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Hybrid-Spline Dictionaries for Continuous-Domain
Inverse Problems

Thomas Debarre , Shayan Aziznejad, and Michael Unser , Fellow, IEEE

Abstract—We study one-dimensional continuous-domain in-
verse problems with multiple generalized total-variation regu-
larization, which involves the joint use of several regularization
operators. Our starting point is a new representer theorem that
states that such inverse problems have hybrid-spline solutions with
a total sparsity bounded by the number of measurements. We show
that such continuous-domain problems can be discretized in an
exact way by using a union of B-spline dictionary bases matched
to the regularization operators. We then propose a multiresolution
algorithm that selects an appropriate grid size that depends on the
problem. Finally, we demonstrate the computational feasibility of
our algorithm for multiple-order derivative regularization opera-
tors.

Index Terms—Inverse problems, total variation, sparsity,
compressed sensing, B-splines.

I. INTRODUCTION

THE sparse representation of signals is a major topic of
interest in the field of signal processing. In particular, it is

the driving principle of compressed sensing (CS) [1], [2], a field
which has gained considerable popularity in the past decade.
The CS approach to find a sparse representation of a signal given
its measurements is to solve an inverse problem with sparsity-
promoting regularization. The aim is to reconstruct a signal c ∈
RN given measurements y = Hc+ n ∈ RM (with M � N ),
where H : RN → RM is the system (or measurement) matrix
and n is some additive noise which models measurement errors.
The a priori assumption on the signal c is that it is sparse in a
certain dictionary frameD : RP → RN , so that c = Da, where
the vector of coefficients a ∈ RP is sparse. When the dictionary
basis is orthonormal (i.e., P = N and D is orthogonal), and
under certain conditions on the system matrix H and the noise
n, standard CS theory guarantees stable recovery of the signal
c [3]. This is achieved by solving the optimization problem

â = argmin
a∈RP

(
‖HDa− y‖22 + λ‖a‖1

)
, (1)
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where λ > 0 is a regularization parameter, and by computing
c = Dâ.

In many cases, however, the sparsity of a signal is expressed
in a dictionary basis that is redundant and thus not orthonormal.
More precisely, in this work, we are interested in multicompo-
nent signals c =

∑Q
i=1 ci such that each of the Q components

ci is sparse in a different dictionary Di (i ∈ {1, . . . , Q}). For
simplicity of exposition, we set Q = 2. A natural way of formu-
lating the recovery problem is to solve (1) with a concatenated
dictionary D = (D1,D2), where we can assume for now that
D1 and D2 are orthonormal bases. In this case, P = 2N and
the dictionary basis is clearly highly redundant. Although this
setting introduces practical and theoretical difficulties, it is ex-
tremely useful in many applications when a single dictionary is
insufficient to represent the richness of a signal.

The problem of accurately reconstructing both components
c1 and c2 is known as data separation [2, Chapter 11], and
has been studied extensively both theoretically and practically.
In fact, some of the first theoretical works concerning sparse
vector recovery using �1-norm minimization involved a con-
catenated dictionary consisting of a mixture of sinusoids and
spikes [4], [5]. The goal was to provide a condition under
which �0 and �1 minimization yield the same solution. This
sparked an abundance of research, which extended and improved
these results for more general (non-orthonormal) dictionar-
ies [6]–[9]. An overview is given in [10]. Later, these results
were extended to images to separate point-like and curve-like
structures [11]. These works mostly tackle denoising problems
characterized by H = IN and M = N . In the CS field, in
which we have M � N , [12] considers redundant dictionaries
in general. On the practical side, data separation is intimately
related to morphological component analysis (MCA), a method
popularized by Starck et al. [13]–[17] with applications in in-
painting removal or the separation of texture and natural parts of
an image.

A. Analysis Formulation With Unions of Dictionaries

For overcomplete dictionaries D in general, optimizing over
the synthesis coefficients a as in (1) seems natural, since the
sparsity of the signal is precisely enforced on a. This leads to
a separable (if not differentiable) regularization term and, thus,
to standard soft-thresholding-based algorithms. Conversely, op-
timizing over the analysis coefficients c is less straightforward
since the representation of the signal c by the synthesis coeffi-
cients a is not unique. Therefore, the enforcement of the sparsity
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of the signal would require one to find its sparsest representa-
tion in the dictionary basis, which seems to add unnecessary
complications. This explains why most of the published works
choose to optimize over the synthesis coefficients.

However, in the case of a concatenated dictionary D =
(D1,D2), one can also think of optimizing over both analysis
coefficients c1 and c2. This leads to an analysis problem of the
form

(ĉ1, ĉ2) = argmin
c1,c2∈RN

(‖H(c1 + c2)− y‖22

+ λ (‖L1c1‖1 + ‖L2c2‖1)
)
, (2)

which yields the reconstructed signal c = c1 + c2. When D1

and D2 are orthonormal bases, taking L1 = DT
1 and L2 = DT

2

makes Problems (1) and (2) exactly equivalent. In other cases,
the Moore-Penrose pseudoinverses of D1 and D2 can be used
for L1 and L2, in which case (1) and (2) are not equivalent.
Although the analysis formulation (2) may seem more tedious,
there are several reasons to believe that it might be appealing:
� in recent years, efficient splitting algorithms that over-

come the non-separability of the regularization terms
in Problem (2) have been designed (e.g., [18] or the
well-known alternating-direction method of multipliers
(ADMM) [19]);

� many successful practical CS applications favor the anal-
ysis formulation, e.g., [20];

� there is an intimate connexion between regularization op-
erators (e.g., L1 and L2 in (2)) and splines. Indeed, it has
recently been proved that continuous-domain inverse prob-
lems with generalized total-variation (gTV) regularization
have sparse spline solutions [21]. The analysis formulation
(2) therefore seems like the natural discrete counterpart to
this continuous framework, as we clarify in Section II.

The difference between the two formulations has been studied
in [22] where the authors conclude that, in the general case, both
problems are inherently different. Several practicioners have
used the analysis formulation for data-separation problems, most
notably Starck et al. in the context of MCA [13]–[16]. More re-
cently, Problem (2) was applied to the task of separating cartoon
and texture parts of an image in [23]. There, the authors favor
the analysis formulation for general redundant dictionaries. A
similar approach is used in low-rank plus sparse decomposition
methods [24].

Despite these empirical works, virtually no theoretical study
of Problem (2) has been carried out. In [25], Candès et al. have
named it the “split-analysis” problem. They recommend solving
it precisely in the case of concatenated dictionaries (without
further investigation). A theoretical study was later done by Lin
et al. in [26], where they show that the data-separation problem
(i.e., the recovery of both components of the original signal) can
be solved via Problem (2). This result requires that H satisfies
the restricted-isometry property adapted to a dictionary (D-RIP)
and that L1 and L2 satisfy a mutual coherence condition.

While the literature on the topic is scarce in the discrete
setting, to the best of our knowledge, it is nonexistent in the con-
tinuous domain. Since most real-world signals are continuously
defined, the reconstruction of continuous-domain solutions is a

desirable objective. Moreover, although handling discrete sig-
nals is obviously appealing from a computational perspective,
it introduces discretization errors in the measurements. For
instance, the discrete Fourier transform (DFT) is often used as
surrogate for the continuous Fourier transform to model MRI
measurements, which is by no means an exact discretization.

