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ABSTRACT We develop an efficient computational solution to train deep neural networks (DNN) with
free-form activation functions. To make the problem well-posed, we augment the cost functional of the DNN
by adding an appropriate shape regularization: the sum of the second-order total-variations of the trainable
nonlinearities. The representer theorem for DNNs tells us that the optimal activation functions are adaptive
piecewise-linear splines, which allows us to recast the problem as a parametric optimization. The challenging
point is that the corresponding basis functions (ReLUs) are poorly conditioned and that the determination of
their number and positioning is also part of the problem. We circumvent the difficulty by using an equivalent
B-spline basis to encode the activation functions and by expressing the regularization as an �1-penalty. This
results in the specification of parametric activation function modules that can be implemented and optimized
efficiently on standard development platforms. We present experimental results that demonstrate the benefit
of our approach.

INDEX TERMS Activation functions, B-splines, deep learning, regularization, sparsity.

I. INTRODUCTION
During the past decade, deep neural networks (DNNs) have
evolved into a major player for machine learning. They have
been found to outperform the traditional techniques of sta-
tistical learning [1] (e.g., kernel methods, support-vector ma-
chines, random forests) in many real-world applications that
include image classification [2], speech recognition [3], image
segmentation [4], and medical imaging [5].

The basic principle behind DNNs is to construct power-
ful learning architectures via the composition of simple ba-
sic modules; that is, linear (or affine) transformations and
pointwise nonlinearities [6]. The qualifier “deep” refers to the
depth (or number of layers) of such a composition which is
typically much larger than one. Formally, a DNN is a map
f� : RN0 → R

NL that admits a factorized representation of the
form

f�(x) : WL ◦ · · · ◦ σ� ◦ W� ◦ · · · ◦ σ1 ◦ W1(x), (1)

where L is the depth of the neural net and � is a list of
parameters that collects all adjustable quantities. Specifically,
a given layer � of the network is characterized by

1) a linear transformation R
N�−1 → R

N� : x �→ W�x,
where W� ∈ R

N�×N�−1 is a matrix of weights, and
2) the pointwise responses of its neurons

σ�(x) = (σ�,1(x1), . . . , σ�,N� (xN� )
)
,

where the scalar map σ�,n : R → R is the activation
function of the neuron indexed by (�, n).

In essence, W� encodes the strength of the neural connec-
tions from the previous layer, while σ� represents the (paral-
lel) responses of the N� neurons at layer �. In the conventional
setup, the response of the individual neurons is fixed and takes
the form

σ�,n(x) = σ (x − b�,n), (2)
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where σ : R → R is a common activation function—
typically, a sigmoid or a rectified linear unit (ReLU)—and
b�,n ∈ R is an adjustable bias [7]. In summary, the parameters
� associated with the DNN in (1) are composed of the linear
weights of W� and the biases b� ∈ R

N� , � = 1, . . . ,L.
Let x ∈ R

N0 denote an input of the network and y ∈ R
NL

be the corresponding desired output. Given a series of refer-
ence (or training) data (xm, ym),m = 1, . . . ,M, the training
task is to adjust the free parameters � of the DNN such
that f�(xm) ≈ ym without overfitting. In practice, this train-
ing problem is formulated as the (non-convex) optimization
of a suitable cost functional with respect to � [6]. Due to
the layered structure of the network, such an optimization is
achieved effectively by steepest descent with the help of the
celebrated backpropagation algorithm [8]. Another important
ingredient is the use of stochastic gradient techniques which
operate via the subdivision of the data in batches. Since the
training of DNNs with respect to the linear weights is key to
the success of the approach, there is a rich literature devoted
to this subject.

The topic of this article deviates from the standard
paradigm in the sense that it explores the option of adapting
the responses of the individual neurons in an attempt to further
improve the performance of such systems. In other words,
instead of assigning a single bias parameter to each neuron
as in (2), we are investigating the possibility of redesigning or
adjusting the activation functions σ�,n : R → R on a neuron-
by-neuron basis. While the typical way in which this can be
achieved is via the introduction of a suitable parametrization,
which may be linear or nonlinear, we shall see that one can
also formulate the problem in a functional framework with
the help of a suitable regularization [9]. At any rate, the main
point is that this augmented form of training results in a
more difficult optimization problem and that it calls for more
powerful algorithms.

The purpose of this work is to unify the parametric and
functional approaches by representing the neural activation
functions in terms of B-spline basis functions. This is possible
as long as we restrict ourselves to the class of deep spline
neural networks,1 which cover the complete family of con-
tinuous piecewise-linear (CPWL) mappings [10]–[12]. Our
approach builds on the intimate connection between ReLU
networks and splines, which has been observed by a number
of authors [9], [13]–[16]. The spline interpretation is actu-
ally present at two levels: (i) the fact that such DNNs are
describable as hierarchical splines and (ii) the property that
the global response is CPWL, which allows one to interpret
them as piecewise perceptrons [14]. While the local linear
(perceptron-like) behavior of deep spline networks is both
reassuring and enlightening, the part that is less obvious is the
global continuity of the response, which ensures that the linear
pieces (facets of polytopes) are seamlessly joined together.

1The denomination “deep spline neural network” refers to a DNN whose
activation functions are linear splines, which includes ReLUs.

The article is organized as follows: We start with a review
of prior work on neural design in Section II. In Section III, we
explain the main theoretical results on deep spline networks;
namely, the CPWL property and the fact that they are optimal
with respect to TV(2) regularization. We then introduce our
parametrization and optimization framework in Section IV
and present experimental results in Section V.

II. PRIOR WORK ON NEURAL ACTIVATION FUNCTIONS
We now briefly review the prior works on the design of neural
activation functions, which can be broadly classified into three
categories.

A. INSPIRATION FROM NEUROPHYSIOLOGY
The traditional activation function for neural networks in-
spired by neurophysiology is a saturating sigmoid whose
sharpness can be tuned for best performance [17]. Since
splines have the ability to encode arbitrary functions, they
can be used to generate a much richer variety of activation
functions, which can then be optimized for best performance.
Relevant examples of parametric activation function mod-
els for traditional neural networks include B-spline receptive
fields [18], Catmull-Rom cubic splines [19], [20], and smooth
piecewise polynomials [21].

B. LINK WITH ITERATIVE SOFT-THRESHOLDING
ALGORITHMS
One can make an interesting connection between neural net-
works and sparse-encoding techniques [22], [23] by consid-
ering the unrolled version of an iterative soft-thresholding
algorithm (ISTA) [24], [25]. This connection suggests that the
activation function fulfills the role of the nonlinearity in clas-
sical ISTA [26], [27]. Incidentally, the canonical nonlinearity
associated with �1 minimization is an antisymmetric linear
spline, which can be expressed as a linear combination of
two ReLUs. In recent years, researchers have considered more
general parametric nonlinearities whose weights are learned
during training. Such models involve linear combinations of
Gaussian radial-basis functions [28] and cubic B-splines [29],
[30].

