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B-Spline-Based Exact Discretization of
Continuous-Domain Inverse Problems
With Generalized TV Regularization

Thomas Debarre , Julien Fageot , Harshit Gupta , and Michael Unser , Fellow, IEEE

Abstract— We study continuous-domain linear inverse prob-
lems with generalized total-variation (gTV) regularization,
expressed in terms of a regularization operator L. It has recently
been proved that such inverse problems have sparse spline
solutions, with fewer jumps than the number of measurements.
Moreover, the type of spline solely depends on L (L-splines)
and is independent of the measurements. The continuous-domain
inverse problem can be recast in an exact way as a finite-
dimensional problem by restricting the search space to splines
with knots on a uniform finite grid. However, expressing the
L-spline coefficients in the dictionary basis of the Green’s
function of L is ill-suited for practical problems due to its
infinite support. Instead, we propose to formulate the problem in
the B-spline dictionary basis, which leads to better-conditioned
problems. As we make the grid finer, we show that a solution of
the continuous-domain problem can be approached arbitrarily
closely with functions of this search space. This result motivates
our proposed multiresolution algorithm, which computes sparse
solutions of our inverse problem. We demonstrate that this
algorithm is computationally feasible for 1D signals when L is
an ordinary differential operator.

Index Terms— Inverse problems, total variation, sparsity,
compressed sensing, B-splines.

I. INTRODUCTION

THE task in an inverse problem is to recover an
unknown signal s from its (usually noise-corrupted)

measurements y, which are acquired following a forward
model y ≈ ν(s), e.g., Fourier samples in the case of MRI
data. In many cases, such problems are ill-posed in the sense
that many different signals yield identical measurements. The
ill-posedness of inverse problems can be circumvented by
using a regularization term, the choice of which is guided by
our prior knowledge of the underlying signal.
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In recent years, �1 regularization has become increas-
ingly popular with the surge of compressed sensing [1]–[3]
for the reconstruction of discrete signals. Its benefits have
been extensively documented, including its sparsity-promoting
effect [4], [5], its perfect recovery properties under cer-
tain conditions [1], [6], [7], the availability of efficient
solvers [8], [9] or its apparent superiority over Tikhonov �2
regularization to recover many real-world signals [10].

Since many real-world signals are continuously defined,
some recent papers are directed towards solving continuous-
domain inverse problems, including [11]–[14]. However, for
obvious considerations of computational feasibility, the vast
majority of research efforts in the field of compressed sensing
focus on discrete inverse problems. The standard approach is
to express a continuous-domain signal s in a certain finite
basis {φn}1≤n≤N (typically a pixel basis), i.e., s = �N

n=1 cnφn .
Given M measurements y ∈ R

M , the inverse problem is then
formulated in terms of the coefficients c = (c1, . . . , cN ) in a
penalized form as

min
c∈RN

�Hc − y�2
2 + λ�Lc�1 (1)

where H : R
N → R

M is the system matrix (discrete forward
model), L : R

N → R
N is the regularization matrix and λ is a

regularization parameter. The choice of L allows us to promote
the sparsity of c in a chosen transform domain, e.g., a finite
difference matrix (discrete TV regularization) or wavelets.
However, there are several downsides to this discrete approach:
the choice of the basis functions φn is guided by computational
considerations, and is not necessarily matched to the character-
istics of the underlying continuous-domain signal. Moreover,
the discrete forward model H is often an approximation of
its continuous counterpart (e.g., the discrete Fourier transform
for the continuous Fourier transform), which introduces dis-
cretization errors.

