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Abstract—Recently, many pulse-echo ultrasound (US) imaging
methods have relied on the transmission of unfocused wavefronts.
Such a strategy allows for very high frame rates at the cost of a
degraded image quality. In this work, we present a regularized
inverse problem approach and a highly efficient modeling of
the physical measurement process to reconstruct high-quality
US images from unfocused wavefronts. We compare it against a
deep neural network (DNN) approach on the plane wave imaging
challenge in medical ultrasound (PICMUS) and show that the
use of carefully designed and trained DNN can overcome the
limitations of standard image processing priors, which fail at
capturing the very specific nature of US images accurately.

Index Terms—Ultrasound imaging, inverse problems, image
reconstruction, deep learning.

I. INTRODUCTION

ULTRAFAST ultrasound (US) imaging has undoubtedly
revolutionized the way of acquiring US images. In-

stead of transmitting a succession of focused beams for each
image, ultrafast US imaging relies on the transmission of
unfocused wavefronts, such as plane waves (PW) or diverging
waves (DW). This strategy has allowed pulse-echo US imaging
to reach frame rates of multiple kHz, opening up US to new
diagnostic imaging modes, such as shear wave elastography,
ultrafast vector flow and functional US imaging [1].

Compared to focused transmit beams, ultrafast US imaging
generally suffers from a lower image quality. A popular
approach to increase the quality of images obtained with
ultrafast US imaging consists in averaging consecutive images
reconstructed from differently steered wavefronts, in a process
called coherent compounding [1], at the cost of reduced frame
rates and increased data transfer rates.

Conventionally, US images are reconstructed by delay-and-
sum (DAS) beamforming. Recently, many approaches have
been proposed to increase the resulting image quality. Among
those technique, the group of methods which express the
image reconstruction process as an inverse problem is of
particular interest [2]–[5]. These methods usually require a
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measurement model, as well as a prior for solving the image
reconstruction problem using iterative algorithms. They mainly
suffer from the heaviness of the measurement model involved
in US imaging, especially when stored as a matrix, and from
priors that do not accurately capture the specific statistics
inherent to US images. Moreover, the iterative nature of the
solvers involved in these approaches makes real-time imaging
a serious challenge.

Recently, deep learning approaches have been shown to
be highly promising for US image reconstruction and post-
processing [6]–[10]. The potential of these methods is certainly
immense. Yet, a clear understanding and robustness guarantees
are still lacking, which hinder their adoption in specific fields
such as medical imaging.

In this work, we briefly detail an efficient modeling of the
physical measurement process involved in the problem of US
image reconstruction. We present an iterative approach where
imaging is performed by sparse regularization, and the sparsity
prior is expressed in the sparsity averaging model. We also
present a deep learning approach for solving the US image
reconstruction problem. We compare both approaches on the
plane wave imaging challenge in medical ultrasound (PIC-
MUS) [11] metrics, and discuss their main advantages and
drawbacks.

The remainder of this paper is organized as follows. Sec-
tion II presents the problem formulation of US image recon-
struction as well as an efficient modeling of the measurement
process. Section III describes two approaches for solving this
reconstruction problem. Experiments and results are detailed
in Section IV, and concluding remarks are given in Section V.

II. PROBLEM FORMULATION AND EFFICIENT MODELING

We consider the 2D pulse-echo US imaging configuration
depicted in Fig. 1. An array of Nel transducer elements
centered at positions {pi}

Nel

i=1 is used for transmitting an
acoustic wavefront, such as a PW, in a domain of interest
Ω ∈ R2\{z ≥ 0} characterized by its tissue reflectivity function
γ(r) with r ∈ Ω, which accounts for the local fluctuations in
acoustic impedance. These fluctuations result in backscatterred
acoustic waves which are detected during a period T by the
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same array of transducers to form a set of measurements
{m(pi, t)}

Nel

i=1 , with t ∈ [0,T]. Using the spatial impulse
response model and assuming the pulse-echo waveform to be
a Dirac function, one can express the measurements recorded
on the i-th element as

m(pi, t) =
∫

r ∈Ω

o(pi, r)δ(t − τ(pi, r))γ(r)dr, (1)

where o(pi, r) accounts for the element directivity and decay
of the acoustic wave [5]. Under an ideal wavefront assumption,
the round-trip time-of-flight can be expressed as τ(pi, r) =
tTx(r) − tRx(pi, r) , where tRx(pi, r) = ‖ pi − r ‖2/c, with c the
speed of sound in the medium.
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Fig. 1. Standard 2D ultrasound imaging configuration. (Adapted from [5]).