C. ReLU VARIATIONS
While many (fixed) activation functions σ in (2) have been
considered in the literature, the preferred choice that has
emerged over the years is the rectified linear unit ReLU(x) =
(x)+ � max(0, x) [31]. In particular, it has been observed that
ReLUs facilitate training [7]. Two ReLU variants, by order of
improving performance, are “leaky ReLU” [32], in which the
vanishing part of the response is replaced by one with a fixed
nonzero linear slope, and “parametric ReLU” (PReLU) [33],
where the linear slope is learnable. Also related to ReLU is
Agostinelli et al.’s model of adaptive piecewise-linear (APL)
units [34]. It results in an activation function that is a lin-
ear spline with a small fixed number of knots and has been
found to outperform plain ReLU activation functions. Another
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instance is [35], where piecewise-linear units with learnable
parameters are used as activation functions.

III. THEORETICAL JUSTIFICATION OF SPLINE ACTIVATION
FUNCTIONS
Many of the state-of-the-art DNNs rely on ReLU activation
functions or some variant thereof. Beside the issue of prac-
tical efficiency, a key feature of ReLU networks is that they
result in a global continuous and piecewise-linear (CPWL)
input-output relation. This is a fundamental property that gen-
eralizes to a wider class of spline activation functions and
that also ensures that deep ReLU networks have universal
approximation properties [36]–[38].

A. DEEP NEURAL NETS AS HIGH-DIMENSIONAL SPLINES
A polynomial spline of degree 1 is a one-dimensional func-
tion that is continuous and piecewise-linear. In fact, the sim-
plest nontrivial example of polynomial spline of degree 1 is
x �→ (x − bk )+ = ReLU(x − bk ), which is made up of two
linear pieces separated by a single knot at bk . The concept
is generalizable to higher dimensions [39], [40].

Definition 1 (CPWL function): A function f : RN0 → R is
continuous piecewise-linear if

1) it is continuous RN0 → R;
2) its domain R

N0 =⋃K
k=1 Pk can be partitioned into a

finite set of non-overlapping polytopes Pk over which
it is affine.

Likewise, a vector-valued function f = ( f1, . . . , fN ) :
R

N0 → R
N is CPWL if each of the component functions fn

is CPWL.
What is truly remarkable with CPWL functions is that they

remain CPWL through the operations that typically occur in a
deep neural network [11], [12]. Specifically,

1) any linear combination of CPWL functions is CPWL;
2) the composition of any two CPWL functions is CPWL;
3) the max or min of two CPWL functions is CPWL.
Since the functions W� in (1) are trivially CPWL, the re-

sulting DNN is CPWL whenever the pointwise nonlinearities
σ� are CPWL, for instance when they are piecewice-linear
splines, which is indeed the case for deep ReLU networks.
It is therefore perfectly legitimate to interpret deep ReLU
networks—and, by extension, deep spline networks—as mul-
tidimensional splines of polynomial degree 1.

B. VARIATIONAL OPTIMALITY OF DEEP SPLINE NETWORKS
Lesser known is the property that the CPWL behavior can
also be enforced indirectly through the use of an appropriate
regularization [9]. To that end, one simply augments the cost
functional that is used to train the network by an additive
second-order total-variation regularization term for each ad-
justable activation function.

In our framework, we consider deep neural networks fdeep :
R

N0 → R
NL composed of L layers with the generic feedfor-

ward architecture described by (1). The linear transformation
in layer �, represented by the matrix W� : RN�−1 → R

N� , is
associated with some free (adjustable) parameters θ� ∈ R

Nlin,� .

In order to specify the latter, one has to distinguish between
two configurations. When the layer is fully connected, θ�
is the vectorized version of W�, which amounts to a total
of Nlin,� = N�−1 × N� tunable weights. The other important
configuration is that of a convolutional layer where θ� con-
tains much fewer convolution filter weights than N�−1 × N�.
Similarly, to share nonlinearities across neurons, we specify
each nonlinear mapping σ� : RN� → R

N� by the vector s� =
(s�,1, . . . , s�,Nnonlin,� ) of adjustable activation functions s�,n :
R → R, where Nnonlin,� ∈ N denotes the number of unique
activation functions used in layer �. For example, in a fully
connected layer, it can be advantageous to use an independent
activation function for each neuron. In this case, Nnonlin,� =
N� and s�,n = σ�,n. By contrast, for convolutional layers, it
is natural to use a single activation function per feature map,
so that Nnonlin,� will typically match the number of channels.
When the same nonlinearity is shared across all channels, one
has that Nnonlin,� = 1.

With this extended notation, the training of the network is
formulated as the functional optimization problem

min
θ�∈RNlin,�

s�∈BV(2)(R)Nnonlin,�

M∑
m=1

E(fdeep(xm), ym)

+
L∑
�=1

μ�‖θ�‖2
2 +

L−1∑
�=1

λ�TV(2)(s�), (3)

where E : RNL × R
NL → R+ is an arbitrary proper

convex function and TV(2)(s) = TV(2)(s1, . . . , sN ) =∑N
n=1 TV(2)(sn), where

TV(2)(sn) = ∥∥D2sn
∥∥
M = sup

ϕ∈S(R): ‖ϕ‖∞≤1
〈sn,

d2ϕ

dx2
〉 (4)

is the second-order total variation of the component function
sn : R → R. Let us remark that the two first terms in (3) are
the standard criteria used to train deep neural networks. The
first (data loss) quantifies the goodness of fit, while the second
(the so-called weight decay) favors solutions with a smaller
amplitude of the linear weights θ�. The novel element here
is the additional optimization over the individual neuronal
activation functions s�, which is made possible because of the
inclusion of the third term: the sum of the second-order total
variations of the trainable nonlinearities. Since this regular-
ization only penalizes the second derivative of the activation
function, it favors simple solutions—preferably linear or with
“sparse” second derivatives—while ensuring that the activa-
tions be differentiable almost everywhere, which is essential
for the backpropagation algorithm. For further explanation on
the regularization functional TV(2) and the definition of the
search space BV(2)(R), we refer to Appendix A.

Unser’s representer theorem for DNNs states that (3) ad-
mits a global minimizer (deep spline network) with neuronal
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activation functions of form

x �→ s�,n(x) = b0,�,n + b1,�,nx +
K�,n∑
k=1

ak,�,n(x − τk,�,n)+ (5)

with K�,n ≤ (M − 2) and TV(2)(s�,n) =∑K�,n
k=1 |ak,�,n| =

‖a�,n‖1. Thus, the optimal activation functions are adaptive
piecewise-linear splines. Specifically, every nonlinearity
has a parametric description that is given by (5). It is
characterized by its number K = K�,n of knots, the knot
locations τ1, . . . , τK , and the linear weights b ∈ R

2, a ∈ R
K ,

where we have dropped the network indices (�, n) for
simplicity. While Characterization (5) is elegant, it does not
tell one how to determine the underlying parameters. We thus
now face a more challenging optimization problem. The main
complication is the allocation of knots—the determination
of K�,n and the locations τk,�,n on a neuron-by-neuron
basis—which is now also part of the problem.