A. Continuous-Domain Framework

To address these limitations, we focus directly on 1D
continuous-domain (i.e., s : R → R) inverse problems with
gTV regularization using the framework of [15]:

min
s

�ν(s) − y�2
2 + λ�L{s}�M (2)

where ν is a linear measurement operator (continuous forward
model) and y ∈ R

M are the noise-corrupted measurements.
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The regularization is defined in terms of a suitable operator L
with Green’s function ρL; the �·�M norm is a generalization of
the L1 norm, and is the continuous counterpart of the �1 norm.
The prototypical example is the derivative operator L = D,
leading to TV regularization. This paper relies on the main
result of [15], a representer theorem (Theorem 1) which stems
from the pioneer work of Fisher and Jerome [16]. This theorem
states that Problem (2) has L-spline solutions of the form

s(x) =
K�

k=1

akρL(x − xk) +
N0�

n=1

bn pn(x), (3)

where K ≤ M − N0, ak, xk ∈ R and {pn}N0
n=1 form a

basis of the null space of L. This result resonates with the
sparsity-promoting effect of the �1 norm for discrete problems,
since these spline solutions are sparse in the Green’s function
dictionary basis {ρL(· − τ )}τ∈R. For example, for L = D,
a Green’s function is the Heaviside step function ρL = �+,
which implies that s is a sparse piecewise-constant signal.

B. Green’s Function Discretization

The form of the solutions (3) provides a natural basis to
discretize Problem (2). As demonstrated in [17], by using
basis functions {pn}N0

n=1 and {ρL(· − xn)}N
n=1 where the knot

xn lie on a uniform finite grid, we get the following discrete
optimization problem:

min
(a,b)∈RN+N0

�HρL a + Hpb − y�2
2 + λ�a�1 (4)

with system matrices HρL : R
N → R

M and Hp : R
N0 → R

M .
This problem is of the form (1), and can thus be solved
using off-the-shelf convex optimization algorithms. The major
asset of this approach is that the discrete problem is exactly
equivalent to the underlying continuous problem restricted to
the search space spanned by the basis functions. By making
the grid finer, this search space includes functions arbitrarily
close to solutions (3) of the full continuous-domain problem.
However, the Green’s function usually has infinite support (e.g.
ρD = �+), which makes the Green’s function basis ill-suited
for practical problems. In particular, Problem (4) is severely
ill-conditioned, making the convergence of solvers slow and
potentially numerically unstable.

C. Our Approach: B-Spline Discretization

We therefore propose to improve this discretization method
by using an equivalent dictionary basis consisting of shifted B-
splines, i.e., {βL(·−xn)}N0

n=1 where βL is the B-spline of L, and
the knots xn lie on a uniform finite grid. B-splines are popular
signal processing tools [18]–[20], notably due to their finite
support (e.g., βD = �[0,1]). This basis leads to the following
discrete optimization problem:

min
c∈RN

�HβL c − y�2
2 + λ�Lc�1 (5)

where L is a finite difference-like regularization matrix. This
problem is of the same form as standard discrete compressed
sensing-type problems (1), with the advantage that the chosen

basis is matched to the form of the continuous-domain solu-
tion (3). Moreover, Problem (5) shares the exact discretization
property of the Green’s function basis, since (setting aside
boundary issues) both bases are equivalent. However, the finite
support of the B-splines makes this basis better suited for prac-
tical applications, and it induces well-conditioned problems.
This leads to a rapid convergence of solvers for Problem (5),
a prediction which will be confirmed by our experimental
results.

D. Related Works

The key feature of our approach is that contrary to stan-
dard formulations, our discretization is exact in the contin-
uous domain. Other approaches stemming from [21] have
been undertaken in the litterature to solve continuous-domain
inverse problems involving the TV norm (or related norms,
e.g., atomic norms in [22]). For instance, Adcock and Hansen
have introduced the theory of infinite dimensional compressed
sensing [13], [23]. Most of the research effort in this domain
has been dedicated to formulating inverse problems in spaces
of measures (typically to recover sums of Dirac impulses) and
devising grid-free numerical algorithms to solve them, e.g.,
[11], [12], [14], [24]–[30]. These grid-free approaches aim to
recover the exact locations xk of the jumps at super-resolution,
using sophisticated algorithms based on duality. Although
this is a sensible objective when the reconstructed signals
consists of Dirac impulses, in our spline-based framework,
finding the exact locations of the jumps is less critical since
the reconstructed signals are smoother. We therefore take the
stance of using a grid and B-splines which leads to a simple
and effective algorithm, at the expense of (arbitrarily small)
localization errors on the jumps.