B. Continuous-Domain Problems for Hybrid Splines

In this work, we propose to use unions of dictionaries in
a continuous-domain framework. Our goal is to reconstruct
a multicomponent continuous-domain 1D signal s = s1 + s2,
where s1 and s2 have different characteristics. Similarly to the
discrete setting, we are given measurements y = ν(s) + n ∈
RM , where ν : s → ν(s) ∈ RM is a (continuous-domain) lin-
ear measurement operator and n ∈ RM is some additive noise.
We focus on continuous-domain inverse problems of the form

s∗ = argmin
f

(‖ν(f)− y‖22 + λRhyb(f)
)
, (3)

where λ > 0 is the regularization parameter. The hybrid regu-
larization term is given by

Rhyb(f) = min
f1,f2

f1+f2=f

((1− α)‖L1{f1}‖M + α‖L2{f2}‖M) ,

(4)

whereα ∈ (0, 1) controls the weighing of the two regularization
terms. The regularization norm ‖ · ‖M norm generalizes the L1

norm [21] and is the continuous counterpart of the �1 norm used
in discrete problems.

Although they are formulated in slightly different forms, there
is an obvious connection between Problem (3) and the discrete
analysis Problem (2). Similarly to the discrete case, the sparsity
of each component si is promoted in a different dictionary, which
is determined by the choice of the regularization operator Li for
i ∈ {1, 2}. Our main theoretical result is a representer theorem
that states that, for differential operators Li, Problem (3) leads
to spline solutions s∗ = s∗1 + s∗2, where each component s∗i is
an Li-spline. The reconstructed signal s∗ is therefore a sum of
different splines, which we coin as a hybrid spline. Moreover,
the total sparsity of s∗ in this union of spline dictionaries is no
larger than the number M of measurements. This representer
theorem generalizes the main result of [21].

An important characteristic of our framework is its compat-
ibility with the class of piecewise-polynomial functions, which
can accurately model a large variety of real-world signal. For
example, by taking L1 = D (piecewise-constant splines) and
L2 = D4 (cubic splines), the dictionary consists of piecewise-
cubic polynomials that admit discontinuities.

A key feature of our continuous-domain formulation is that
Problem (3) can be discretized in an exact way using B-splines,
based on the methodology of [27]. B-splines are basis func-
tions that are popular in the field of signal processing [28]–
[30] because they have compact support. Continuous-domain
inverse problems with gTV-type norms are an active field of
research [31]–[38]. However, to the best of our knowledge, ours
is the first instance of a continuous-domain inverse problem for
multicomponent signals.
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C. Outline

This paper is organized as follows: in Section II, we present
the continuous-domain framework of Problem (3), which is
a multicomponent extension of that of [21]. We then prove
our representer theorem; it states that Problem (3) admits a
global minimizer that is a hybrid spline. We then provide some
background information on splines in Section III. In Section IV,
we show how we discretize Problem (3) in an exact way using
B-splines and propose a practical solution to the corresponding
discrete problem. In Section V, we present our proposed mul-
tiresolution algorithm. Finally, we illustrate some applications of
our algorithm in Section VI, including curve fitting and CS-type
problems.

II. CONTINUOUS-DOMAIN INVERSE PROBLEM

In this section, we present a class of continuous-domain
inverse problems that involve hybrid gTV regularization. These
problems extend the framework of [21], which is the basis of this
work. For more detailed information, we refer to that original
article.

A. Definitions and Notations

Our aim is to recover a continuous-domain signal s : R → R
given M noisy measurements modeled as y = ν(s) + n, where
n ∈ RM is some additive noise. The noiseless measurements
ν(s) are acquired through M linear measurement functionals
ν = (ν1, . . . , νM ), with ν(s) = (〈ν1, s〉, . . . , 〈νM , s〉). There,
〈νm, s〉 stands for the duality product, which is given by∫

R νm(x)s(x)dx when νm and s are ordinary functions. The
νm functionals constitute the (assumed) forward model.

The regularization norm ‖ · ‖M is defined for a tempered
distribution w ∈ S′(R) as

‖w‖M = sup
φ∈S(R),‖φ‖∞=1

〈w, φ〉, (5)

where S(R) is the Schwartz space of smooth and rapidly decay-
ing functions. Leaving aside the abstractness of this definition,
let us focus on two critical features of the ‖ · ‖M norm:

1) it generalizes theL1 norm in the sense that ‖w‖M = ‖w‖1
for any w ∈ L1(R);

2) the ‖ · ‖M norm of a weighted sum of Dirac impulses
is ‖∑k∈Z a[k]δ(· − xk)‖M = ‖a‖1, where (a[k])k∈Z is a
real sequence and the xk ∈ R are pairwise distinct.

Next, we sum up all the relevant information and notations
that concern the regularization operators Li (i ∈ {1, 2}).

1) The operator Li is assumed to be spline-admissible in
the sense of [21, Definition 1]. It therefore has a Green’s
function denoted by ρLi

which verifies Li{ρLi
} = δ.

2) The native space of Li is denoted by MLi
(R) and verifies

‖Li{fi}‖M < ∞ for any fi ∈ MLi
(R).

3) The null space of Li is denoted by NLi
and has finite

dimension N0,i.
4) The intersection of the null spaces is denoted by N0 =

NL1
∩NL2

and has dimension N0. If N0 > 0, then we in-
troduce the biorthogonal system (φ0,p0) = (φn, pn)

N0
n=1

Fig. 1. Nonuniform D-spline (thin curve). The vertical arrows represent the
innovation D{s} =

∑
k
akδ(· − xk).

for N0 in the sense of Definition 3 in [21] that satisfies
φn(pm) = δnm (Kronecker delta).

5) The restricted search space for L1 is defined as

ML1,φ0
(R) = {f ∈ ML1

(R) : φ0(f) = 0}, (6)

where φ0 : ML1
(R) → RN0 .

We then define splines matched to these operators.
Definition 1 (Nonuniform L-splines): Let L be a spline-

admissible operator in the sense of [21, Definition 1]. A nonuni-
form L-spline is a function s ∈ ML(R) such that L{s} =∑

k akδ(· − xk) where ak, xk ∈ R.
In the case of multiple-order derivative operators L = DN0 ,

nonuniform L-splines are piecewise polynomials of degree
(N0 − 1) with differentiability class CN0−2. The locations xk

and amplitudes ak of the singularities (knots) are characterized
by the innovation L{s} =

∑
k akδ(· − xk) of the spline. An

example of a D-spline with its innovation is given in Fig. 1.
Finally, we introduce the hybrid regularization functional for

functions f ∈ ML1,φ0
(R) +ML2

(R) as

Rhyb(f) = min
f1∈ML1,φ0

(R)

f2∈ML2
(R)

f1+f2=f

((1− α)‖L1{f1}‖M + α‖L2{f2}‖M).

(7)

Proposition 1: The hybrid regularization functional Rhyb

defined in (7) has the following properties:
1) it is well defined in the sense that, for any f ∈

ML1,φ0
(R) +ML2

(R), there exist functions (f1, f2) ∈
ML1,φ0

(R)×ML2
(R) such that f = f1 + f2 and

Rhyb(f) = (1− α)‖L1{f1}‖M + α‖L2{f2}‖M; (8)

2) it is convex.
The proof of Proposition 1 is given in Appendix A.

B. Representer Theorem

We now have the necessary tools to present the main theoret-
ical result of this paper, on which our implementation is based.