Equation (1) can be rewritten as the curvilinear integral

m(pi, t) =
∫

r ∈Γ(pi ,t)

o(pi, r)
|∇rg(pi, r, t)|

γ(r)dσ(r), (2)

where the implicit function g(pi, r, t) = t−tTx(r)−tRx(pi, r) and
the curve Γ(pi, t) = {r ∈ Ω : g(pi, r, t) = 0}. It is interesting to
note that these curves are, in this case of 2D propagation, 1D
conics of different nature depending on the type of transmitted
wavefront, and can therefore be efficiently parameterized. For
example, in the case of a PW wavefront, the corresponding
conic Γ(pi, t) is a parabola.

After discretization, numerical integration and interpolation
of (2) for every transducer element position pi , one can express
the physical measurement process as

m = Hγ + n, (3)

where γ ∈ RNxNz and m ∈ RNelNt are discrete and vectorized
representations of the US image and corresponding measure-
ments, H : RNxNz → RNelNt is the measurement model, and

n ∈ RNelNt is the measurement noise, with Nt the number of
samples recorded on each transducer element and NxNz the
total number of pixels. The inverse problem associated with (3)
can therefore be defined as:

Find γ from m = Hγ + n. (4)

III. IMAGE RECONSTRUCTION APPROACHES

In this section, we briefly describe two approaches for
solving the image reconstruction problem defined in (4).

A. Sparse Regularization

In sparse regularization approaches, (4) is reformulated as
the unconstrained minimization problem

min
γ∈RNx Nz

1
2
‖Hγ − m‖22 + λR(γ), (5)

where R : RNxNz → R+ is a convex regularization term encod-
ing a prior knowledge on the unknown image γ, and λ ∈ R+

is a regularization parameter. A solution to this problem can
be found by the proximal gradient descent iteration [12]

γk+1 = proxλτR(γk − τH
∗(Hγk − m)), (6)

where H∗ is the adjoint of H and τ is the gradient step size.
The proximity operator involved in (6) is defined as

proxµR(z) = argmin
γ∈RNx Nz

‖γ − z‖22 + µR(γ), (7)

for some µ ∈ R+.
We express the regularization term as a sparsity prior in

a transformed domain Ψ , expressed as R(γ) = ‖Ψ ∗γ‖1.
For the sparsifying transform, we use a concatenation of 8
Daubechies (from 1 to 8) wavelet transforms expressed as

Ψ =
1
√

q
[
Ψ1, . . . ,Ψq

]
. (8)

B. Neural Network

We also consider the approach proposed in our previous
work [10] for solving the image reconstruction problem de-
fined in (4). The strategy consists in first reconstructing a low-
quality image γ̃ using the classical DAS beamforming from
a single PW insonification and second infer the low-quality
image to a deep neural network (DNN) specifically trained
for the purpose of reconstructing a high-quality image γ̂ from
a low-quality image γ̃. Let us define the DAS operator as
D : RNelNt → RNxNz and a DNN with trainable parameters
θ as fθ : RNxNz → RNxNz . The proposed strategy can hence
be expressed as

γ̂ = fθ(Dm). (9)

For the network architecture, we use an adaptation of the
popular U-Net [13]. It is a residual convolutional neural
network, such that fθ(γ) = γ + rθ(γ), capable of predicting
the negative noise to be applied to a low-quality image in
order to recover a high-quality image. It has an encoder-
decoder structure, in which an input image first undergoes
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a cascade of downsampling operations in the spatial di-
mension (together with channel expansion), followed by the
corresponding upsampling operations (together with channel
contraction). Internal skip connections are used to mitigate the
loss of information in the downsampling path. For a detailed
description of the network architecture, the reader may refer
to [10], [13].

The training dataset is composed of low-quality and high-
quality image pairs reconstructed by DAS from simulated
data obtained from randomly generated tissue-mimicking
phantoms. The low-quality images are reconstructed from a
single PW insonification with normal incidence. The high-
quality images are reconstructed from synthetic aperture (SA)
measurements, considerer as the gold standard in the US
community.

IV. EXPERIMENTS AND RESULTS

A. Experimental Settings

We are interested in assessing the reconstructed image
quality of the approaches described in Section III from a single
PW insonification with normal incidence.

For the sparse regularization approach (SR), we use the pop-
ular fast iterative shrinkage thresholding algorithm (FISTA)
to solve Problem (5). The algorithm is stopped when the
mean squared error (MSE) of the difference between two
consecutive solution candidates is smaller than 10−3. The
thresholding parameter λ is optimized by grid search.

For the neural network approach, we use the best performing
network of our previous work [10]. It has been trained on
28 000 image pairs over 200 000 iterations using the well-know
Adam optimizer with a learning rate of 5 × 10−5 and the MSE
as the loss function.

The image reconstruction quality is assessed on the PIC-
MUS dataset, and compared to the quality of images recon-
structed by the classical DAS beamforming from 1 PW and
75 PWs insonifications. For each reconstructed image, we
compute the corresponding B-mode image for visualization
purpose by standard envelope detection, normalization and
log-compression.