E. Outline and Contributions

In this paper, we focus on the widely-used class of ordinary
differential regularization operators L, which lead to expo-
nential B-splines [31]. To set the scene, we present some
background information on the continuous-domain inverse
problem framework of [15] (Section II) and exponential B-
splines (Section III). In terms of contribution, this paper
extends [17] and parts of our experimental pipeline are adapted
from this work. However, the use of B-splines is a critical
improvement which leads to the following contributions:

• In Section IV, we define the search space consisting of
L-splines with knots on a uniform grid and show that it
has an equivalent formulation in the B-spline basis;

• In Section V, we show that the continuous inverse
problem can be recast as a finite-dimensional problem
of the form (1) in an exact way. We also demonstrate
that the algorithm introduced in [17] can be adapted to
our framework, and that it yields sparse solutions (with
lower sparsity than in [17]);

• In Section VI, we prove that the optimal cost of the
discrete problem converges to that of the continuous
problem when the grid size goes to zero. We then use
this result to devise a multiresolution algorithm which
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refines the grid until the desired level of accuracy is met
(termination criterion);

• In Section VII, we demonstrate experimentally the effec-
tiveness of our algorithm using different measurement
types (ideal sampling in the spatial and Fourier domains).
We also show that it compares favorably with standard
purely discrete methods.

II. CONTINUOUS-DOMAIN INVERSE PROBLEM

In this section, we present a class of continuous-domain
inverse problems with gTV regularization. The solution sets
of such problems are described by a representer theorem
introduced in [15], which is the backbone of this paper.
We provide our reader the minimum knowledge required to
understand the framework of [15]. For more information,
we refer to the original article.

To introduce notations, we summarize the aim of our
inverse problem, which is to recover a certain continuous-
domain signal s : R → R given M noisy measurements
y = ν(s) + n ∈ R

M . The noiseless measurements ν(s)
are acquired through M linear measurement functionals ν =
(ν1, . . . , νM ), i.e., ν(s) = (�ν1, s�, . . . , �νM , s�) (�νm, s� stands
for the duality product, which is given by

�
R

νm(x)s(x)dx
when νm and s are ordinary functions). The νm functionals
constitute the (known) forward model. The measurements are
assumed to be corrupted by some additive noise n.

A. Definitions

Let S 	(R) be the space of tempered distributions, defined
as the dual of the Schwartz space S(R) of smooth and rapidly
decaying functions on R. A typical example of a tempered
distribution is the Dirac distribution δ, which is defined in
terms of its dual product with a test function φ ∈ S(R) by
�δ, φ� = φ(0).

The key element of our formulation is the regularization
operator L. Throughout this paper, we will focus on continuous
linear shift-invariant (LSI) operators L : S 	(R) → S 	(R). Such
an operator is equivalent to a convolution and is conveniently
represented by its frequency response �L(ω). In fact, a full
characterization in terms of frequency response is given by
Schwarz in [32, Ch. 7,§5]. In short, for any f ∈ S 	(R),
we can write F{L{ f }}(ω) = �L(ω) �f (ω) where ω 
→ �L(ω)
and its successive derivatives are smooth functions of slow
growth (i.e., bounded by a polynomial). Here, F denotes the
generalized Fourier transform and �f = F{ f }.

In order to be acceptable in our framework, L also needs
to be spline-admissible in the following sense.

Definition 1 (Spline-Admissible Operator). A continuous LSI
operator L : S 	(R) → S 	(R) is spline-admissible if it verifies
the following properties

• there exists a locally integrable function of slow growth
ρL : R → R (the Green’s function of L) which satisfies
L{ρL} = δ;

• its null space NL = { f ∈ S 	(R) : L{ f } = 0} has finite
dimension N0.

Note that Definition 1 is less general than that of [15]
and [33, Ch. 5], which include for example fractional oper-
ators or multi-dimensional operators such as the Laplacian.
The present restriction is justifiable by the fact that the latter
category of operators leads to B-splines with non-compact
support, which are less convenient for our purpose.