Theorem 1 (Continuous-domain representer theorem): Let
L1,L2 be spline-admissible operators and let ν = (ν1, . . . , νM )
be a linear measurement operator composed of the
M linear functionals νm : f �→ νm(f) ∈ R which are
weak∗-continuous on both ML1

(R) and ML2
(R). Assume that
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Nν ∩ (NL1
+NL2

) = {0}, where Nν is the null space of ν
(well-posedness assumption). Then, the linear inverse problem

S =

{
argmin

f∈ML1,φ0
(R)+ML2

(R)

(
‖ν(f)− y‖22 + λRhyb(f)

)
︸ ︷︷ ︸

J (f)

}

(9)

has a solution s of the form s = s1 + s2, where si are nonuni-
form Li-splines (in the sense of Definition 1) of the form

si(x) =

Ki∑
k=1

ai,kρLi
(x− xi,k) + qi(x) (10)

for qi ∈ NLi
, ai,k, xi,k ∈ R. Moreover, the sparsity indices Ki

verify K1 +K2 ≤ M .
The proof is given in Appendix B. Theorem 1 is a powerful

generalization of Theorem 1 in [21] for hybrid regularization
terms. It states that the continuous-domain Problem (9) has a
hybrid spline solution that consists of the sum of an L1-spline
and an L2-spline. The unknowns are the locations xi,k and
amplitudes ai,k of the knots (which specify the innovation of
the spline corresponding to the vertical arrows in Fig. 1), as
well as the null-space components qi. The total sparsity of this
solution is bounded by the number of measurement M , meaning
that it is characterized by very few parameters. The following
observations can be made concerning Theorem 1:
� We use the restricted search space ML1,φ0

(R) defined
in (6) instead of the complete space ML1

(R) in order
to ensure that Problem (9) is well-posed. 1 This does not
restrict the native space of the reconstructed signal s since
ML1,φ0

(R) +ML2
(R) = ML1

(R) +ML2
(R).

� Theorem 1 can readily be extended to Q operators
L1, . . . ,LQ: however, for Q > 2, the handling of the pair-
wise null space intersections would make the general for-
mulation more tedious. For the sake of clarity, we therefore
only consider the case Q = 2.

� A remarkable feature of Theorem 1 is that the bound
on the sparsity of the solutions does not increase with
the number Q of operators. This is particularly appealing
from a theoretical point of view since, compared to the
single-operator framework of [21], we essentially enrich
our dictionary at no cost in terms of sparsity.

III. DERIVATIVE OPERATORS AND SPLINES

For the sake of clarity, we focus on N0th-order derivative
operators L = DN0 . They are the most standard choices of
regularization operators; for instance, L = D leads to TV reg-
ularization. Higher orders N0 ≥ 2 lead to total-variation (TV)
regularization of the (N0 − 1)th derivative of the argument func-
tion f . Examples of more general operators that are compatible
with the framework of [21] (and, a fortiori, ours) are generic
differential operators, which lead to exponential splines [30],
[39].

1An unbounded solution set S would arise if we allowed ourselves to add
contributions (p,−p) to a solution, with arbitrary p ∈ N0. Indeed, the extended
solution would still be an element of S.

Fig. 2. Cardinal B-splines of operators DN0 for N0 = 1, . . . , 4.

The null space of DN0 is the set of polynomials of degree
smaller than N0, so that

NDN0 = span{pn = (·)n−1}N0
n=1. (11)

The causal Green’s function of DN0 is

ρDN0 (x) =
xN0−1
+

(N0 − 1)!
. (12)

A. Cardinal B-Splines

The cardinal B-spline of DN0 has a compact expression in the
Fourier domain. It is defined by

βDN0 (x) = F−1

{(
1− e−jω

jω

)N0
}
(x). (13)

It is indeed a DN0 -spline in the sense of Definition 1 since

DN0{βDN0 }(x) =
∑
k∈Z

dDN0 [k]δ(x− k), (14)

where (dDN0 [k])k∈Z is a discrete finite-impulse-response filter
defined by its z transform

dDN0 (z) = (1− z−1)N0 , (15)

which is supported in {0, . . . , N0}. We provide in Table I a
summary of the relevant characteristics for small values of N0.
Notice that the B-spline ofDN0 is supported in [0, N0]. As shown
in Fig. 2, higher-order derivatives lead to smoother B-splines.

B. Scaling

An important property of the B-spline is its scalability. We
define the scaled B-spline as

βL,h(x) = βL

(x
h

)
, (16)

where h > 0 is the grid size. This means that the knots of βL,h,
which are integers for cardinal B-splines in Table I, lie in hZ.
The major asset of scaled B-splines is that they can represent any
L-spline that has knots in hZ. Hence, we introduce the space,
which we use as our search space to discretize Problem (9).

Definition 2: The discretized search space ML,h(R) associ-
ated to L is specified by
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TABLE I
CHARACTERISTICS OF N0TH-ORDER DERIVATIVE OPERATORS

ML,h(R)

=

{
p+

∑
k∈Z

a[k]ρL(· − kh) : a ∈ �1(Z), p ∈ NL

}
(17)

=

{∑
k∈Z

c[k]βL,h(· − kh) : c ∈ �1,L(Z)

}
(18)

where

�1,L(Z) = {(c[k])k∈Z : (dL ∗ c) ∈ �1(Z)} . (19)

The proof of the equivalence of the Green’s function and
B-spline representations is given in Proposition 1 in [27]. Given
the form of the solutions (10) of our continuous-domain inverse
Problem (9), this choice of search space is a natural one. By pick-
ing h sufficiently small, it contains functions that are arbitrarily
close to (10). Moreover, the use of the underlying B-spline repre-
sentation of ML,h(R) leads to well-conditioned problems and,
thus, to computationally effective algorithms. This is due to the
advantageous properties of B-splines, namely, their finite sup-
port and the fact that they produce a Riesz basis [39, Theorem 1].

IV. EXACT DISCRETIZATION

We now detail our discretization method for Problem (9),
which is based on the methodology of [27]. For all that follows,
the conditions of Assumptions 1 apply.

Assumptions 1:
� The measurement functionals νm are supported in an in-

terval IT = [0, T ] where T ∈ hZ.
� The regularization operators are L1 = DN0,1 and L2 =
DN0,2 where N0,1 < N0,2.

� For the space ML1,φ0
(R) defined in (6), we choose the

canonical boundary conditions φ0 : ML1
(R) → RN0,1 ,

where φ0(f) = (f(0), . . . , f (N0,1−1)(0)).
The first assumption is natural and is often fulfilled in practice,

for instance in imaging with a finite field of view. Since L1 and
L2 have almost symmetrical roles, the second assumption is only
significant in relation to the boundary conditions φ0. It implies
that N1 ⊂ N2 and N0 = NL1

. Finally, we make a canonical

choice for φ0 for the sake of simplicity. As specified in [21],
(φ0,p0) = (φ0,n, p0,n)

N0
n=1 forms a biorthogonal system for

N0, where p0 is defined as in (11).