Let us mention that we can also handle the case where
the nonlinear mapping is shared across the layers, so that
σ1 = · · · = σL = σ and σ is specified by a vector s =
(s1, . . . , sNnonlin ) of adjustable scalar maps. Here, the training
problem is formulated as

min
θ�∈RNlin,�

s∈BV(2)(R)Nnonlin

M∑
m=1

E(fdeep(xm), ym) + λTV(2)(s)

+
L∑
�=1

μ�‖θ�‖2
2. (6)

By adapting Unser’s representer theorem, we can show that
the optimal shared activation functions have the same form as
in (5).

Remarkably, the parametric form that results from the func-
tional minimization of (3) is compatible with the model pro-
posed by Agostinelli et al. [34]. They represent the activation
functions as s�,n(x) = h�,n(x − b�,n), where h�,n is an APL
unit of the form

x �→ h�,n(x) = (x)+ +
K∑

k=1

ak,�,n(−x + τk,�,n)+. (7)

Here, the number K of knots is fixed beforehand; the bias
b�,n, weights ak,�,n, and knot locations τk,�,n are learnable
parameters. While (7) bears a close resemblance to (5), there
are a few key differences that we highlight here.

1) The justification of APL units in [34] is empirical while
the spline parametrization of (5) is based on a global
functional optimization.

2) The APL units involve a fixed ReLU positioned at 0, and
so, unlike (5), they cannot reproduce all affine functions
of the form b0 + b1x.

3) The number of spline knots in APL units is fixed (and is
the same for all neurons), whereas it is adaptive in our
approach. In fact, the determination of K�,n is part of the
optimization problem that we consider.

4) The ReLU weights of the APL units are either not con-
strained, or slightly regularized through some empirical
�2-norm weight decay. By contrast, in our approach,
the theory dictates the use of a sparsity-promoting �1-
regularization. In fact, as we shall see in Section IV, the
�1-norm regularization is of great practical significance
as it allows us to control K�,n by removing unnecessary
knots.

IV. OPTIMIZATION OF ACTIVATION FUNCTIONS
A. CONVEX PROXY FOR SHALLOW NETWORKS
The major difficulty in optimizing the DNN with respect to the
spline parameters in (5) is that the number K = K�,n of knots
is unknown and that the activation model is nonlinear with
respect to the knot locations τk = τk,�,n. Our workaround is to
place a fixed but highly redundant set of knots on a uniform
grid with a step size T . We then rely on the sparsifying ef-
fect of �1-minimization to nullify the coefficients of a = (ak )
that are not needed. This amounts to representing the spline
activation functions by

σ (x) = b0 + b1x +
kmax∑

k=kmin

ak (x − kT )+, (8)

with TV(2)(σ ) = ‖a‖1. The consideration of the linear model
(8), thereafter referred to as “gridded ReLU,” gives rise to a
classical �1-optimization problem that can be handled by most
neural-network software frameworks. In the case of a shallow
network with L = 1, it even results in a convex problem that
is reminiscent of the LASSO [41]. We also note that (8) can
be made arbitrarily close to (5) by taking T sufficiently small.
While the solution a is expected to be sparse, with few active
knots, the downside of the approach is that the underlying
representation is cumbersome and badly conditioned due to
the exploding behavior of the basis functions (· − kT )+ at
infinity.

B. FROM ReLUs TO B-SPLINES
While the direct connection with �1-minimization in (8) is
very attractive, the less favorable aspect of the model is that its
computational cost is proportional to the underlying number
of ReLUs (or spline knots); that is, K = (kmax − kmin + 1),
which can be arbitrarily large depending on the value of T .
Here, we propose a way to bypass this limitation by switch-
ing to another equivalent but maximally localized basis: the
B-splines. Our model takes the form

σ (x) =
kmax+1∑

k=kmin−1

ckϕk

( x

T

)
, (9)

which involves triangular-shaped basis functions that are
rescaled versions of B-splines defined on an integer grid. As
illustrated in Figure 1, the central bases for k = (kmin + 1) to
(kmax − 1) are shifted replicates of the compactly supported
linear B-spline

ϕk (x) = β1(x − k), for kmin < k < kmax, (10)

298 VOLUME 1, 2020



FIGURE 1. Decomposition of a deep spline activation function (solid line)
in terms of B-spline basis functions (dashed lines), as expressed by (9)
with T = 1. The basis is composed of (K − 2) triangular functions, which
are compactly supported and shifted replicates of each other, plus 4
one-sided outside functions. The key property is that the evaluation of
σ(x) for any fixed x ∈ R involves no more than two basis functions.

where

β1(x) = (x + 1)+ − 2(x)+ + (x − 1)+

=
{

1 − |x|, x ∈ [−1, 1]

0, otherwise.
(11)

The four remaining boundary basis functions are one-sided
splines that allow the activation function defined in (9) to
exhibit a linear behavior at both ends, for x < kminT as well
as for x > kmaxT . Specifically, we have that

ϕkmin−1(x) = (−x + kmin)+ =
{

kmin − x, x < kmin

0, otherwise

(12)

ϕkmin (x) = (−x + kmin + 1)+ − (−x + kmin)+

=

⎧⎪⎨
⎪⎩

1, x ≤ kmin

1 − (x − kmin), x ∈ (kmin, kmin + 1)

0, x ≥ kmin + 1

(13)

ϕkmax (x) = (x − kmax + 1)+ − (x − kmax)+

=

⎧⎪⎨
⎪⎩

0, x ≤ kmax − 1

x − kmax + 1, x ∈ (kmax − 1, kmax)

1, x ≥ kmax

(14)

ϕkmax+1(x) = (x − kmax)+ =
{

0, x ≤ kmax

x − kmax, x > kmax.
(15)

The B-spline model defined in (9) has the same knots as
those of the gridded ReLU representation given by (8). It
also has the same number of degrees of freedom; namely,
K + 2 = (kmax + 1) − (kmin − 1) + 1. By using the property
that the ϕk can all be expanded in terms of integer shifts of
ReLUs (see the central term of (10)–(15)), we can show that
the two sets of basis functions span the same subspace. In

doing so, we obtain a formula for the retrieval of the ak and,
hence, the TV(2)(σ )—in terms of the second-order difference
of the ck (see Appendix B). While the gridded ReLU and
B-spline models (8) and (9) are mathematically equivalent,
the advantage of (9) is that there are at most two active basis
functions at any given point x = x0, independently of the step
size T . This has important implications for the efficiency and
scalability of both the evaluation of the DNN at a given point
xm and the computation of its gradient with respect to ck (as
opposed to ak in the equivalent ReLU representation). Details
of our implementation of the B-spline model are given in
Appendix B.

V. EXPERIMENTAL RESULTS
In this section, we illustrate the capabilities of the proposed
learning framework. Our main intent is to assess the benefit
of optimizing the activation functions and to demonstrate the
following claims:

1) The use of learned activation functions tends to improve
the testing performance.

2) More complex activation functions can allow for sim-
pler/smaller networks.

3) Learning with gridded ReLUs yields good performance
for small values of K . However, the time and memory
required for learning explodes as K grows.

