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ABSTRACT

Thanks to recent advances in signal processing, the interest for
fast �1-regularized reconstruction algorithms in cryo-electron mi-
croscopy (cryo-EM) has intensified. The approaches based on the
alternating-direction of multipliers method (ADMM) are particu-
larly well-suited due to the prime convergence speed and flexibility
of use of this algorithm. Yet, the standard ADMM scheme still
relies on a nested conjugate gradient (CG) to solve the linear step
in its alternating-minimization procedure, which can be costly when
handling large-scale problems. In this work, we present an inner-
loop-free ADMM algorithm for 3D reconstruction in cryo-EM. By
using an appropriate splitting scheme, we are able to avoid the use
of CG for solving the linear step. This leads to a substantial increase
in algorithmic speed, as demonstrated by our experiments.

Index Terms— cryo-EM reconstruction, inverse problem, reg-
ularization, alternating-direction of multipliers method (ADMM),
splitting, inner-loop-free, convergence speed.

1. INTRODUCTION

Cryo-electron microscopy (cryo-EM) aims at characterizing the
three-dimensional (3D) structure of proteins at the atomic level [1].
The process starts with the imaging of numerous replicates of a
macromolecule with nearly parallel electron rays at cryogenic tem-
peratures. Software packages are then used to process the set of
acquired two-dimensional (2D) measurements and produce a high-
resolution 3D structure [2, 3, 4, 5, 6].

In most packages, the reconstruction is performed using direct
methods based on the central-slice theorem [7, 8]. Direct approaches
work adequately when the projections are sufficiently numerous and
weakly degraded. Their speed is also a key advantage. Unfortu-
nately, the use of direct methods is less appropriate when dealing
with strongly ill-posed imaging conditions such as heavy noise, few
projection measurements, or inaccurately known projection angles.

This drawback has led to a surge of robuster iterative schemes
in the past years [9]. Among those, �1-regularized reconstruction
algorithms perform particularly well in challenging imaging situ-
ations. However, as with most iterative schemes, they come with
a prohibitive computational cost if not carefully engineered, which
was up to recently hindering their wider use in cryo-EM.

Several works have improved this situation by proposing meth-
ods with increased speed. In particular, a breakthrough came when
a costly step of many reconstruction algorithms was shown to be
quickly computable as a discrete convolution [10, 11, 12, 13].

This development was essential to the deployment of the
alternating-direction of multipliers method (ADMM) for iterative
reconstruction in cryo-EM [13]. ADMM is a powerful splitting-
based minimization algorithm with prime convergence speed [14].
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Moreover, the alternating scheme decouples the physical aspects of
the problem from the imposition of prior constraints on the signal,
which permits a particularly modular implementation [15]. Yet,
the standard ADMM scheme still relies on inner conjugate-gradient
(CG) loops to solve the linear step in its minimization procedure.
This leads to an algorithmic cost that grows with the number of inner
CG loops required for reconstruction, which can be prohibitive.

In this work, we present an inner-loop-free ADMM algorithm
for cryo-EM inspired by [16]. By using an appropriate splitting
scheme, we are able to directly solve the linear step in ADMM with-
out using CG. Experiments show that this improvement leads to a
noticeable increase in algorithmic speed.

The paper is structured as follows: In Section 2, we describe the
imaging model H and the fast formulation for the costly HTH. In
Section 3, we present our inner-loop-free ADMM algorithm, derived
from a suitable splitting of the objective function. Finally, we pro-
vide in Section 4 results on the convergence speed of the proposed
algorithm compared to the standard ADMM formulation.

1.1. Notations

Depending on the context, we write a continuous function f , f(·), or
f(x), where x = (x1, . . . , xd) ∈ R

d. In this work, we shall either
consider d = 2 or d = 3. Sequences are denoted by c or c[k] with
k = (k1, . . . , kd) ∈ Z

d. Vectors are denoted by bold lowercase
letters (e.g., c) and matrices by bold uppercase letters (e.g., H). The
�1 and �2 norms of c = (c1, . . . , cN ) ∈ R

N are defined as ‖c‖1 =∑N
n=1|cn| and ‖c‖2 =

(∑N
n=1|cn|2

) 1
2 , respectively. The spaces

of finite-energy sequences and functions are denoted by �2(Z
d) and

L2(R
d), respectively. The continuous convolution is written as (f ∗

g)(x) =
∫
Rd f(τ )g(x − τ )dτ . We make the distinction with the

discrete convolution, denoted by (c � d)[m] =
∑

n∈Zd c[n]d[m−
n]. We denote the reflection of a function as f∨(x) = f(−x). The
proximal mapping associated to the convex functional R is defined
as proxR(z;μ) = argmins

{
1
2
‖s− z‖22 + μR(s)

}
, with μ ∈ R.