The prototypical example of a spline-admissible operator is
the derivative L = D, whose frequency response is �L(ω) = jω
and whose causal Green’s function is ρL = �+. However,
the Green’s function is non unique, since adding any element
of the null space NL (constant functions in this case) to a
Green’s function yields other valid Green’s functions.

Definition 2 (Non-Uniform L-Spline). Let L be a spline-
admissible operator in the sense of Definition 1. A non-uniform
L-spline is a function s : R 
→ R verifying

L{s}(x) =
�

k∈Z

a[k]δ(x − xk) (6)

where a[k] ∈ R is the amplitude of the k-th jump, and the xk ∈
R are the pairwise distinct knot locations. The distribution
w = �

k∈Z
a[k]δ(· − xk) is known as the innovation of the

spline.

It follows from Definition 2 that a non-uniform spline can
equivalently be defined as

s(x) = p(x) +
�

k∈Z

a[k]ρL(x − xk) (7)

where p ∈ NL. The ground truth signal in Figure 1 is an
example of a non-uniform spline for L = D (piecewise-
constant functions). The locations of the jumps correspond
to the xk , and their amplitudes are the a[k] coefficients.

Next, let M(R) ⊂ S 	(R) be the space of finite Radon
measures, which is known by the Riesz-Markov theorem
[34, Ch. 6] to be the continuous dual of C0(R). The latter is the
space of continuous functions vanishing at infinity, which is a
Banach space when equipped with the supremum norm �·�∞.
Its dual space M(R) is therefore a Banach space equipped
with the corresponding dual norm �·�M, which is defined for
w ∈ M(R) as

�w�M = sup
φ∈C0(R),�φ�∞=1

�w,φ�. (8)

The � · �M norm can be seen as a generalization of the L1
norm: for any f ∈ L1(R), we have � f �L1 = � f �M. Another
crucial property for our application is the inclusion of shifted
Dirac impulses in M(R), with �δ(· − x0)�M = 1.

Since the M norm is used for regularization purposes in
combination with L in our setting, we only consider func-
tions f such that �L{ f }�M is well defined. In all that follows,
we will therefore consider the following native space of L

ML(R) =
�

f ∈ S 	(R) : L{ f } ∈ M(R)
�
, (9)

which can be endowed with a Banach direct-sum topology
[15, Th. 5].

A crucial observation is that non-uniform L-splines as in (7)
are included in ML(R) when a ∈ �1(Z), since �L{s}�M =
��

k∈Z
a[k]δ(· − xk)�M = �a�1.
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B. Representer Theorem

Now that all the relevant concepts have been introduced,
we can state the representer theorem of [15] in an equivalent
form formulated in [17] and in the case of a quadratic data
fidelity cost function:

Theorem 1. (Continuous-Domain Representer Theorem).
Let L be a spline-admissible operator in the sense of
Definition 1, and let ν = (ν1, . . . , νM ) : ML(R) → R

M be a
weak∗-continuous linear measurement operator composed of
M ≥ N0 linear functionals νm : f 
→ νm( f ) ∈ R. Assume
that the intersection of the null spaces of L and ν is restricted
to {0}, i.e., Nν ∩NL = {0} (well-posedness assumption). Then
the linear inverse problem

S = arg min
f ∈ML(R)

�ν( f ) − y�2
2 + λ�L{ f }�M� 	
 �
J ( f )

(10)

has a non-empty weak∗-compact convex solution set S whose
extreme points are non-uniform L-splines (in the sense of
Definition 2) of the form

s(x) =
K�

k=1

akρL(x − xk) +
N0�

n=1

bn pn(x) (11)

where {pn}n=1,...,N0 form a basis of NL, ak, xk ∈ R, and the
sparsity index K verifies K ≤ M − N0.