4) The B-spline configuration is easy to train and is scal-
able in time and memory as K grows. Hence, it has
the ability to learn more complex activation functions,
which then typically also translates into better perfor-
mance.

Further, we investigate the effect of the regularization pa-
rameter λ on the number of active knots in the learned spline
activation functions and the performance of the neural net-
work.

We consider both classification and signal-recovery (decon-
volution) problems to highlight the versatility of our approach.
The code (in PyTorch) is available on GitHub.2

A. CLASSIFICATION
1) AREA CLASSIFICATION
First, we discuss a simple two-class classification example
with input dimension N0 = 2. It allows us to obtain a better
understanding of our learning scheme and to illustrate our
claims visually.

Setup: The task is to classify points in the two-dimensional
space [−1, 1] × [−1, 1] as lying inside or outside an S shape
(see Figure 2a). Mathematically, this region is represented by
the binary function f : [−1, 1] × [−1, 1] �→ {0, 1} given by

f (x1, x2) =
{

1, |x1 − g(x2)| ≤ 0.3 and |x2| < 0.8,

0, otherwise,
(16)

where g(x) = 0.4 sin(−5x). We generate training and
validation datasets with M = 1,500 data points each. The

2[Online]. Available: https://github.com/joaquimcampos/DeepSplines
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FIGURE 2. Ground truth and training dataset.

coordinates xm = (x1,m, x2,m) of the data points are sampled
from a uniform distribution on [−1, 1] × [−1, 1] and the
labels ym are assigned according to (16). The training dataset
is shown in Figure 2b.

We tackle this problem using a fully connected network
with Nh hidden layers, which takes a 2D input x = (x1, x2) and
outputs a real value f̂ (x) ∈ [0, 1]. The number of neurons in
each hidden layer is W ; thus, the layer descriptor (N0, . . . ,NL )
of the network is of the form (2,W, . . . ,W, 1). In the B-spline
network, spline activation functions with K = 19 knots on
a grid of size T = 0.1 are used as nonlinearities after each
linear step, except the final one which involves a fixed sig-
moid activation function. In the adaptive piecewise-linear unit
(APLU) network, the nonlinearities take the form (7) with the
number of adjustable knots set to K = 19. We compare the
performance of our, ReLU, PReLU, and APLU networks on
a test dataset that consists of 40 000 points that lie on a 2D
grid of width 0.01 × 0.01 in [−1, 1] × [−1, 1]. To evaluate
the performance of these networks on a dataset, the output
values f̂ are quantized into predictions

f̂pred(x) =
{

1, f̂ (x) > 0.5

0, otherwise.
(17)

The classification accuracy is computed as

accuracy (%) = # correct predictions

# total predictions
× 100. (18)

The binary cross-entropy loss is given by

L(�) = 1

M

M∑
m=1

((−ym) log( f̂ (xm))

− (1 − ym) log(1 − f̂ (xm))), (19)

where � represents the parameters of the network. This loss
is chosen for the training process. In all the networks, the
weights are initialized using Xavier’s initialization [42]. For
the B-spline network, half of the spline activation functions
are initialized with σabs and the other half with σsoft, where

σabs(x) =
{

−x, x < 0

x, x ≥ 0
(20)

FIGURE 3. Learned probability maps for the area-classification problem.

σsoft(x) =

⎧⎪⎨
⎪⎩

x + 1
2 , x ≤ − 1

2

0, x ∈ (− 1
2 ,

1
2 )

x − 1
2 , x ≥ 1

2 .

(21)

This initialization is based on the fact that any function can be
represented as the sum of an even and an odd function. In the
APLU network, the ReLU weights ak,�,n and knot locations
τk,�,n are initialized by randomly sampling them from zero-
mean Gaussian distributions with standard deviations 0.1 and
1, respectively. The loss function is minimized over a total
of 500 epochs using the ADAM optimizer [43]. The initial
learning rate, set to 10−3, is decreased by a factor of 10 at the
epochs 440 and 480. A small batch size of 10 is helpful to
avoid local minima.

Comparison With ReLU, PReLU, and APLU Networks: We
compare in Figure 3 and Table 1 the performance of the ReLU,
PReLU, B-spline, and APLU networks for three different
architectures. For the B-spline networks, the optimal values
of μ� and λ�, in terms of the performance for the validation
dataset, are found using the method described in Appendix C.
The weight decays for the ReLU, PReLU, and APLU net-
works are tuned with the help of a grid search. In the APLU
network, an �2-norm penalty with scaling factor 10−3 is also
applied to the activation function parameters (ak,�,n, τk,�,n).
With these optimal hyperparameters, the networks are then
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TABLE 1 Number of Parameters and Classification Error Rate

retrained 9 times independently. The median performance
(over these 9 runs) for the test dataset is reported in Figure 3
and Table 1.

In the interest of fairness, in Table 1 we also mention the
number of parameters associated with the networks. A fully
connected network with Nh hidden layers has 3 W + (Nh −
1)W 2 linear weights and 1 bias parameter for the fixed sig-
moid activation function. The network also has some addi-
tional parameters that depend on the choice of the activa-
tion function. The ReLU networks have NhW biases while,
in addition to these biases, the PReLU networks have NhW
learnable parameters that represent the linear slopes of the
PReLU activation functions in R

−. In the B-spline networks,
the number of additional parameters (per activation function)
is equal to the number of active knots in the learned linear-
spline nonlinearity plus the 2 coefficients that determine its
linear (null-space) component. Lastly, the APLU networks
have (2 K + 1) additional parameters per activation function,
where the number of adjustable knots K was set to 19 before-
hand.

For the simplest architecture (2,4,1), we observe that the B-
spline and APLU networks outperform the ReLU and PReLU
models which lack capacity and perform rather poorly. This
demonstrates that the learning of activation functions im-
proves the accuracy; more so, if the activation function has
reasonably many learnable parameters.

Remarkably, the simplest B-spline network outperforms the
ReLU and PReLU networks with richer architectures despite
having fewer parameters. This is because it is capable of
learning more complex activation functions. This, in turn,
translates into an overall map that is more faithful to the gold
standard—the ideal S shape. This suggests that, instead of

making the architecture of the network more complex, for
example by including more neurons in the initial layers and/or
adding more layers, one can increase the accuracy by relying
on more sophisticated, learnable nonlinearities.

The results of Table 1 also illustrate the advantages of
our learning scheme over the APL units. For the architec-
ture (2,4,1), the B-spline network yields a better accuracy
than the APLU network even though it has fewer parame-
ters. One possible explanation is that the APL units, which
have a fixed number of knots, face difficulties in optimizing
their knot locations, whereas the adaptive B-splines bypass
this problem with the help of a grid and sparsity-promoting
�1-regularization. Another possible reason could be the ill-
conditioned nature of expansion (7), in the sense that a small
perturbation of one ReLU coefficient has a nonlocal effect
on the activation function, which makes the optimization task
more challenging. For the other two richer architectures, we
get similar performances for the APLU and B-spline net-
works. However, the B-spline networks require fewer knots.