A. Specification of ML1,φ0,h(R)

The discretized search space for L1 with boundary conditions
φ0 is given by

ML1,φ0,h(R)

=
{
s ∈ ML1,h(R) : φ0(s) = 0

}
(20)

=

{∑
k∈Z

c[k]βL1,h(· − kh) : c ∈ �1,L1
(Z),φ0,h(c) = 0

}
,

(21)

where φ0,h : �1,L(Z) → RN0 satisfies φ0,h(c) = φ0(s). We
thus define the matching search space for B-spline coefficients
as

�1,L1,φ0
(Z) =

{
c ∈ �1,L1

(Z) : φ0,h(c) = 0
}
. (22)

Since βDN0,1 is supported in [0, N0,1], the boundary condi-
tions φ0,h impose linear constraints on only a few coefficients
of c. For example, for L1 = D (i.e., N0,1 = 1), we have that
φ0(s) = s(0) = 0, which simply amounts to φ0,h(c) = c[0] =
0. In general, it can easily be shown that the canonical boundary
conditions are

φ0,h(c) = (c[0], . . . , c[−N0,1 + 1]) = 0. (23)

B. Discrete Problem Formulation

Next, we introduce the sets of indices Ii = {mi, . . . ,Mi} of
cardinality Ni = #Ii = Mi −mi + 1 such that k ∈ Ii if and
only if the support of the B-spline atom βLi

(· − kh) and IT have
a nontrivial intersection. The indices{−N0,1 + 1, . . . , 0} are ex-
cluded from I1 due to the boundary conditions (23). We thus have
thatm1 = 1,m2 = (−N0,1 + 1), andM1 = M2 = (T/h− 1),
which implies that N1 = (T/h− 1) and N2 = (T/h+N0,2 −
1). By optimizing over the B-spline coefficients in Ii, we get the
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following finite optimization problem

Sh =

{
argmin

(c1,c2)∈RN1×RN2

Jh(c1, c2)

}
(24)

Jh(c1, c2) = ‖H1c1 +H2c2 − y‖22
+ λ ((1− α)‖L1c1‖1 + α‖L2c2‖1) . (25)

The system matrices Hi ∈ RM×Ni are defined as

Hi =
[
hmi

· · · hMi

]
: hk = ν(βLi

(· − kh)), (26)

and the Toeplitz-like regularization matrices are given by L1 ∈
RN1×N1 , with

L1 =
1

hN0,1−1

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dL1
[0] 0 · · · · · · · · · 0

...
. . .

. . .
...

dL1
[N0,1]

. . .
. . .

...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 dL1
[N0,1] · · · dL1

[0]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(27)

and L2 ∈ R(N2−N0,2)×N2 , with

L2 =
1

hN0,2−1

×

⎛
⎜⎜⎜⎜⎜⎝

dL2
[N0,2] · · · dL2

[0] 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 dL2
[N0,2] · · · dL2

[0]

⎞
⎟⎟⎟⎟⎟⎠

.

(28)

The cost function can thus be rewritten as

Jh(c1, c2) =

∥∥∥∥∥H
(
c1

c2

)
− y‖22 + λ‖L

(
c1

c2

)∥∥∥∥∥
1

, (29)

where the concatenated system and regularization matrices are

H =
[
H1 H2

]
∈ RM×(N1+N2) and (30)

L =

(
(1− α)L1 0

0 αL2

)
∈ R(N1+N2−N0,2)×(N1+N2), (31)

respectively. Therefore, Problem (24) is a standard penalized
basis pursuit (PBP) problem which can be solved using off-the-
shelf algorithms such as ADMM. Furthermore, it satisfies the
property of Theorem 2.

Theorem 2: Under the assumptions of Theorem 1 and
Assumptions 1, the following conditions hold true.
� We have that kerH ∩ kerL = {0}, and the solution setSh

of Problem (24) is a nonempty compact convex set.

� Problem (24) is truly equivalent to the continuous Problem
(9) in the discretized search spaces defined in (17) and (6),
with

Sh = argmin
f∈ML1,h,φ0

(R)+ML2,h(R)

J (f), (32)

in the sense that there exists a bijective linear mapping
between the solution sets.

� The reconstructed signal associated to a solution (c1, c2) ∈
Sh of Problem (24) is a hybrid spline

s = s1 + s2

=
∑
k∈Z

(
c1[k]βL1

(· − kh) + c2[k]βL2
(· − kh)

)
, (33)

where the sequences (c1, c2) ∈ �1,L1,φ0
(Z)× �1,L2

(Z)
satisfy ci|Ii = (ci[mi], . . . , ci[Mi]) = ci;

� The sparsity of si in the Green’s function basis is given by
‖Lici‖0.

The proof of Theorem 2, which is given in Appendix C, is a
multicomponent extension of Proposition 2 in [27]. The main
difference is to be found in the boundary conditions. Note that,
by definition of Ii, the B-spline coefficients outside of Ii do
not affect the reconstructed signal outside the interval of interest
IT . Therefore, by Theorem 2, the expression of s over IT and its
sparsity is entirely determined by the coefficients ci. Computing
the complete sequences of B-spline coefficients ci is therefore
unnecessary.

C. Reaching a Sparse Solution

Since Problem (24) can be rewritten as a standard PBP prob-
lem of the form

Sh =

{
argmin
c∈RN

(
‖Hc− y‖22 + λ‖Lc‖1

)}
, (34)

where N = N1 +N2, all the results of Section V. C in [27]
are applicable. Since L is clearly of full rank, its null space has
dimension N0,2, which therefore plays the role of N0 in [27].
We now sum up the properties of Problem (24).
� Its solution set Sh is a compact convex set whose extreme

points c∗ = (c∗1, c
∗
2) are sparse, in the sense that they verify

‖Lc∗‖0 ≤ (M −N0,2).
� All its solutions yield the same measurements yλ, so that
∀c ∈ Sh, Hc = yλ.

� It is equivalent to the linear program

SLP
h =

{
argmin

(c,u)∈RN×R(N−N0,2)

N−N0,2∑
n=1

un :

u+ Lc ≥ 0, u− Lc ≥ 0, Hc = yλ

}
, (35)

where for any x,y ∈ RP , x ≤ y implies that xp ≤ yp for
all p ∈ {1, . . . , P}. Moreover, an extreme point (c∗,u∗) of
SLP
h yields an extreme point c∗ of Sh.

The same pipeline can also be used to compute a sparse
extreme point of Sh. The procedure is as follows:
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1) Run any iterative solver (e.g., ADMM) to find a solution
cADMM ∈ Sh of Problem (24).

2) Compute yλ = HcADMM.
3) Solve the linear program (35) using the simplex or dual-

simplex algorithm [40], [41]. These algorithms are known
to converge to an extreme point (c∗,u∗) of SLP

h , where c∗

is an extreme point of Sh.

V. MULTIRESOLUTION STRATEGY

Although the algorithm introduced in Section IV-C yields
a sparse solution of Problem (24), it does so for a fixed grid
size h. Yet, choosing a suitable grid size clearly depends on
the problem at hand. We therefore propose a multiresolution
strategy that selects the grid size automatically. We introduce
the optimal costs of the continuous and discrete problems, which
are defined as J 0 = minf∈ML1,φ0

(R)+ML2
(R) J (f) and J0

h =
min(c1,c2)∈RN1×RN2 Jh(c1, c2), respectively. Our approach is
based on Theorem 3.

Theorem 3 (Convergence of the cost function of the dis-
crete problem): Assume that the hypotheses of Theorem 1 and
Assumptions 1 are met. Then,

lim
h→0

J0
h = J 0. (36)

The proof of Theorem 3, which is based on Theorem 3 in [27],
is given in Appendix D. This result justifies our choice of the
search space (17) since it contains functions which yield costs
arbitrarily close to the optimal costJ 0 of the continuous-domain
Problem (9). It also justifies the use of a multiresolution algo-
rithm, the pseudocode of which being given in Algorithm 1.