2. IMAGING MODEL

Let Pθp{f}(y) with y ∈ R
2 denote the x-ray transform of the

atomic density f for a pth 3D particle copy with orientation θp (Eu-
ler angles) [17]. In cryo-EM, this entity is usually blurred by the
point-spread function (PSF) wp. We thus model the noiseless 2D
cryo-EM measurements b̃p(y) of the pth particle as

b̃p(y) = (Pθp{f} ∗ wp)(y). (1)

To discretize our object f , we use a generalized sampling
scheme [18] where the reconstruction space is defined as

V (ϕ) =

{ ∑
k∈Z3

c[k]ϕ(· − k) : c ∈ �2
(
Z

3)}. (2)
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The coefficient sequence c thus corresponds to the discrete represen-
tation of the object f =

∑
k∈Z3 c[k]ϕ(· − k) in the space V (ϕ).

In practice, as the object f is compactly supported, the sequence
c is restricted to a finite number of nonzero coefficients. We write
this vector of coefficients as c =

(
c[k]

)
k∈Ω3D

, where the set Ω3D ⊂
Z
3 corresponds to the support of the coefficients required to repre-

sent the object f . The number of elements in Ω3D is then denoted
by N = #Ω3D, such that c ∈ R

N .
An appropriate choice for ϕ in (2) is the optimized Kaiser-Bessel

window function (KBWF) [19, 20]. A KBWF represents functions
very effectively when using specific parameter values (see [20]). Its
isotropic property also allows for a significant reduction in compu-
tational costs.

Then, combining (1) and (2) and using the linearity and pseudo-
shift-invariant properties of the x-ray transform [17], we obtain

b̃p(y) =
∑

k∈Ω3D

c[k]
(Pθp{ϕ} ∗ wp)(y −Mθ⊥

p
k), (3)

where the hyperplane projection matrix Mθ⊥
p

∈ R
2×3 has rows

that specify the normal basis of the hyperplane perpendicular to the
direction θp of integration. The measurements b̃p(y) for the pth
particle are assumed to be acquired at the sampled points yj = jΔ

for j ∈ Ω2D. Here, the set Ω2D ⊂ Z
2 denotes the support of the

projection of f . The number of elements in Ω2D is denoted by M =
#Ω2D. For the sake of clarity, we consider Δ = 1 and we note b̃p ∈
R

M the discrete noiseless measurement vector for the pth particle.
This gives us the entries of the imaging matrix Hp ∈ R

M×N as

[Hp]j,k =
(Pθp{ϕ} ∗ wp)(j −Mθ⊥

p
k). (4)

In practice, each measurement b̃p is corrupted by substantial addi-
tive Gaussian noise np [21]. Therefore, we finally obtain the discrete
formulation of the complete forward model with P particles as

b = Hc+ n, (5)

with

b =

⎡⎢⎢⎢⎢⎣
b1

b2

...
bP

⎤⎥⎥⎥⎥⎦ , H =

⎡⎢⎢⎢⎢⎣
H1

H2

...
HP

⎤⎥⎥⎥⎥⎦ , n =

⎡⎢⎢⎢⎢⎣
n1

n2

...
nP

⎤⎥⎥⎥⎥⎦ , (6)

where P ∈ N
∗, b ∈ R

MP , H ∈ R
MP×N , and n ∈ R

MP .

2.1. Fast HTH Formulation

When the imaging model is described as in (4), we have a fast for-
mulation for the product HTH [13].