Effect of the Regularization Parameter λ: We consider now
a B-spline network with layer descriptor (2, 4, 1) for the area-
classification task. The weight decay is fixed as μ1 = μ2 =
10−4 and λ is varied in the interval [10−10, 102]. For each
value of λ, 10 independent models are trained on the training
dataset. The median number of total active knots3 and the
classification error (on the test dataset) of the corresponding
model are shown as functions of λ in Figure 4.

The number of active knots decreases (or, equivalently, the
sparsity of the learned activation functions increases) as λ
increases, which means that the hyperparameter λ controls the
complexity of the network. The performance of the network
remains (nearly) constant, up to a critical value of λ, after
which it begins to deteriorate. This is crucial since it suggests
that, by carefully tuning λ, we can obtain simpler networks
that still perform well.

2) CIFAR-10 AND CIFAR-100
Now, we look at the application of the proposed learn-
ing scheme to the classification of standard datasets such
as CIFAR [44]. We consider two network architectures—
the network-in-network [45] (NIN) and a deep residual net-
work [46] (ResNet32) for the CIFAR-10 and CIFAR-100
classification tasks. Each dataset consists of 50,000 training
images and 10,000 test images of size (32 × 32).

First, we compare the performance of the B-spline, ReLU,
and APLU networks. We then also demonstrate the advan-
tages of our B-spline solution over its gridded ReLU coun-
terpart. In the B-spline networks (NIN and ResNet), we use
spline nonlinearities with K = 49 knots on a grid of size T =
0.16. We rely on one activation function per output channel
for the convolutional layers and one spline activation function
per output unit for the fully connected layers. For the APLU

3The number of total active knots is the sum of the number of active knots
or ReLUs in each learned activation function in the network.
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FIGURE 4. Effect of λ on the number of active knots and on the
classification error.

networks4 (NIN and ResNet), we set the number of adjustable
knots to K = 1, with one APL activation function per output
unit for the convolutional layers as well as the fully connected
layers. All networks include a softmax unit in the final layer
and are trained by minimizing the categorical cross-entropy
loss.

For each dataset, 5,000 samples are reserved for valida-
tion during training, while the remaining 45,000 samples are
augmented as in [46]. The weights in the NINs are initial-
ized by random sampling from a Gaussian distribution with
zero mean and a standard deviation of 0.05. The weights
in the ResNets are initialized using He’s recipe [33]. The
B-spline activation functions are initialized as leaky ReLUs
while the APL units are initialized in the same manner as
in the area-classification experiment. For the B-spline NIN,
B-spline ResNet, and APLU ResNet, the parameters of the ac-
tivation functions are updated using the ADAM optimizer [43]
with an initial learning rate of 10−3. The remaining network
parameters are updated using an SGD optimizer with an initial
learning rate of 10−1. For the APLU NIN, an SGD optimizer
with an initial learning rate of 10−1 is used to update all the
learnable parameters. The NINs are trained for 320 epochs

4The reported configurations are the ones that were found to give the best
performance.

TABLE 2 NIN Error Rates on CIFAR-10 and CIFAR-100

TABLE 3 ResNet Error Rates on CIFAR-10 and CIFAR-100

with a batch size of 128. The learning rate is decreased by
a factor of 10 in epochs 80, 160, and 240. The ResNets are
trained for 300 epochs with a batch size of 128 while the
learning rate is divided by 10 in epochs 150, 225, and 262,
following the training scheme in [47].

Comparison with ReLU and APLU Networks: For the
ReLU networks (NIN and ResNet), we deploy a grid search to
optimize the weight decays in terms of the performance on the
validation dataset. For the B-spline and APLU networks, we
use the same weight decays as those found for the correspond-
ing ReLU networks, and we perform grid searches to find the
optimal values of λ and the �2-norm penalty scaling factor. We
then use the optimal hyperparameters and retrain the networks
NT times independently on the complete training datasets,
with 50,000 samples. We set NT = 5 for the NINs and NT = 9
for the ResNets. Finally, we compute the error rates over the
test datasets. The median test errors are reported in Table 2
and Table 3. We see that the B-spline networks outperform
the ReLU and APLU networks here as well. Surprisingly, the
APLU ResNet is slightly inferior to the ReLU ResNet for the
CIFAR-10 dataset. It turns out that, for residual networks with
APL units, a similar observation has been made in [48].

B-Splines vs. Gridded ReLUs vs. APLUs: In this
experiment,5 we record the memory consumption and com-
putation time (per epoch) for the B-spline, gridded ReLU, and
APLU ResNets.

As we see in Table 4, the time/memory consumption during
forward and backward propagation for gridded ReLUs and
APLUs explodes with the number of knots. This is because
the point evaluation of an activation function requires a sum-
mation over all contributing ReLUs, which results in a time
complexity of O(K ). Moreover, the corresponding intermedi-
ate values need to be stored for backpropagation.

5This experiment was run on a TITAN X (Pascal) GPU with 12196 MB of
memory.
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TABLE 4 B-Splines vs. Gridded ReLUs vs. APLUs

For the gridded ReLU and APLU networks, the maximum number of knots
allowed by the GPU memory is 31.

For B-splines, by contrast, each evaluation only requires
the coefficients of two adjacent basis functions, since the ϕk,T

have minimal overlap, leading to a time complexity of O(1).
Accordingly, one only needs to store the coefficients and the
index of the two active basis functions.

B. SIGNAL RECOVERY
We further illustrate the benefits of learning the activation
functions through the application of convolutional neural net-
works (CNNs) to inverse problems [49]. Here, the goal is
to recover a signal x ∈ R

N from its (noisy) measurements
y ∈ R

M given by

y = Hx + n, (22)

where H : RN �→ R
M is a linear operator that describes the

measurement acquisition process and n ∈ R
M is an additive

noise.
Classical model-based methods formulate the inverse prob-

lem as the optimization task

x∗ = arg min
x∈RN

(‖y − Hx‖2
2 + τR(x)

)
, (23)

where R is the regularization that incorporates prior infor-
mation about x and τ ∈ R+ a parameter that controls the
regularization strength. For instance, R(x) = ‖Lx‖1 [50]–[52]
promotes solutions that are sparse in the transform domain
specified by L : RN → R

N . Over the past decade, a variety of
learning-based methods were found to outperform the classi-
cal model-based ones. These include the use of CNN-based
regression schemes that relate an initial estimate of the signal
to the desired estimate of the signal [5], [53]. In our experi-
ments, we compare the performance of standard ReLU CNNs
with B-spline CNNs in a deconvolution task.

FIGURE 5. Piecewise-constant signal generated according to (26).

1) SETUP
We consider the recovery of piecewise-constant statistical sig-
nals x ∈ R

100 that satisfy the discrete innovation model

u = Dx, (24)

where D ∈ R
100×100 is a finite-difference matrix and u ∈ R

100

is a sparse random vector with independent and identically
distributed entries that are drawn from the Bernoulli-Laplace
distribution

pU (u) = (0.6)δ(u) + (0.4)
1

2
e−|u|. (25)

Under appropriate boundary conditions, we can invert (24)
and derive the synthesis formula

xk =
k∑

q=1

uq, k = 1, 2, . . . , 100, (26)

which has been used for our experiments. The dynamic range
of each generated signal x is adjusted so that its values lie in
[−1, 1]. An example of such a signal is shown in Figure 5.