The remarkable outcome of this theorem is that solutions of
a continuous-domain problem with infinitely many degrees of
freedom can be expressed with a small number K + N0 ≤ M
of coefficients. Moreover, the underlying infinite-dimensional
dictionary basis {ρL(· − τ )}τ∈R is fully determined by L and
is thus independent of the measurements. This result confirms
the sparsity-promoting effect of the L1 norm (as a particular
case of the � · �M norm), which is well-known in discrete
problems, but much less so in continuous ones. It also confirms
the usefulness of splines as bridges between the continuous
and discrete worlds.

The parametric form of the solutions given by Theorem 1
makes it tempting to recast the continuous-domain problem
into a discrete problem by feeding the parametric solution
of (11) into the optimization Problem (10) and optimizing
over the parameters ak , xk and bk . Although this optimization
problem is non-convex with respect to the knot locations
xk , this issue can be avoided by gridding. This amounts
to restricting the search space of the problem to the space
L-splines with knots on a uniform grid, which we properly
define in Section IV.

III. EXPONENTIAL SPLINES

For the sake of clarity, we restrict ourselves in all that
follows to the class of ordinary differential regularization
operators, which cover the vast majority of 1D real-world
applications. These lead to so-called exponential splines,
which have been studied extensively in [31]. In this section,
we introduce basic information on exponential splines.

A. Differential Operators

We focus on ordinary differential operators

L = DN0 + aN0−1DN0−1 + . . . + a0I (12)

where D and I are the derivative and identity operators
respectively. Let

P(X) = X N0 +
N0−1�

n=0

an Xn =
N0�

n=1

(X − αn)

be the polynomial function associated to L which has roots
α = (α1, . . . , αN0 ) ∈ C

N0 . We can thus refer to L as Lα.
Let α(1), . . . , α(Nd ) be the distinct roots of P with multiplicity
n(1), . . . , n(Nd ) (Nd ≤ N0). It is well known from linear system
theory that the null space of Lα is

Nα = span
�

x 
→ xneα(m)x
�

1≤m≤Nd , 0≤n≤n(m)−1
. (13)

For convenience, we characterize these operators in the Fourier
domain as

�Lα(w) =
N0�

n=1

(jw − αn). (14)

Among the possible Green’s functions of Lα , we select the
canonical solution

ρα(x) = F−1


1
�Lα(w)

�

(x). (15)

which is uniquely defined. For example, the Green’s function
of the elementary operator Lα = D − α I when Re(α) < 0 is

ρα(x) = �+(x)eαx . (16)

B. Exponential B-Splines

The exponential B-spline with knot spacing h > 0 of the
differential operator Lα is defined as

βα,h(x) = 1

hN0−1 F−1
 N0�

n=1

1 − eh(αn−jω)

jω − αn

�

(x). (17)

For example, the first-order exponential B-spline is

βα,h(x) = �[0,h](x)eαx, (18)

and is thus supported in [0, h]. For higher orders, βα,h is
supported in [0, N0 h] since it is proportional to the convolu-
tion of N0 first-order exponential B-splines. A simple Fourier
calculation yields the innovation of the exponential B-spline

L{βα,h}(x) = 1

hN0−1

N0�

k=0

dhα[k]δ(x − hk) (19)

where the sequence dhα is characterized by its z transform

Dhα(z) =
N0�

n=1

(1 − ehαn z−1), (20)

and thus has a finite support {0, . . . , N0}.
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IV. SPECIFICATION OF THE SEARCH SPACE

A. Green’s Function Representation

As explained earlier, in order to discretize the continuous-
domain problem, we restrict the search space to L-splines (7)
with knots on a uniform grid, i.e., xk ∈ hZ where h > 0 is the
step size of the grid. In the case of exponential splines (i.e.,
L = Lα), the search space with step size h is thus defined as

MLα,h(R) =


s = p +
�

k∈Z

a[k]ρα(· − kh) (21)

: a ∈ �1(Z), p ∈ Nα

�

⊂ MLα (R).

The choice of the search space MLα,h(R) is obviously
guided by Theorem 1, which states that Problem (10) has
L-splines solutions, although their knots are not on a uniform
grid. The search space therefore contains functions which are
close approximations of a solution when the grid size h is
small. A mathematical justification is given in Section VI-A.