The principle of this algorithm is to split the grid in half
by taking grid sizes (hn = T/2n)n≥n0

, where hn0
is an initial

coarse grid size. We stop the refinement as soon as the optimal
costJ0

hn
ceases to decrease within a certain tolerance ε chosen by

the user. Further refinement of the grid is then useless, since the
reconstructed signal does not vary significantly anymore. The
variable costp denotes the costJ0

hn−1
from the previous grid size.

Because the search spaces are embedded like ML1,hn,φ0
(R) ⊂

ML1,hn+1,φ0
(R) and ML2,hn

(R) ⊂ ML2,hn+1
(R), a decrease

in the grid size can only improve the reconstruction in terms

of cost, i.e., (J0
hn

)n≥n0
is decreasing. Moreover, Theorem 3

states that this quantity converges to J 0, which guarantees
the convergence of our algorithm. This embedding also allows
us to use the reconstruction from the previous grid size as a
warm start for ADMM. This is done by converting the B-spline
coefficients to ci,↑2 for i ∈ {1, 2}, which represent the same
continuous-domain signal on the finer grid. In practice, for a
tolerance ε = 10−3, Algorithm 1 typically converges for a grid
size of h = 1/29 or coarser in our experiments, which leads to
reasonable computation times of a few seconds in the conditions
of Section VI.

VI. APPLICATIONS

Our algorithms are implemented using GlobalBioIm [42], a
Matlab inverse-problem library developed in our group, as well
as the Gurobi optimizer2 for the simplex algorithm. In order
for our hybrid regularization (7) to be an adequate prior, the
ground truth signal in our experiments is a sparse hybrid spline
s = s1 + s2. Each component si is a sparseLi-spline of the form

si(x) =

Ksi∑
k=1

ak,iρLi
(x− xk,i) +

N0,i∑
n=1

bn,ipn,i(x), (37)

where {pn,i}N0,i

n=1 form a basis of NLi
. The sparsity Ksi of si

is chosen by the user, the knot locations xi,k ∈ IT are chosen
at random and the coefficients ak,i and bn,i are i.i.d. Gaussian
random variables. The tuning parameters λ and α are selected
using grid search, and we pick a tolerance ε = 10−3.

A. Curve Fitting

Curve fitting is particularly well-suited for smoothing prob-
lems, which consist in fitting a continuous-domain function
which is sparse in a certain dictionary basis from many noisy
data points. The measurement functionals are then given by
νm(s) = s(xm) where xm ∈ [0, T ] are the sampling locations.
Such reconstruction problems are commonly tackled in a single-
operator framework, where the dictionary is associated with a
single brand of splines. A limit case is polynomial regression,
which is achieved by taking L = DN+1 and picking a very high
value of the regularization parameter λ.

In contrast with standard single-operator frameworks, our
approach allows for the joint use of several families of basis
functions, and can therefore represent a richer class of signals.
An example of a curve-fitting reconstruction using Algorithm
1 is given in Fig. 3(a). The chosen regularization operators
are L1 = D and L2 = D2; our dictionary thus consists of both
piecewise-constant and piecewise-linear splines. We compare
our results to single-operator reconstructions with regularization
operators L = D and L = D2 in Fig. 3(b).

Observe that the reconstructed signal is quite sparse (K1 = 14
and K2 = 6), and is satisfactory in that it is close to what
a human would reconstruct, except for some shearing effects
around x = 0 and x = 0.6 that are typical of regularization
methods. It was not obvious a priori that such results could be

2LLC Gurobi Optimization, Gurobi optimizer reference manual, 2018.
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Fig. 3. Curve fitting comparison with M = 200 data points.

achieved. Indeed, although we are using the sparsity-promoting
�1 norm, the large number of measurements M leads us far
from a CS-type framework. Theorem 2 in [27] states that the
sparsity of the reconstructed signal is bounded by (M −N0,2).
We observe experimentally that increasing λ tends to produce
sparser solutions, and that the level of sparsity can be adjusted at
will by tuningλ. This is not altogether surprising, sinceλ = +∞
yields a reconstructed signal in the null space ofL2 with sparsity
zero.

Another promising feature of this experiment is that our algo-
rithm is able to strike the right balance between both dictionaries
(i.e., D-splines and D2-splines), in that the selected dictionary
elements explain the ground truth signal well. Note that this
requires careful tuning of the weight parameter α. Indeed, a
badly tuned α leads to a lopsided use of one of the dictionaries,
the other being too strongly penalized. We observe that a suitable
balance can consistently be found when the ground truth fits the
signal model as in (37).

By contrast, the single-operator reconstructions in Fig. 3(b) do
not do well in regions that call for different dictionary elements.
More precisely, linear regimes in the ground truth signal lead
to a staircasing effect in the piecewise-constant reconstruction
(D), which results in a loss of sparsity. As for the sharp jumps in
the ground truth, they lead to gradual increases in the piecewise-
linear reconstruction (D2). This is because sharp increases are
heavily penalized by the regularization, which is undesirable
given the form of the ground truth.

Fig. 4. Reconstruction result with noiseless Fourier measurements for L1 =
D, L2 = D4, M = 30, λ = 10−15, α = 5× 10−5. Final grid size: h = 1/28.

B. Compressed Sensing

A second application of our framework is CS-type problems,
which attempt to the recover a sparse multicomponent signals
given a small number of measurements. 3 We use the same type
of test signals as in (37), namely hybrid splines with low sparsity
Ks1 +Ks2 . The measurement functionals are assumed to take
the form

νm(s) =

∫ T

0

cos(ωmx+ φm)s(x)dx, (38)

where ωm ∈ R are the sampling frequencies and φm ∈ [0, 2π)
some given phase offsets. This amounts to sampling in the
Fourier space — a rectangular window is applied in order to sat-
isfy Assumptions 1. We choose Fourier measurements because
they are known to have good recovery properties according to
the theory of CS [43]. However, the absence of a D-RIP-type
assumption prevents us from making any theoretical claims on
the quality of the recovery.

In this setting, perfect recovery is illusory since the xk,i are
not on a grid and the si signals are thus not included in the
native spaces ML1,φ0,h(R) and ML2,h(R). Even in purely
discrete settings, the recovery of a multicomponent discrete
signal is a difficult problem, which requires conditions on the
measurement matrix H and some form of incoherence between

3Note that we are not interested in the data separation problem as in [26], but
only in recovering the complete multicomponent signal.
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dictionaries [11], [26]. Here, no such assumptions are made,
which makes the recovery problem even more challenging.
To avoid adding to the difficulty, we only consider noiseless
measurements.

An example run is shown in Fig. 4 for a test signal with
sparsity 15 (Ks1 = 5 and Ks2 = 10) and M = 30. Since the
measurements are noiseless and we are interested in recovering
the test signal as faithfully as possible, the data-fidelity term
should be penalized much more than the regularization term.
We therefore pick the regularization parameter λ = 10−15 � 1.
The reconstructed signal in Fig. 4(a) is remarkably close to the
test signal, considering the difficulties of the problem. Notice
that the final grid size selected by Algorithm 1 (h = 1/28) is
still computationally tractable. The separate components of the
reconstructed signal compared to those of the test signal are
provided in Fig. 4(b). We observe that the separation is not
perfect: there is a small compensation effect between the two
reconstructed components.