The noiseless measurement vector y0 ∈ R
88 is obtained by

convolving the signal x with a Gaussian kernel of standard
deviation σ = 2 and support (6σ + 1) × 1. The resulting
discrete-system matrix H ∈ R

88×100, such that y0 = Hx, is

H =

⎡
⎢⎢⎢⎢⎢⎣

h13 · · · h1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 h13 · · · h1

⎤
⎥⎥⎥⎥⎥⎦ , (27)

where h ∈ R
13 denotes the truncated Gaussian kernel. Finally,

we add a white Gaussian noise n ∈ R
88 to the noiseless mea-

surements y0 such that the input SNR, defined as

SNR(y0 + n) = 20 log10 (‖y0‖2/‖n‖2) , (28)

is equal to 20 dB.
Our training dataset for the CNN-based approaches consists

of Mt = 10 000 samples. Meanwhile, the validation and test
datasets contain 1 000 samples each.

Similar to the work in [5], [53], we train CNNs to learn
a mapping from an initial estimate of the signal (in our case
x̂init = HT y) to the desired estimate x̂ of the signal. The ar-
chitecture of the network is shown in Figure 6 and the details

VOLUME 1, 2020 303



BOHRA ET AL.: LEARNING ACTIVATION FUNCTIONS IN DEEP (SPLINE) NEURAL NETWORKS

FIGURE 6. Architecture of the convolutional neural network. In a ReLU
CNN, the nonlinearity is the ReLU, while in a B-spline CNN, the nonlinearity
is a learnable linear spline.

TABLE 5 Convolution Layers

of the convolutional layers are provided in Table 5. For all
our experiments, the number of channels is set as C = 5. In
the B-spline CNN, we have learnable linear-spline activation
functions with K = 49 knots on a grid of size T = 0.1.

The loss function used for training is

L(�) =
M∑

m=1

‖xm − x̂m(�)‖2
2, (29)

where � represents the parameters of the network. All the
activation functions in the B-spline CNN are initialized as
leaky ReLUs with negative slopes set to 0.1. The loss function
is minimized using the ADAM optimizer. The networks are
trained for 150 epochs with a batch size of 20. For ReLU
CNNs, the initial learning rate is set as 10−2 and is decreased
by a factor of 0.5 in the epochs [25, 50, 75, 100, 125]. The
same learning rate schedule is also used for B-spline CNNs
with L ≤ 7. For B-spline CNNs with more layers (L > 7), the
initial learning rate is 10−3 and is decreased by a factor of
0.5 in the epochs [50, 75, 100, 125].

2) RESULTS AND DISCUSSION
In our experiments, we compare the CNN-based approaches
with the total-variation (TV) method [54] which corresponds
to R(x) = ‖Dx‖1 in (23). It is known to promote piecewise-
constant solutions and is well matched to the signals that we
consider here. In order to make a fair comparison with the
CNNs, we use the same regularization parameter τ in the TV
method for every signal in the test dataset. This value of τ is
the one that gives the best performance in terms of the mean-
square error or, equivalently,

SNR(x̂, x) = 20 log10 (‖x‖2/‖x̂ − x‖2) (30)

TABLE 6 Sharing vs. Unsharing of the Linear Spline Activation Functions in
B-Spline CNNs (L = 4)

for the validation dataset.
Sharing vs. Unsharing: We consider four configurations for

the B-spline CNN. The first is the fully shared network, where
a single learnable spline activation function is shared across
all layers and channels. The second and third are the channel
(layer, respectively) shared network, where the nonlinearity is
shared only across channels (layers, respectively). The fourth
is the unshared network, which has an independent nonlinear-
ity in each layer and channel.

In a first experiment, we compare the performance of these
four configurations. We fix the number of layers to L = 4.
In the B-spline CNN, we rely on our hyperparameter-tuning
method (see Appendix C) to find the optimal μ� and λ� in
terms of performance for the validation dataset. The weight
decay for the ReLU CNN is chosen via grid search. Using
the optimal values, we retrain the networks 9 times indepen-
dently; the median SNR over these 9 runs is shown for the test
dataset in Table 6, where B-CNN means B-spline CNN.

We provide the number of parameters for the networks in
Table 6. A ReLU CNN with L layers, C channels, and fil-
ter size (w × 1), has 2wC + (L − 2)wC2 convolutional-filter
weights, 1 bias term for the last convolutional layer, and
2(L − 1)C batch-normalization parameters. The additional
parameters in the B-spline CNN are the total number of active
knots in the learned spline activation functions.

We observe that all four versions of the B-spline CNN
achieve a higher SNR than the ReLU CNN. This further
supports our claim that learning the activation functions tends
to improve the performance of the network. Moreover, as
expected, configurations with a greater number of parameters
perform better. The option of sharing the learnable spline
nonlinearities makes our framework flexible and allows us to
benefit from the increased capacity of the network while in-
troducing fewer additional parameters. Also, note that Table 6
confirms that the running times for the different versions of
the B-spline CNN are nearly the same.

Increase in the Depth of the Networks: Next, we compare
the ReLU CNN and the fully shared B-spline CNN when the
number of layers increases. The procedure of the previous
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TABLE 7 Performance of Deep Networks

experiment is followed again to set the hyperparameters and
to report the performance of the test dataset (see Table 7).

We observe that the CNN-based approaches outperform
the TV method, despite it being particularly well matched to
the piecewise-constant signals that we consider. This shows
the advantage of using learning-based methods over model-
based ones when sufficient training data is available. For
all values of L, the B-spline CNN achieves a higher SNR
than the ReLU CNN. However, this improvement in perfor-
mance diminishes as L increases and is negligible for L ≥ 10.
We believe that, when the network is sufficiently deep, the
ReLU CNN has a sufficient representation power and so the
additional capacity offered by the B-spline CNN does not
translate into better performance. The main takeaway here is
that learning the activation functions results in a noticeable
improvement in performance for simpler/smaller networks,
which are desirable for a number of reasons such as better
interpretability of the networks, computational efficiency, and
controlled Lipschitz constants [55].

VI. CONCLUSION
We have presented an efficient computational solution to
train deep neural networks with learnable activation functions.
Specifically, we have focused on deep spline networks. They
form a superset of the traditional ReLU networks and are
known to be optimal with respect to the second-order total
variation of the adjustable nonlinearities. We have tackled
the resulting difficult joint-optimization problem by represent-
ing the linear-spline nonlinearities in terms of B-spline basis

functions and by expressing the second-order total-variation
regularization as an �1-penalty, thus unifying the paramet-
ric and functional approaches for the learning of activation
functions. The proposed B-spline representation was instru-
mental in making the training of the DNN computationally
feasible. Indeed, any computation concerning the activation
functions involves only two basis elements per data point.
Finally, we have demonstrated the benefits of our framework
through experiments in the context of classification and de-
convolution problems. In particular, we have observed that our
method compares favorably to the traditional ReLU networks,
the improvement being more pronounced for simpler/smaller
networks.