B. B-Spline Representation and Conditioning

The key property of the search space MLα,h(R) is that
it has an alternative representation in the B-spline basis.
This is a fundamental property of cardinal (i.e., h = 1)
L-splines in general, including cardinal exponential splines
[31, Sec. III. C]. Here, we show the equivalence of these
bases for any h > 0 in our particular search space MLα,h(R).

Proposition 1. The search space MLα,h(R) can be repre-
sented in the B-spline basis as

MLα,h(R) =


s =
�

k∈Z

c[k]βα,h(· − kh) : c ∈ �1,hα(Z)

�

(22)

where βα,h is defined as in (17) and

�1,hα(Z) =
�
(c[k])k∈Z : (dhα ∗ c) ∈ �1(Z)

�
. (23)

The proof is given in Appendix A. The major contribution
of this paper is the use of the B-spline representation (22)
of MLα,h(R) throughout the discretization process, whereas
[17] uses the Green’s function representation (21). The point
of doing so is that contrary to the Green’s function, B-splines
have finite support; in fact, they are the members of MLα,h(R)
that have minimal support. This makes the B-spline basis close
to being orthogonal (it is a Riesz basis [31, Th. 1]), which leads
to Problem (5) being well-conditioned.

The conditioning of an inverse problem is a measure of
its numerical stability: a problem is well-conditioned if a
small perturbation of the signal coefficients leads to a small
perturbation of its measurements. When the basis functions
have limited support as in the B-spline case, it is clear that a
slight disturbance of the basis coefficients does not change the
signal - and thus its measurements - significantly. However,
this is not the case in the Green’s function case, since not
only do the basis functions have infinite support, but they
are often non vanishing or even increasing as one moves

away from the centers, e.g., x N0−1
+ for L = DN0 . Therefore,

a small perturbation of a basis coefficient greatly affects the
reconstructed signal everywhere. The measurements are thus
greatly impacted and the problem is severely ill-conditioned
[17], [35]. This intuition is confirmed in practice: we observe
that in identical settings (i.e., same regularization operator L,
measurement operator ν, regularization parameter λ and grid
size h), the relevant condition number is systematically greater
in Problem (4) than in Problem (5). For example, in the
experiment shown in Fig. 3, the condition number of the
matrix to be inverted is cond(HT

βL
HβL + λLT L) = 5.7 × 104

using the B-spline formulation, compared to cond(HT
ρL

HρL +
λI) = 1.5 × 1012 in the Green’s function case. This differ-
ence of conditioning largely justifies the use of the B-spline
representation of MLα,h(R) rather than its Green’s function
representation.

V. EXACT DISCRETIZATION IN MLα,h(R)

A. Discrete Problem Formulation

Let h > 0 and Lα be an ordinary differential operator.
In order to discretize Problem (10) in MLα,h(R), we use the
B-spline representation of s ∈ MLα,h(R) given in (22)

s(x) =
�

k∈Z

c[k]βα,h(x − kh) (24)

where c ∈ �1,hα(Z). Using (19), the sparsity of s in the Green’s
function basis is given by �dhα ∗ c�0, where � · �0 is the
�0 “norm” which counts the number of non-zero entries of
a sequence or vector. When we feed (24) into the continuous-
domain Problem (10), using (19) once again, we get the
following discretized optimization problem

Sh = arg min
c∈�1,hα(Z)

�
�
�
�

�

k∈Z

c[k]ν(βα,h(· − hk)) − y

�
�
�
�

2

2

+ λ

hN0−1 �dhα ∗ c�1, (25)

where the associated cost function is denoted by Jh :
�1,hα(Z) → R

+. By adapting [5, Lemma 20], it can be
shown that Sh is a non-empty weak∗-compact subset of
�1,hα(Z). Note that Problem (25) is exactly equivalent to
the continuous-domain Problem (10) restricted to the search
space MLα,h(R). This is the key feature of our formulation:
the standard approach to discretize an inverse problem is to
use an approximate discrete forward model as a surrogate
for a continuous model, which leads to discretization errors.
This is not the case of our method, in which the discrete
forward model is equal to the continuous one; the former
is simply restricted to the native space MLα,h(R). To the
best of our knowledge, aside from [17] of which this paper
is an extension, no other work in the literature discretizes
non-quadratic continuous-domain problems exactly by using
a dictionary.