Theorem 1. Let ϕ(x) with x ∈ R
3 be such that ϕ̂(ω) = 0 for all

‖ω‖ ≥ π. Moreover, let the imaging matrix H be as defined in (6)
and let P denote the number of particles. Then, the discrete product
HTHc can be computed as the discrete convolution

[HTHc]k = (c � r)[k] (7)

for k ∈ Ω3D and with kernel

r[k] =

P∑
p=1

(Pθp{ϕ} ∗ Pθp{ϕ∨} ∗ qp)(Mθp
⊥k), (8)

where the function qp(y) = (wp ∗ (wp)∨)(y) with y ∈ R
2 is the

autocorrelation function of the PSF wp(y).

Computation Hc HTb HTHc fast HTHc (7)

Runtime [s] 127.70 132.08 257.41 0.81

Table 1. Runtimes for applying the projection operator H and its
variants HT , HTH, and fast HTH (7) in a given experimental
setup.

The benefit is that the costly matrix-vector product HTHc
can now be computed quickly as a pointwise multiplication in the
Fourier domain (Table 1). This is an extremely valuable result as
many optimization algorithms rely on computing this product at
every iteration. Note also that the cost of the convolution in (7) does
not depend on the number of projection directions, which is another
significant advantage in cryo-EM.

In practice, the discrete convolution c � r in (7) only needs to
be computed for k ∈ Ω3D. This convolution is computed in the
Fourier domain using periodic boundary conditions. We do this by
convolving a padded c with a kernel r of finite support. This ker-
nel is obtained by first convolving the autocorrelation function of
Pθp{ϕ} with the autocorrelation function of the PSF wp, and then
interpolating its value at the sampling points Mθp

⊥k.

3. FAST ADMM-BASED ALGORITHMS

For cryo-EM reconstruction, the task is to minimize

ĉ = argmin
c∈RN

{
1

2
‖Hc− b‖22 + λR(Lc) + i≥0(c)

}
(9)

where the convex functional R associated to the regularization op-
erator L ∈ R

N×N injects prior knowledge into the reconstruction
process. A popular prior is the edge-preserving total-variation (TV)
regularization (R = ‖·‖1,2, L = ∇) [22]. The constraint i≥0 im-
poses nonnegativity of the reconstruction, while the regularization
parameter λ > 0 sets the strength of the regularization.

With our fast formulation (7) for HTH in hand, the goal is then
to favor optimization algorithms that solve (9) without applying H or
HT at every iteration. To support this reasoning, a comparison of the
runtime of these operators is provided in Table 1. There, the forward
operator was constructed from (4) as to compute 500 projections of a
(128×128×128) volume, with a KBWF as basis function. The time
needed for computing the kernel (8) for the fast HTH is 118.07s
(computed only once per reconstruction). For comparison purposes,
we considered the cost of the projector without CTF correction.

A powerful algorithm that leverages (7) is ADMM [14]. Yet, as
explained in Section 3.1, the standard ADMM still has a bottleneck
since it relies on inner CG loops to solve the linear step at each itera-
tion. To avoid these costly CG procedures, we present in Section 3.2
a splitting scheme that permits to directly compute the linear step.

3.1. ADMM with Inner CG Loops (Standard)

To solve (9) using ADMM, the problem is split by introducing two
auxiliary variables u,v ∈ R

N [13] so that

ĉ = argmin
c∈RN

{
1

2
‖Hc− b‖22 + λR(u) + i≥0(v)

}
s.t. u = Lc, v = c.

(10)
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Algorithm 1 ADMM with inner CG loops (standard)

Require: b ∈ R
MP , ρ > 0

1: ρu = ρv = ρ
2: k = 1

3: while (ADMM not converged) do
4: uk+1 = proxR

(
Lck − ũk

ρu
; λ

ρu

)
5: vk+1 = proxi≥0

(
ck − ṽk

ρv
; 1

ρv

)
6: while (CG not converged) do
7: ck+1 ← solve (11) using CG and fast HTH

8: ũk+1 = ũk + ρu
(
uk+1 − Lck+1

)
9: ṽk+1 = ṽk + ρv

(
vk+1 − ck+1

)
10: k ← k + 1

11: return ck+1

In our case, the ADMM scheme for solving (9) consists of 5 alternat-
ing steps, as summarized in Algorithm 1. The proximal operators at
Lines 4 and 5 admit closed-form expressions that can be computed
efficiently [23]. Lines 8 and 9 correspond to simple updates of the
dual variables ũ, ṽ ∈ R