APPENDIX A
SECOND-ORDER TOTAL VARIATION
In this section, we briefly explain the notion of second-order
total variation and provide the definition of the corresponding
native space BV(2)(R). We refer to [9] for more details.

The second-order total-variation seminorm of a function s :
R → R is defined as

TV(2)(s) = ‖D2s‖M, (31)

where D is the (weak) derivative operator and the total-
variation norm ‖ · ‖M is defined over the Banach space M(R)
of bounded Radon measures as

‖w‖M = sup
ϕ∈S(R): ‖ϕ‖∞=1

〈w, ϕ〉,

where S(R) is Schwartz’ space of smooth and rapidly de-
caying test functions. The space M(R) is a generalization
of the space L1(R) of absolutely integrable functions, in the
sense that L1(R) ⊆ M(R) and, for any f ∈ L1(R), the two
norms satisfy ‖ f ‖L1 = ‖ f ‖M. The generalized space M(R)
is, however, larger than L1(R) as it contains the set of all
shifted Dirac impulses δ(· − τ ) with ‖δ(· − τ )‖M = 1 for any
τ ∈ R. In particular, this implies that

wδ=
∑
k∈Z

a[k]δ(· − τk ) ∈ M(R) and ‖wδ‖M =
∑
k∈Z

∣∣a[k]
∣∣

for any absolutely summable sequence a[·] ∈ �1(Z). Like-
wise, since D2{(· − τk )+} = δ(· − τk ) (Green’s function prop-
erty), one readily deduces that TV(2)(σ ) = ‖a‖�1 for the
generic spline activation function defined by (8).

Finally, the native space BV(2)(R) is the space of functions
with second-order bounded variation

BV(2)(R) = { f : R → R : TV(2)( f ) < +∞}.

B. APPENDIX B
LEARNABLE SPLINE ACTIVATION FUNCTION MODULE
In this section, we describe our implementation of the B-
spline formulation of the learnable linear-spline activation
functions. We also detail our sparsification procedure which is
a postprocessing step during training; the intent is to control
the number of active knots in the network.
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FIGURE 7. The left and right linear extrapolations beyond [−3, 3] of the
activation function are computed with the help of two extra B-splines on
each side.

A. B-SPLINE FORMULATION
We place a highly redundant set of knots (for the linear spline)
on a finite uniform grid of size T . The cardinality of this set of
knots is K , with K odd. We define the indices kmin = −(K −
1)/2 and kmax = (K − 1)/2. The spline we want to build will
extend linearly outside the interval [kminT, kmaxT ] and can be
represented in the gridded ReLU basis as

σ (x) = b0 + b1x +
kmax∑

k=kmin

ak (x − kT )+, (32)

with TV(2)(σ ) = ‖a‖1.
Here, we represent σ in a B-spline basis as (33) shown at

the bottom of this page, where ϕT is the triangle-shaped B-
spline

ϕT (x) =
{

1 − ∣∣ xT ∣∣, −T ≤ x ≤ T,

0, otherwise.
(34)

The B-spline representation in (33) is equivalent to the one
in (9). Here, we place K + 2 triangular basis functions on the
grid and, instead of using one-sided boundary basis functions,
the linear extrapolations beyond [kminT, kmaxT ] are handled
with the help of the last two B-spline coefficients on each
side: (kmin−1, kmin) and (kmax, kmax+1). An example of this
construction is shown in Figure 7.

The relationship between the ReLU coefficients a ∈ R
K

and the B-spline coefficients c ∈ R
K+2 is given by

⎡
⎢⎢⎣

akmin
...

akmax

⎤
⎥⎥⎦= 1

T

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 1 0 · · · · · · 0

0 1 −2 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

0 · · · · · · 0 1 −2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
L∈R(K+2)×K

⎡
⎢⎢⎢⎢⎢⎢⎣

ckmin−1

ckmin
...

ckmax

ckmax+1

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

(35)

while the linear-term parameters b0, b1 can be determined
from ckmin−1 and ckmin . From (35), we see that the TV(2)

regularization of σ can also be computed from the B-spline
coefficients as TV(2)(σ ) = ‖Lc‖1.

B. SPARSIFICATION
To train networks with learnable spline nonlinearities, we
augment the cost function with the TV(2) regularization of
the activation functions. This translates into an �1-penalty
on the ReLU coefficients a = (ak ) or, equivalently, on the
filtered version of the B-spline coefficients Lc. We rely on
the sparsifying effect of the �1-norm to remove some of the
redundant knots. In practice, we observe that, while some
of the coefficients ak = [Lc]k attain small values, they never
vanish entirely. In order to fix this and have a tight control on
the number of knots, we have applied a further “sparsification”
as a postprocessing step after training.

The first step is to retrieve the ReLU coefficients a from
the trained B-spline coefficients c using (35). Then, every
coefficient ak with absolute value below a certain threshold
is set to zero, yielding â = (âk ). Finally, we transform these
modified ReLU coefficients to the new B-spline coefficients ĉ.
In this step, the coefficients ĉkmin−1 and ĉkmin that determine the
linear term are assigned the same values as ckmin−1 and ckmin ,
respectively. The other coefficients ĉk are computed from âk

using the relations in (35). The sparsification is achieved by
selecting the maximum threshold such that the training accu-
racy does not drop by more than 0.2%.

APPENDIX C
HYPERPARAMETER TUNING USING OPTIMALITY
CONDITIONS
In this section, we propose a method to tune the hyperpa-
rameters of Problems (3) and (6). Our hyperparameter-tuning
method is based on some optimality conditions that we prove
for the global minimizers of these problems. It is flexible with
respect to the choice of linear layers and architecture and can
be applied to any deep spline network.

A. OPTIMALITY CONDITIONS
The main principle of our optimality conditions is based
on the scale- and dilation-invariance properties of the
second-order total-variation regularization, as we state in
Proposition 2.

Proposition 2: The second-order total-variation regulariza-
tion TV(2) : BV(2)(R) → R is scale- and dilation-invariant.
Specifically, for any σ ∈ BV(2)(R) and any c �= 0, we have
that

TV(2) (cσ ) = |c|TV(2) (σ ) , (36)

σ (x) =

⎧⎪⎨
⎪⎩

ckmin + 1
T (ckmin − ckmin−1)(x − kminT ), x ∈ (−∞, kminT )∑kmax+1

k=kmin−1
ckϕT (x − kT ), x ∈ [kminT, kmaxT ]

ckmax + 1
T (ckmax+1 − ckmax )(x − kmaxT ), x ∈ (kmaxT,∞)

(33)
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and

TV(2) (σ (c·)) = |c|TV(2) (σ ) . (37)

Proof: We first recall that

TV(2)(σ ) = ‖D2σ‖M = sup
ϕ∈S(R)\{0}

〈D2σ, ϕ〉
‖ϕ‖∞

. (38)

One deduces (36) from the linearity of D2 and the homo-
geneity of the M-norm. To derive (37), we use the rela-
tion D2{σ (c·)} = c2D2{σ }(c·) and the equality 〈 f (c·), g〉 =
c−1〈 f , g(·/c)〉 which, together with (38), yields

TV(2)(σ (c·)) = sup
ϕ∈S(R)\{0}

c
〈D2σ, ϕ(·/c)〉

‖ϕ‖∞

= |c| sup
ψ∈S(R)\{0}

〈D2σ,ψ〉
‖ψ‖∞

, (39)

where the latter is obtained via the change of variable ψ =
sgn(c)ϕ(·/c). The last step is to notice that

sup
ψ∈S(R)\{0}

〈D2σ,ψ〉
‖ψ‖∞

= TV(2)(σ )

which, when combined with (39), yields (37).
In Theorem (3), we prove that the energies of all linear and

nonlinear layers of any global minimizer of (3) are inversely
proportional to their corresponding regularization parameters.