B. Finite Problem

In real-world applications, the signal of interest usually has
a given finite support, which we can assume to be IT = [0, T ]
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without loss of generality. Hence, in all that follows, we can
assume that the measurement functionals νm , be they ordinary
function or distributions such as Dirac impulses, are supported
in IT . This assumption is completely inconsequential for
signals supported in IT , but it is necessary to express (25)
as a finite-dimensional problem. In this case, only a finite
number of B-spline coefficients affect the data fidelity term
in (25); we denote by I = {imin, . . . , imax} ⊂ Z the set of
their indices and N = # I . Assuming that T/h ∈ N, we have
imin = −N0 +1, imax = T/h −1 and thus N = T/h + N0 −1.
To make Problem (25) finite, we optimize over the N B-spline
coefficients in I , which are denoted by c ∈ R

N . By imposing
natural boundary conditions for the regularization term, we get
the following discrete finite-dimensional problem.

Sh = arg min
c∈RN

�Hc − y�2
2 + λ�Lc�1

� 	
 �
J (c)

(26)

where the system matrix H : R
N → R

M is

H = (himin , . . . , himax ) : hk = ν(βα,h(· − hk)) (27)

and the Toeplitz-like regularization matrix L : R
N → R

N−N0

is a finite section of the infinite-dimensional regularization
matrix in Problem (25), i.e.,

L = 1

hN0−1

⎛

⎜
⎜
⎜
⎜
⎝

dhα[N0] · · · dhα[0] 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 dhα[N0] · · · dhα[0]

⎞

⎟
⎟
⎟
⎟
⎠

.

(28)

Despite the seemingly arbitrary boundary conditions on
the regularization term (we are representing a convolution
involving an infinite sequence as a finite matrix multiplica-
tion), remarkably, thanks to the finite support assumption,
Problem (26) is exactly equivalent to the infinite Problem (25):

Proposition 2. Under the assumptions of Theorem 1 and
assuming that the νm functionals are supported in IT :

• We have ker H ∩ ker L = {0}, and the solution set Sh of
Problem (26) is a non-empty compact convex set;

• Problems (25) and (26) are equivalent, and there exists a
natural bijection between their solutions sets which maps
any sequence c∗ ∈ Sh ⊂ �1,hα(Z) to a vector c∗ ∈ Sh ⊂
R

N such that c∗|I = (c∗[imin], . . . , c∗[imax]) = c∗.

The proof of Proposition 2 is given in Appendix B. We refer
to Problem (26) as being well-posed due to the property
ker H ∩ ker L = {0}, which implies that its solution set
Sh is bounded, but not necessarily unique. Proposition 2
demonstrates that the finite Problem (26) is equivalent to the
continuous-domain Problem (10) restricted to the search space
MLα,h(R). This is quite a remarkable outcome: we are able to
solve an infinite continuous-domain problem in an exact way
as a standard discrete inverse problem with �1 regularization.
Once again, this is to the best of our knowledge a novelty,
which is this time not present in [17].

Despite the proven equivalence between problems
(25) and (26), one might wonder how to proceed in practice

to reconstruct the underlying continuous-domain signal s once
a solution c∗ ∈ Sh is reached. By Proposition 2, there exists
a unique sequence c∗ ∈ Sh such c∗|I = c∗. The following
observations, which are direct consequences of the proof of
Proposition 2, can be made concerning s:

• The continuous-domain reconstructed signal is s =�
k∈Z

c∗[k]βα,h(· − kh);
• The N B-spline coefficients c∗ are sufficient to recon-

struct s exactly in the interval of interest IT ;
• The sparsity of s in the Green’s function basis is given

by �Lc∗�0.