N . The ρu, ρv > 0 are penalty parameters.
The bottleneck in Algorithm 1 is the quadratic minimization (or

“linear step”) at Line 7, which requires one to solve

(
ρuL

TL+ ρvI+HTH
)
ck+1 =HTb+ ρv(v

k+1 + ṽk/ρv)

+ ρuL
T (uk+1 + ũk/ρu) (11)

in terms of c. The difficulty is that one cannot explicitly build the
inverse of the matrix

(
ρuL

TL+ ρvI+HTH
)
. Moreover, because

the fast computation of HTH in (7) requires padding of the object
prior to the convolution, (11) cannot be inverted in the Fourier do-
main. Hence, the standard ADMM scheme must rely on an iterative
algorithm—classically CG—to solve (11), which can be costly if
multiple inner CG loops are needed.1

3.2. Inner-Loop-Free ADMM (Proposed)

To avoid the use of CG for solving the linear step, we propose a novel
splitting of (9) inspired by [16]. The idea is to add a tailored auxiliary
variable w ∈ R

N to (10) that simplifies the standard algorithm and
makes the linear step directly solvable.

We formulate this splitting scheme as

ĉ = argmin
c∈RN

{
1

2
‖Hc− b‖22 + λR(u) + i≥0(v)

}
s.t. u = Lc, v = c, w = Tc,

(12)

where T = (A − HTH)1/2 with A 	 HTH. (We impose that
the matrix A dominates the term HTH). In this work, we set A =
‖H‖2I, where I is the identity matrix.

1Note that, although the discrete product HTb in (11) only needs to be
computed once during the whole optimization procedure, it is also costly in
its own rights. Recent works have shown that it was also possible to formulate
it as a convolution [13, 24].

The augmented Lagrangian for (12) is then given by

L(c,u, ũ,v, ṽ,w, w̃
)
=

1

2
‖Hc− b‖22

+ λR(u) + 〈ũ,u− Lc〉+ ρu
2

∥∥∥u− Lc
∥∥∥2

2

+ i≥0(v) + 〈ṽ,v − c〉+ ρv
2
‖v − c‖22

+ 〈w̃,w −Tc〉+ ρw
2

∥∥∥w −Tc
∥∥∥2

2
, (13)

where w̃ is the additional dual variable and ρw the associated penalty
parameter. The ADMM alternating scheme is thus (temporarily)
composed of 7 steps.

• Minimization w.r.t. the auxiliary variables u, v and w:

uk+1 = proxR
(
Lck − ũk

ρu
;
λ

ρu

)
(14)

vk+1 = proxi≥0

(
ck − ṽk

ρv
;

1

ρv

)
(15)

wk+1 = arg min
w∈RN

{
ρw
2

∥∥∥w −Tck +
w̃k

ρw

∥∥∥2

2

}

= Tck − w̃k

ρw
. (16)

• Minimization w.r.t. to the object c:

ck+1 = arg min
c∈RN

{
1

2
‖Hc− b‖22 + ρv

2

∥∥∥vk+1 − c+
ṽk

ρv

∥∥∥2

2

+
ρu
2

∥∥∥uk+1 − Lc+
ũk+1

ρu

∥∥∥2

2

+
ρw
2

∥∥∥wk+1 −Tc+
w̃k

ρw

∥∥∥2

2

}
. (17)

• Update of the dual variables ũ, ṽ and w̃:

ũk+1 = ũk + ρu
(
uk+1 − Lck+1) (18)

ṽk+1 = ṽk + ρv
(
vk+1 − ck+1) (19)

w̃k+1 = w̃k + ρw
(
wk+1 −Tck+1). (20)

Operations (14), (15), (18) and (19) are identical to Lines 4, 5, 8
and 9 in the standard ADMM algorithm, respectively. As currently
stated, the proposed algorithm necessitates two steps more than the
standard ADMM. The trick is that we can put (16) in (17), which
then simplifies as:

ck+1 =arg min
c∈RN

{
1

2
‖Hc− b‖22 + ρu

2

∥∥∥uk+1 − Lc+
ũk+1

ρu

∥∥∥2

2

+
ρv
2

∥∥∥vk+1 − c+
ṽk

ρv

∥∥∥2

2
+

ρw
2

∥∥∥T(ck − c)
∥∥∥2

2

}
. (21)