VII. CONCLUSION

We have established a representer theorem that states that
hybrid splines are solutions of continuous-domain inverse prob-
lems with multiple generalized total-variation regularization.
The regularization operators L1 and L2 are taken to be multiple-
order derivatives, which lead to piecewise-polynomial splines.
This result implies that such problems can be solved exactly
using a concatenated dictionary that consists of L1 and L2-
splines. We propose an exact B-spline-based discretization
scheme and a multiresolution algorithm to solve the continuous-
domain problem in a suitable search space. We then apply our
algorithm to curve fitting and CS-type problems, and show
that it is both computationally feasible and very successful
experimentally.

To the best of our knowledge, this is the first instance of a
continuous-domain inverse problem for multicomponent sig-
nals. Our algorithm can be viewed as the continuous-domain
counterpart of discrete data-separation problems, such as mor-
phological component analysis.

APPENDIX

A. Proof of Proposition 1

Recall that (φ0,p0) is a biorthogonal system in the sense
of Definition 3 in [21] for N0 = NL1

∩ NL2
. The latter can be

extended to two biorthogonal systems (φ̃1, p̃1) and (φ̃2, p̃2)
for NL1

and NL2
, respectively. There, φ̃i = [φ0 φi] and p̃i =

[p0 pi] for i ∈ {1, 2}.
Based on Theorem 4 in [21], we know that there exist stable

right-inverse operators L−1
φ̃i

such that any f ∈ MLi
(R) has a

unique representation as

f(x) = L−1
φ̃i
{wi}(x) + cT0 p0(x) + cTi pi(x), (39)

where wi ∈ M(R), c0 ∈ RN0 , and ci ∈ RN0,i−N0 with i ∈
{1, 2}. We then proceed in two steps.

1) The Minimum is Reached in (7):
Proof: Let us denote

Cf = {(f1, f2) ∈ ML1,φ0
(R)×ML2

(R) : f = f1 + f2}
(40)

the set of feasible pairs (f1, f2) and

R1,2(f1, f2) = (1− α)‖L1{f1}‖M + α‖L2{f2}‖M. (41)

The hybrid regularization can be rewritten as

Rhyb(f) = min
(f1,f2)∈Cf

R1,2(f1, f2). (42)

The feasible set Cf is nonempty since f ∈ ML1,φ0
(R) +

ML2
(R). Therefore, there exists a sequence (f1,k, f2,k)k∈N ∈

Cf that monotonically decreases to the infimum of R1,2

over Cf . Using (39), both components can be repre-
sented asf1,k = L−1

φ̃1

{w1,k}+ cT1,kp1 andf2,k = L−1
φ̃2

{w2,k}+
cT0,kp0 + cT2,kp2. The assumption of monotonic decrease im-
plies that

∀k ∈ N, i ∈ {1, 2} : 0 ≤ ‖wi,k‖M ≤ A, (43)

where A = R1,2(f1,0, f2,0). Next, since (f1,k, f2,k)k∈N ∈ Cf ,
we have that

∀k ∈ N : f = L−1
φ̃1
{w1,k}+ L−1

φ̃2
{w2,k}+

2∑
i=0

cTi,kpi. (44)

Therefore, for all test functions ϕ ∈ S(R), we have that

〈f, ϕ〉 =
〈
w1,k,L

−1∗
φ̃1

{ϕ}
〉
+
〈
w2,k,L

−1∗
φ̃2

{ϕ}
〉

+

〈
2∑

i=0

cTi,kpi, ϕ

〉
, (45)

where L−1∗
φ̃1

is the adjoint operator of L−1
φ̃1

. Let Bk =

maxi(‖ci,k‖∞), and

bi,k =

⎧
⎨
⎩

ci,k
Bk

, Bk �= 0,

1, otherwise.
(46)

Clearly, the vectorsbi,k are in the unit ball. Moreover, as stated in
(43), wi,k is in the ball of radius A, which is weak∗-compact ac-
cording to the Banach-Alaoglu theorem. Therefore, there exists
a subsequence (f1,kn

, f2,kn
)n∈N with the following properties

� the sequences (w1,kn
)n∈N and (w2,kn

)n∈N are converg-
ing for the weak∗-topology. Their limits are denoted by
w1,lim, w2,lim ∈ M(R), respectively;

� there exist vectors bi,lim such that limn→+∞ bi,kn
=

bi,lim for i ∈ {0, 1, 2}, at least one of which is nonzero
since, for any k ∈ N, there exists an i ∈ {0, 1, 2} such that
bi,k = 1;

� we have the convergence limn→+∞ Bkn
= Blim where

Blim ∈ R ∪ {+∞}.
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Rewriting (45) for k = kn yields

〈f, ϕ〉 −
〈
w1,kn

,L−1∗
φ̃1

{ϕ}
〉
−
〈
w2,kn

,L−1∗
φ̃2

{ϕ}
〉

= Bkn

〈
2∑

i=0

bT
i,kn

pi, ϕ

〉
. (47)

Assume by contradiction that Blim = +∞. As the
left-hand side of the equality in (47) converges to a
finite limit, so must the right-hand side, which implies
that limn→+∞〈∑2

i=0 b
T
i,kn

pi, ϕ〉 = 0. Since limn→+∞
〈∑2

i=0 b
T
i,kn

pi, ϕ〉 = 〈qlim, ϕ〉 for all ϕ ∈ S(R), where

qlim =
∑2

i=0 b
T
i,limpi, it follows that qlim = 0. Yet,

{p0,p1,p2} are linearly independent while not all bi,lim

are zero, which yields a contradiction. Therefore, we must have
that Blim < +∞.

Let f1= L−1
φ̃1

{w1,lim}+ cT1,limp1 and f2,lim = L−1
φ̃2

{w2,lim}
+ cT0,limp0 + cT2,limp2, where ci,lim = Blimbi,lim for i ∈
{0, 1, 2}. By taking the limit in (47), we get that

〈f, ϕ〉 −
〈
w1,lim,L

−1∗
φ̃1

{ϕ}
〉
−
〈
w2,lim,L

−1∗
φ̃2

{ϕ}
〉

=

〈
2∑

i=0

cTi,limpi, ϕ

〉
. (48)

Since (48) is valid for all ϕ ∈ S(R), we have that f = f1,lim +
f2,lim and Rhyb(f) = R1,2(f1,lim, f2,lim). �

2) The Regularizer Rhyb is Convex:
Proof: Consider two functions f, g ∈ ML1,φ0

(R) +
ML2

(R) and let f = f1 + f2 and g = g1 + g2 be their
decomposition, as specified by (8). Denotehβ = βf + (1− β)g
as a convex combination of f and g, where β ∈ [0, 1]. Since
hβ = (βf1 + (1− β)g1) + (βf2 + (1− β)g2), we have that

Rhyb(hβ) ≤ (1− α)‖βf1 + (1− β)g1‖M
+ α‖βf2 + (1− β)g2‖M

≤ (1− α)(β‖f1‖M + (1− β)‖g1‖M)

+ α(β‖f2‖M + (1− β)‖g2‖M)

= βRhyb(f) + (1− β)Rhyb(g). (49)

�

B. Proof of Theorem 1

The proof is divided into two parts. We first prove the existence
of a solution, and then that some solutions are of the form
(10). Note that we use some notations and results introduced
as preliminaries in Appendix A.