B. Performance Evaluation

We evaluate some of the image quality metrics available for
the numerical PICMUS phantom1. In particular, we are inter-
ested in the contrast-to-noise ratio (CNR) and the averaged
lateral and axial resolution (full width half maximum) in the
near field (14 mm depth) and in the far field (45 mm depth).
Two quality tests are also conducted, namely a speckle test
and a linear intensity test. The results for the different methods
are reported on Table I and Fig. 2 displays the corresponding
B-mode images reconstructed using, from left to right, DAS
with 1 PW, SR with 1 PW, U-Net with 1 PW, and DAS with
75 PWs.

It is clear that the NN approach largely surpasses the SR
approach on the CNR metric. It even provides a better score

1https://www.creatis.insa-lyon.fr/EvaluationPlatform/picmus/index.html

TABLE I
IMAGE QUALITY METRICS COMPARISON ON THE PICMUS NUMERICAL

PHANTOM

Method CNR
[dB]

Lat. Res. [mm] Ax. Res. [mm] Speck.
Tests

Lin.
Test14 mm 45 mm 14 mm 45 mm

1 PW + DAS 7.2 0.36 0.53 0.38 0.41 6/6 3

1 PW + SR 10.6 0.23 0.31 0.33 0.37 3/6 #
1 PW + U-Net 17.1 0.23 0.38 0.37 0.41 5/6 3
75 PWs + DAS 16.4 0.32 0.46 0.39 0.40 6/6 3

than the reference image reconstructed by DAS beamforming
from 75 PWs. This effect can be visually appreciated in the
circular anechoic region on Fig. 2. One can note that the SR
approach fail at entirely removing the serious level of sidelobes
present in the image reconstructed by DAS beamforming with
1 PW, whereas the NN approach perfectly reconstructs this
region. On the other, the SR method provides in general better
scores on the resolution metrics compared to the NN approach.
One should however note that the SR approach has a tendency
to suffer from a little ripple effect around bright reflectors. This
effect is particularly visible on the point reflectors located in
the near-field of the numerical phantom (Fig. 2). Both the
speckle and linear intensity tests are much better handled by
the NN approach.

Figure 3 provides a visual comparison of an in vivo carotid
B-mode images reconstructed using, from left to right, DAS
with 1 PW, SR with 1 PW, U-Net with 1 PW, and DAS with
75 PWs. One can appreciate the overall image quality increase,
mainly visible around the carotid artery walls, from both the
SR and NN approach compared to the image reconstructed
by DAS beamforming with 1 PW. The NN approach again
seems to better perform on in vivo images, even though U-
Net has been exclusively trained on simulated images. Both
approaches fail at reconstructing some very fine details present
in the reference image. It is however interesting to note that the
NN approach seems capable of accurately reconstructing some
details in the near-field region that were indistinguishable in
the image reconstructed by DAS with a single PW.

One possible explanation for such an important difference
in performance between the considered approaches is that,
even though the sparsity averaging prior implemented in the
SR method has proved to be one of the most efficient prior
in the context of US image reconstruction [5], it cannot
efficiently capture the very specific nature inherent to US
images. However, it is worth mentioning that the NN approach
does not include not explicitly incorporate a robust data-
fidelity mechanism as the one included in the SR approach.

On the computational side, the NN approach has a clear
advantage since it only requires the reconstruction of a low-
quality image by DAS and a single inference, whereas the SR
approach requires approximatively 100 iterations to converge.

V. CONCLUSION AND PERSPECTIVES

In this study, we formulate the ultrasound (US) image
reconstruction process as an inverse problem and present an
efficient modeling of the measurement process in the context
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Fig. 2. B-mode images of the PICMUS numerical phantom reconstructed using (from left to right) DAS with 1 PW, SR with 1 PW, U-Net with 1 PW, and
DAS with 75 PWs. The images are displayed on a dynamic range of 80 dB.
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Fig. 3. B-mode images of a longitudinal in vivo carotid from the PICMUS dataset reconstructed using (from left to right) DAS with 1 PW, SR with 1 PW,
U-Net with 1 PW, and DAS with 75 PWs. The images are displayed on a dynamic range of 60 dB.

ultrafast ultrasound (US) imaging. We propose two distinct
approaches for solving such a problem, namely a sparse
regularization approach with a prior expressed in the sparsity
averaging model, and a deep neural network (DNN) approach.
We compare both approaches on the plane wave imaging
challenge (PICMUS) and demonstrate the overall superiority
of the DNN.

In future works, we will investigate the underlying similarity
of both approaches. Indeed, it is known that the delay-and-
sum operator D involved in the DNN approach defined in (9)
is similar to the adjoint operator of the measurement H∗

and that the proximity operator involved in (6) is akin to
a denoising operation. Hence, the proposed DNN approach
may be interpreted to some extent as the first iteration of the
proximal gradient descent iteration.
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