Operations (16) and (20) can then be set aside as they are not used
in any other alternating step. Moreover, if one sets ρw = 1, the
minimizer of (21) satisfies(

ρuL
TL+ ρvI+A

)
ck+1 = HTb+ ρuL

T (uk+1 + ũk/ρu)

+ ρv(v
k+1 + ṽk/ρv)

+ (A−HTH)ck. (22)
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Algorithm 2 Inner-loop-free ADMM (proposed)

Require: b ∈ R
MP , ρ > 0

1: ρu = ρv = ρ
2: A = ‖H‖2I
3: k = 1
4: while (not converged) do
5: uk+1 = proxR

(
Lck − ũk

ρu
; λ

ρu

)
6: vk+1 = proxi≥0

(
ck − ṽk

ρv
; 1

ρv

)
7: ck+1 ← solve (22) directly using fast HTH
8: ũk+1 = ũk + ρu

(
uk+1 − Lck+1

)
9: ṽk+1 = ṽk + ρv

(
vk+1 − ck+1

)
10: k ← k + 1

11: return ck+1

The elegance of this formulation is that (22) can be solved directly
without relying on a nested CG. Indeed, the matrix

(
ρuL

TL+ρvI+

A
)

is easily invertible in the Fourier domain.
For a volume of size N , this new scheme leads to a complexity

of O(2N log(N)) per ADMM iteration. By comparison, the stan-
dard ADMM with K inner CG loops has a complexity of O(2(K +
1)N log(N)) per iteration.

A pseudo-code of our inner-loop-free ADMM is presented in
Algorithm 2.

4. EXPERIMENTS

We compared the convergence speed of the two algorithms by recon-
structing synthetic data. We used as ground-truth a (256×256×256)
β-galactosidase volume [25]. We put ourselves in challenging imag-
ing conditions, such as those faced at the beginning of the so-called
“refinement procedure” in cryo-EM (i.e., few data2, fairly noisy pro-
jections, multiple angular misassignments). From the ground-truth,
we computed 30 equi-distributed projections using the imaging
model in (4) with a KBWF as basis function. We then degraded
those projections with Gaussian noise, setting their SNR to 1, and
added error on the projection directions prior to reconstruction. For
the sake of simplicity, we did not consider CTF effects.

The reconstruction algorithms were implemented using the
GlobalBioIm Library, an open-source library3 for solving
inverse problems [15]. The library contains generic modules that
facilitate the implementation of imaging models and optimization
algorithms.

We compared three ADMM configurations: two standard
ADMM with 1 and 3 inner CG loops, and the inner-loop-free
ADMM. The algorithm parameters (i.e., the regularization param-
eter λ and the penalty parameter ρ with ρu = ρv = ρ) were tuned
empirically to get the best reconstruction with the fastest conver-
gence. We ran each algorithm for 200 iterations and recorded their
convergence with respect to the elapsed time (Figure 1.a) and the
number of iterations (Figure 1.b).

Overall, the results show that the proposed inner-loop-free
ADMM provides a significant gain in algorithmic speed compared
to the standard approach. As expected, the convergence of the stan-
dard ADMM accelerates with the number of CG iterations, but this
also severely increases the execution time of the algorithm. The

2Most packages reconstruct high-resolution volumes by gradually adding
information to a rough initial volume computed from very few class averages.

3http://bigwww.epfl.ch/algorithms/globalbioim
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Fig. 1. Comparisons of the empirical convergence of the objective
function (9) for three ADMM schemes: the standard ADMM with
inner CG loops (resp. 1 and 3) and the proposed inner-loop-free
ADMM. The proposed algorithm provides a substantial gain in al-
gorithmic speed for cryo-EM reconstruction.

cost per iteration of the proposed ADMM algorithm is significantly
lower, which permits faster computations.

5. CONCLUSION

We presented an inner-loop-free ADMM algorithm for 3D recon-
struction in cryo-EM. By using an appropriate splitting scheme, we
eliminated the need for a nested CG scheme to solve the linear step
in ADMM. We showed experimentally that this leads to a notice-
able increase in algorithmic speed compared to the standard ADMM
formulation.
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