1) Existence of a Solution:
Proof: Consider a sequence (fk)k∈N ∈ ML1,φ0

(R) +
ML2

(R) that monotonically decreases to the infimum value
J0 of the cost functional. For every k, consider the decom-
position fk = f1,k + f2,k given by (8), such that Rhyb(fk) =
(1− α)‖L1{f1,k}‖M + α‖L2{f2,k}‖M.

Expanding f1,k and f2,k using (39) yields

f1,k = L−1
φ̃1
{w1,k}+ cT1,kp1, (50)

f2,k = L−1
φ̃2
{w2,k}+ cT0,kp0 + cT2,kp2. (51)

The proof will now consist in extracting a converging subse-
quence of (fk)k∈N . To achieve this, the first step is to prove
that the sequences (wi,k)k∈N (i ∈ {1, 2}) and (ci,k)k∈N (i ∈
{0, 1, 2}) are bounded. �

Due to the assumption of monotonic decrease, we have that

∀k ∈ N : ‖w1,k‖M, ‖w2,k‖M ≤ C1, (52)

where C1 = J (f1)
λmin(α,1−α) . Next, we bound the (ci,k)k∈N se-

quences. Using the triangular inequality, we get that

‖ν(fk)‖2 ≥
∥∥∥∥∥ν

(
2∑

i=0

cTi,kpi

)∥∥∥∥∥
2

−
∥∥∥ν

(
L−1
φ̃1

{w1,k}+ L−1
φ̃2

{w2,k}
)∥∥∥

2
. (53)

Using Proposition 8 in [21], the well-posedness assumption in
Theorem 1 is equivalent to the existence of a constant B > 0
such that

∥∥∥∥∥ν
(

2∑
i=0

cTi,kpi

)∥∥∥∥∥
2

≥ B

2∑
i=0

‖ci,k‖2. (54)

Next, to handle the second term in (53), we prove Lemma 1.
Lemma 1: The operators ν(L−1

φ̃i

{·}) : M(R) → RM with

i ∈ {1, 2} are weak∗-continuous.
Proof: Let (wn)n∈N ∈ M(R) be a sequence that converges

to w ∈ M(R) for the weak∗-topology. Since ν is weak∗-
continuous, it is sufficient to prove that L−1

φ̃i

{wn − w} → 0

for the weak∗-topology in MLi
(R). According to Theorem 6

in [21], we have that (CLi
(R))′ = MLi

(R), where CLi
(R) =

L∗
i{C0(R)} ⊕ N ′

Li
. Let f ∈ CLi

(R); there exists functions
(f1, f2) ∈ C0(R)×N′

Li
such that f = L∗

i{f1}+ f2. Using

(18) in [21], we have that φ̃i(L
−1
φ̃i

{wn − w}) = 0 which, by

definition of N′
Li

, implies that 〈L−1
φ̃i

{wn − w}), f2〉 = 0. We
thus have that〈

L−1
φ̃i
{wn − w}), f

〉
=
〈
L−1
φ̃i
{wn − w}),L∗

i{f1}
〉

= 〈wn − w, f1〉 → 0 (55)

since wn → w for the weak∗-topology. This proves that
L−1
φ̃i

{wn − w} → 0 for the weak∗-topology and, thus, the de-

sired result. �
Next, Lemma 1 implies that the operators ν(L−1

φ̃i

{·}) are

continuous for the norm topology ‖ · ‖M since the latter is
stronger than the weak∗-topology (i.e., it has more open sets).
This implies the existence of a constant A > 0 such that
∥∥∥ν

(
L−1
φ̃1

{w1,k}+ L−1
φ̃2
{w2,k}

)∥∥∥
2
≤A

(‖w1,k‖M + ‖w2,k‖M
)
.

(56)
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Combining (52), (54), and (56) yields that

‖ν(fk)‖2 ≥ B

(
2∑

i=0

‖ci,k‖2
)

−A (‖w1,k‖M + ‖w2,k‖M)

≥ B

(
2∑

i=0

‖ci,k‖2
)

− 2AC1. (57)

Using the assumption of monotonic decrease and the triangular
inequality, we get that

∀k ∈ N :
√

J (f0) + ‖y‖2 ≥ ‖ν(fk)‖2. (58)

This shows that the norms of c0,k, c1,k, and c2,k are bounded by
a constant, which was our initial goal. Together with (52), this
implies the existence of a subsequence (fkn

)n∈N such that
� the sequences wi,kn

are converging to a limit wi,lim ∈
M(R) for the weak∗-topology for i ∈ {1, 2} (Banach-
Alaoglu theorem);

� for i ∈ {0, 1, 2}, the sequences ci,kn
converge to a limit

ci,lim.
Using Lemma 1, we thus have that limn→+∞ ν(fkn

) =
ν(flim) where

flim = L−1
φ̃1
{w1,lim}+ L−1

φ̃2
{w2,lim}+

2∑
i=0

cTi,limpi. (59)

This yields that

J0 = lim
n→+∞J (fkn

)

= ‖ν(flim)− y‖22 + λ((1− α)‖w1,lim‖M + α‖w2,lim‖M)
(60)

= J (flim), (61)

using the weak∗-continuity of the ‖ · ‖M norm in (60). This
proves the desired result flim ∈ S .

2) Form of the Solutions:
Lemma 2: All solutions of Problem (9) yield the same mea-

surement vector zλ ∈ RM .
Proof: Let f, g be two solutions of Problem (9) and define

h = f+g
2 . Since Rhyb (Proposition 1) and ‖ · ‖22 are convex

functionals, we have that

Rhyb(h) ≤ Rhyb(f) +Rhyb(g)

2
and (62)

‖ν(h)− y‖22 ≤ ‖ν(f)− y‖22 + ‖ν(g)− y‖22
2

. (63)

Summing these inequalities yieldsJ (h) ≤ J0. YetJ (h) = J0,
which implies that the cases of equality are met. Since ‖ · ‖22 is
strictly convex, we necessarily have that ν(f) = ν(g) = zλ. �

Using Lemma 2, Problem (9) can be reformulated as

S =

{
argmin

f∈ML1,φ0
(R)+ML2

(R)

Rhyb(f) s.t. ν(f) = zλ

}
.

(64)

Now, consider the problem

min
w1,w2∈M(R)
q∈NL1

+NL2

F (w1,w2,q)=zλ

(
(1− α)‖w1‖M + α‖w2‖M

)
, where (65)

F (w1, w2, q) = ν
(
L−1
φ̃1
{w1}+ L−1

φ̃2
{w2}+ q

)
(66)

is a continuous linear functional. Due to the well-posedness
assumption,

∀q ∈ NL1
+NL2

: F (0, 0, q) ≥ B‖q‖NL1
+NL2

. (67)

Using the vector-valued Fisher-Jerome theorem [44], Problem
(65) has a solution (w1, w2, q) such that

wi =

Ki∑
k=1

ai,kδ(· − xi,k), i ∈ {1, 2}, (68)

where ai,n, xi,k ∈ R and K1 +K2 ≤ M . Next, let

s = L−1
φ̃1
{w1}+ L−1

φ̃2
{w2}+ q. (69)

Clearly, ν(s) = zλ and s = s1 + s2 where the components si
are of the form (10). Now, assume by contradiction that s is not
a solution of Problem (9). According to Lemma 2, this implies
the existence of a function g ∈ ML1,φ0

(R) +ML2
(R) such

that ν(g) = zλ and Rhyb(g) < Rhyb(s). As stated in (39), g
can rewritten as

g = L−1
φ̃1
{u1}+ L−1

φ̃2
{u2}+ r, (70)

where u1, u2 ∈ M(R) and r ∈ NL1
+NL2

. Thus, F (u1, u2,
r) = z0 and

(1− α)‖u1‖M + α‖u2‖M = Rhyb(g)

< Rhyb(s) = (1− α)‖w1‖M + α‖w2‖M, (71)

which is in contradiction with (w1, w2, q) being a solution of
(65). This proves that s is indeed the solution of (9) and thus the
desired result. �

C. Proof of Theorem 2

We first prove the Lemma 3.
Lemma 3: Let s∗ = s∗1 + s∗2 ∈ Sh be a solution of Problem

(32) and let (c∗1, c
∗
2) ∈ �1,L1,φ0

(Z)× �1,L2
(Z) be the corre-

sponding sequences of B-spline coefficients. Under Assump-
tions 1, c∗i is uniquely determined by its Ni coefficients
c∗|ii .

