroscientific research questions must also emphasize
neurophysiologic interpretability. Whereas high classification
accuracy is required for BCI applications, smaller accuracy is
acceptable for neuroscientific aims. Future application of the
present approach for BCI purposes remains to be explored
especially in relation to experimental designs that can be used
to control external devices for online applications.

Our classification algorithm relates to existing data reduction
approaches, for example PCA and ICA (see also [55]) in that it extracts
a limited number of prototypical voltage topographies. However the
purpose of PCA and ICA is to reduce redundant information by
finding an optimal set of basis functions each accounting for an
orthogonal/independent component, respectively. To this aim PCA
imposes orthogonality and ICA imposes independency of the EEG
components, in the temporal or in the spatial domain. As a result of
this decomposition it is often possible to explain a large amount of
variance while retaining only few template maps [56,57]. In parallel,
the mathematical constraints that are imposed to estimate these
template maps do not assure an optimal separation of the topogra-
phies reflecting different underlying sources. One typical example is
given by sources whose activity is reflected on the scalp as Gaussians
with overlapping distribution (Supplemental Material 3). In this
example, PCA finds the directions of highest variance of only one
Gaussian distribution, therefore failing to separate the two Gaussians.
In contrast, ICA cannot separate Gaussian distributions because by
definition it extracts directions with the least Gaussian distribution.
In this case, modeling the dataset with a GMM with two Gaussians,
we can easily disentangle the two template topographies and their
periods of activations.
5.4. Future directions

Presently, we have shown how to optimize the classification at
single subject level. It is of course interesting being able to
quantify the degree of similarity between subjects, particularly
when one wants to carry out the analysis at group-level. There-
fore, we plan to generalize our classification method based on
topographies extracted at single-trial level from several subjects
[25]. Being able to analyze ERPs at the single subject as well as
group level provides a novel tool to develop ERP classification in
normal electrophysiological responses versus single cases that
cannot be considered part of any cohort of subjects [58,59]. This
aspect promises to have a strong impact on clinical studies.

From a more methodological standpoint, two main directions
can be further investigated: alternative approaches for model
estimation and different criteria for model selection. For model
estimation in this study, we proposed a classical expectation-
maximization algorithm. This approach has two main limitations.
It can get caught in local maxima and it is also strongly dependent
upon its initialization. Here, in order to overcome these limita-
tions we used a k-means algorithm to get an initial estimation of
the model’s means, but the k-means also needs an initialization
which might affect its final output. We quantified the degree to
which different initializations of the k-means affect our final
results and we demonstrated that classification accuracy remains
relatively stable (accuracy range for different initializations was
well within the standard error across test datasets). We also plan
to further explore different techniques for selecting the best
initialization, such as multiple initialization techniques or track-
ing the possible expectation-maximization trajectories [48,60].

In alternative to expectation-maximization, Bayesian techni-
ques (e.g. Variational Bayes) [33] and a more advanced version
of the expectation-maximization, (e.g. ‘splitting and merging’
Gaussians) [61] can also be explored. These approaches have
been demonstrated to be less prone to over-fitting, so we expect
to further improve the GMM estimation and classification
accuracy.

As for model selection, GMM modeling requires a priori

information about the total number of classes. In order to perform
model selection, we cross-validated across the ten shuffles and
chose the model that best discriminated between experimental
conditions. Alternatively, parameters’ selection can be based on
complexity criteria like Bayesian information criterion [62],
Akaike information criterion [63] or Minimum Descriptor Length
[64] and Minimum Message Length [65]. Such criteria essentially
quantify the prediction error, which depends on the actual
training error and the complexity of the model, thus preventing
over-fitting. Although a comparison between these different
approaches is foreseen, so far we have preferred to adopt an
empirical approach for model selection. These other strategies can
become crucial when a limited amount of trials will prevent
training and testing the model on separate splits of the data.

So far, at every time-latency we have only used a single Gaussian
for classifying, but this can be easily extended to more. Using more
classes or even the whole mixture might improve results, but this
needs to be further investigated. Finally, in the current study we
only considered contrasts between pairs of experimental conditions,
e.g. the upper and lower visual fields in the Checkerboard Experi-
ment. However, this approach can readily be extended to deal with
more than two conditions in a multiclass approach.
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