Theorem 3: Let f�∗ be a global minimizer of (3) with linear
parameters θ∗

� and learned activation functions s∗
� . Then, we

have that

2μ1‖θ∗
1‖2

2 = λ1TV(2)
1 (s∗

1 ) = · · · = λL−1TV(2)
1 (s∗

L−1)

= 2μL‖θ∗
L‖2

2. (40)

Proof: Let us denote by G∗ the geometric mean of the L +
2(L − 1) = (3L − 2) quantities

{
μ�‖θ∗

�‖2
2

}L
�=1

⋃{λ�
2

TV(2)
1 (s∗

� )

}L−1

�=1

⋃{λ�
2

TV(2)
1 (s∗

� )

}L−1

�=1
.

It turns out that G∗ can be computed via the relation

G∗(3L−2) =
(

L∏
�=1

μ�‖θ∗
�‖2

2

)(
L−1∏
�=1

λ�

2
TV(2)

1 (s∗
� )

)2

.

Due to the inequality of arithmetic and geometric means (AM
and GM, respectively), we have that

(3L − 2)G∗ ≤
L−1∑
�=1

λ�TV(2)
1 (s∗

� ) +
L∑
�=1

μ�‖θ∗
� ‖2

2, (41)

where the inequality is saturated if and only if (40) holds.
Inspired from the mentioned AM-GM inequality, we now

define a new set of linear parameters θ̃�, � = 1, . . . ,L and
adjustable activation functions s̃�, � = 1, . . . ,L − 1, as

θ̃� = c�θ�, c� =
(

G∗

μ�‖θ�‖2
2

) 1
2

,

s̃� = d�s�

( ·
c�d�−1

)
, d� = c�d�−1

G∗
λ�
2 TV(2)

1 (s�)
,

with the convention that d0 = 1. Let us specify the corre-
sponding linear and nonlinear layers by W̃ � and σ̃�, respec-
tively. One readily observes that

W̃ � = c�W �, σ̃� = d�σ�

( ·
c�d�−1

)
in all layers. Interestingly, the input-output relation of this new
neural network is the same as that of f �∗ . This is due to two
simple observations.

1) For � = 1, . . . ,L − 1, we have that

W̃ � ◦ σ̃�(·) = d�W � ◦ σ(·/d�−1).

2) For the output-layer, we have that cLdL−1 = 1.
Since the input-output relation remains unchanged, the

data-fidelity term in the cost functional of the minimization
(3) does not change either. Now, due to the optimality of f �∗ ,
we deduce that

L−1∑
�=1

λ�TV(2)
1 (s∗

� ) +
L∑
�=1

μ�‖θ∗
�‖2

2

≤
L−1∑
�=1

λ�TV(2)
1 (s̃�) +

L∑
�=1

μ�‖θ̃�‖2
2. (42)

Using Proposition 2, we have that

λ�TV(2)
1 (s̃�) = λ�

d�
c�d�−1

TV(2)
1 (s�) = 2G∗,

for � = 1, . . . ,L − 1. Similarly, from the scale invariance of
the �2-norm, we deduce that

μ�‖θ̃�‖2
2 = μ�c

2
�‖θ∗

�‖2
2 = G∗.

Replacing these in (42), we obtain that

L−1∑
�=1

λ�TV(2)
1 (s∗

� ) +
L∑
�=1

μ�‖θ∗
�‖2

2 ≤ (3L − 2)G∗,

which is the converse of the AM-GM inequality (41). This
shows that (41) is saturated and, hence, that (40) holds. �

For the case where the activation functions are shared
across layers, we show in Theorem 4 that the optimal config-
uration is such that there would be a balance between the total
energy of linear layers and the second-order total variation of
the learned activation functions.

Theorem 4: Let f�∗ be a global minimizer of (6). Then, we
have that

λTV(2)
1 (s∗) = 2

L−1∑
�=1

μ�‖θ∗
1 ‖2

2. (43)

Proof: The proof is very similar to the one for Theorem 3.
We define G∗ as

G∗ =
(
λ

2
TV(2)

1 (s∗)

) 2
3
(

L∑
�=1

μ�‖θ�‖2
2

) 1
3

.
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The AM-GM inequality implies in this case that

3G∗ ≤ λ�TV(2)
1 (s∗) +

L∑
�=1

μ�‖θ∗
� ‖2

2, (44)

with equality if and only if (43) holds. Now, we define a new
set of linear parameters and adjustable activation functions as

θ̃� = c−1θ�, � = 1, . . . ,L,

s̃ = cs(c·),
where the constant c > 0 is

c = G∗
λ
2 TV(2)

1 (s)
.

Again, the data-fidelity term remains unchanged. From the
optimality of f �∗ , we deduce that

λTV(2)
1 (s∗) +

L∑
�=1

μ�‖θ∗
�‖2

2 ≤ λTV(2)
1 (s̃) +

L∑
�=1

μ�‖θ̃�‖2
2.

By direct calculations, similar to what we did in Theorem 3,
we simplify the above inequality into

λTV(2)
1 (s∗) +

L∑
�=1

μ�‖θ∗
�‖2

2 ≤ 3G∗

which, together with (44) implies that the AM-GM equality
holds, ultimately leading to (43).

B. HYPERPARAMETER TUNING
Using Theorems 3 and 4, we now introduce a way to tune
the hyperparameters of our optimization problems. The main
idea is to enforce the optimality condition in the initial settings
(before training) and, consequently, to reduce the dimension
of the hyperparameter space so that it is sufficient to perform
a grid search over a single parameter.

Our scheme is described as follows:
1) Initialize the linear parameters θ0

� (e.g., using Xavier’s
rule) and the activation functions s0

� (e.g., soft-
threshold/absolute value) and compute the quantities
‖θ0
�‖2

2 and TV(2)(s0
� ) for all layers.

2) Set

μ� = C

2‖θ0
�‖2

2

, (45)

where C > 0 is the unique hyperparameter that is re-
quired to be tuned.

3) If the activation functions are shared across layers, set

λ = (L − 1)C

TV(2)
1 (s0)

. (46)

Otherwise, set

λ� = C

TV(2)
1 (s0

�
)
. (47)

4) Perform a grid search to find the optimal value of C > 0.
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