Proof: Let us first observe that Problem (32) can be rewritten
by using the B-spline representations ofML1,h,φ0

(R) in (6) and
ML2,h(R) in (17). By optimizing over the spline coefficients,
we get the optimization problem

Sh =

{
argmin

(c1,c2)∈�1,L1,φ0
(Z)×�1,L2

(Z)

Jh(c1, c2)

}
, (72)

where the reconstructed signal for (c∗1, c
∗
2) ∈ Sh is given by s∗ =

s∗1 + s∗2, whose components s∗i are Li-splines with B-spline
coefficients c∗1. From now on, in this proof, letJh denote the cost
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function and Sh the solution set for sequences of B-spline co-
efficients (c1, c2) ∈ �1,L1,φ0

(Z)× �1,L2
(Z). As demonstrated

by (25) in [27], the regularization term associated to a signal
si ∈ MLi

(R) with B-spline coefficients ci ∈ �1,Li
(Z) can be

expressed as ‖Li{si}‖M = 1/hN0,i−1‖dLi
∗ ci‖1. Next, con-

sider a sequence c1 such that c1|i1 = c∗1|i1 , c1[−N0,1 + 1] =
· · · = c1[0] = 0 (boundary conditions in Assumptions 1), and
whose remaining coefficients are free. This freedom does not
affect the data fidelity term due to the finite-support assumption
on νm. The coefficient c1[M1 + 1] is uniquely chosen such that
(dL1

∗ c1)[M1 + 1] =
∑N0,1

k=0 dL1
[k]c1[M1 − k + 1] = 0. Sim-

ilarly, all c[k] coefficients for k > M1 can be uniquely deter-
mined recursively to nullify (dL1

∗ c1)[k] as a linear combination
of the (N0,1 − 1) previous coefficients.

Next, due to the boundary conditions, we have that (dL1
∗

c1)[0] =
∑N0,1

k=0 dL1
[k]c1[−k] = 0 ⇒ c[−N0,1] = 0. Anal-

ogously, the unique way of canceling all coefficients (dL1
∗

c1)[k] for k ≤ 0 is to set c1[k] = 0 for all k ≤ (−N0,1). By
construction, this sequence c1 yields a regularization cost no
greater than that of c∗1. Indeed, we have that (dL1

∗ c∗1)[k] =
(dL1

∗ c1)[k] for 1 ≤ k ≤ M1 and that (dL1
∗ c1)[k] = 0 oth-

erwise. Since the two sequences c1 and c∗1 yield the same
measurements, we have thatJh(c1, c

∗
2) ≤ Jh(c

∗
1, c

∗
2). Yet, since

(s∗1, s
∗
2) is a solution of (32) and the construction of c1 is unique,

we necessarily have that c1 = c∗1.
Finally, we construct a sequence c2 in a similar fashion. The

only difference is the absence of boundary conditions, which
means that the coefficients c2[k] for k < m2 are determined as a
linear combination of the (N0,2 − 1) next coefficients to cancel
out (dL2

∗ c2)[k] for all k ≤ 0. The same argument as for c1 can
then be used to prove that c2 = c∗2. �

The proof of Lemma 3 details the construction of two in-
jective linear maps θ̃1 : RN1 → �1,L1,φ0

(Z) and θ̃2 : RN2 →
�1,L2

(Z) such that, for any ci ∈ RNi , θ̃i(ci)|ii = ci and
φ0,h(θ̃1(c1)) = 0. We then define the mapping θ̃ : RN1 × RN2 :

(c1, c2) �→ (θ̃1(c1), θ̃2(c2)). Let (c1, c2) ∈ RN1×N2 and con-
sider θ̃(c1, c2) ∈ �1,L1

(Z)× �1,L2
(Z). Following the proof of

Lemma 3, Jh(θ̃(c1, c2)) can be computed using only the
N1 +N2 coefficients c1 and c2. Indeed, all other coefficients
(θ̃i(ci)[k])k �∈Ii do not affect the data fidelity term and can-
cel out all the regularization terms which they affect. This
implies that Jh(θ̃(c1, c2)) = Jh(c1, c2) = ‖H(c1

c2
)− y‖22 +

λ‖L(c1

c2
)‖1, where H and L are defined as in (30) and (31),

respectively. Since, by Lemma 3, Sh ⊂ θ̃(RN1 × RN2), Prob-
lems (72) and (24) are equivalent in the sense that θ̃(Sh) = Sh,
and the restriction θ = θ̃|Sh

: Sh → Sh is a bijective linear map.
Concerning the first item of Theorem 2, let (c1

c2
) ∈ kerH ∩

kerL. Since L1 is invertible (27), we have that c1 = 0. Hence,
the continuous-domain signal s =

∑
k∈Z θ̃2(c2)[k]βL2

(· − kh)
verifies s ∈ Nν ∩NL2

= {0} (well-posedness assumption in
Theorem 1). We thus have that θ̃2(c2) = 0, which yields c2 = 0.
Therefore, kerH ∩ kerL = {0}, which implies that Problem
(24) is well-posed and that its solution set Sh is a nonempty
compact set. It is also convex due to the convexity of the cost
function Jh.

D. Proof of Theorem 3

Let s = s1 + s2 ∈ S , where s1 and s2 are of the form (10).
Assume by contradiction that there exists a knot x1,k0

�∈ IT . We
can then construct a spline s̃1 which has the same expression
as s1 in IT and the same knot locations, except for the knot at
x1,k0

which is removed. Since the νm functionals are supported
in IT , we have that ν(s1) = ν(s̃1) and that ‖L1{s1}‖M =
‖L1{s̃1}‖M + |a1,k0

| > ‖L1{s̃1}‖M. This implies thatJ (s) >
J (s̃1 + s2), which contradicts s ∈ S . Therefore, we have that
x1,k ≥ 0 for all k; we can thus construct the spline

s1,h(x) = p1(x) +

K1∑
k=1

a1,kρL1
(x− xh

1,k), (73)

where xh
1,k ∈ hZ and such that xh

1,k ≥ 0 converges to x1,k when
h goes to zero — we choose xh

1,k = 0 if x1,k = 0. Since this
spline has the same expression as s1 in the neighborhood of zero,
we have thatφ0(s1) = 0 ⇒ φ0(s1,h) = 0 and, thus, that s1,h ∈
ML1,h,φ0

(R). Similarly, we construct s2,h ∈ ML2,h(R). The
desired result then follows from the proof Theorem 3 in [27].
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