These observations indicate that all the relevant information
concerning the reconstructed signal s (i.e., its expression in
IT and sparsity) is directly encoded in the vector c∗ ∈ Sh

of Problem (26). Hence, computing the corresponding infinite
sequence c∗ ∈ Sh is unnecessary. In practice, the infinite
Problem (25) can thus be altogether forsaken in favor of the
computationally feasible finite Problem (26).

C. Reaching a Sparse Solution

In this section, we study the so-called Penalized Basis
Pursuit (PBP) problem formulated in (26)

Sh = arg min
c∈RN

�Hc − y�2
2 + λ�Lc�1 (29)

where the system and regularization matrices H and L are
defined in (27) and (28) respectively. This problem is close
to typical compressed sensing problems (L is a TV-like
regularization matrix), which have been studied at length in the
litterature [3], [5] and are known to yield sparse solutions in
a certain basis. The specificity of this problem lies in the fact
that L is not invertible. However, Theorem 1 strongly suggests
that (26) has sparse solutions, since it is a discretized version
of the continuous-domain problem. This instinct is confirmed
by the following representer theorem, the proof of which is
given in Appendix C.

Theorem 2 (Discrete Representer Theorem). Let 0 ≤ N0 ≤
M < N, H : R

N → R
M and L : R

N → R
N−N0 such that

ker H∩ker L = {0} and L is of full rank, i.e., ran L = N − N0.
Then the solution set S of the optimization problem

S = arg min
c∈RN

�Hc − y�2
2 + λ�Lc�1 (30)

is a compact convex set whose extreme points c∗ verify
�Lc∗�0 ≤ M − N0 .

Theorem 2 is a generalization of [5, Th. 6], since it allows
for more general regularization matrices (L must be right-
invertible). It is also similar to [16, Th. 2.4], but with a tighter
bound on the sparsity, and with an elementary proof using
only standard linear algebra. This result directly applies to
Problem (26), since ker H ∩ ker L = {0} by Proposition 2 and
L in (28) is of full rank. Remarkably, the bound on the sparsity
M−N0 is the same as for the continuous-domain Problem (32)
(Theorem 1), which confirms the close connection between
both problems. This is not the case in the Green’s function
formulation of [17], where the sparsity is bounded by M .
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Although Theorem 2 guarantees that Problem (26) has
sparse solutions, only the extreme points of Sh are known to
be sparse, and in general, Sh is non unique. Therefore, while a
solution of Problem (26) can readily be reached using standard
solvers such as ADMM, there is no guarantee that this solution
will be sparse. In fact, we will demonstrate experimentally
later on that, as observed with FISTA in [17], ADMM often
converges towards non-sparse solutions, i.e., vectors c∗ such
that �Lc∗�0 > M − N0. To circumvent this issue, we use
the following lemma, which is well known in the absence
of a regularization matrix [36, Lemma 1]. As it turns out,
the latter does not make it more challenging: an elementary
proof is given in Appendix D for the sake of completeness.

Lemma 1. Let H : R
N → R

M , L : R
N → R

P, y ∈ R
M

and λ > 0. We assume that the problem is well posed, i.e.,
ker H ∩ ker L = {0}. Then the solution set Sh of the PBP
Problem (26) is a compact convex set which has a unique
measurement yλ ∈ R

M such that ∀c ∈ Sh, Hc = yλ. Moreover,
for any two solutions c1, c2 ∈ Sh, we have

(Lc1)i × (Lc2)i ≥ 0 ∀i ∈ {1, . . . , P}. (31)

Note that in the case of Problem (26), as shown in
Proposition 2, we have ker H ∩ ker L = {0}, which implies
that Lemma 1 applies to our problem for P = N − N0.
Lemma 1 provides an indirect way of reaching an extreme
point of Sh : any solution c∗ ∈ Sh has a fixed measurement
Hc∗ = yλ. Therefore, Problem (26) can be recast as a
constrained optimization problem

arg min
c∈RN

�Lc�1 s.t . Hc = yλ, (32)

which clearly has the same solution set Sh , since the constraint
is satisfied for any c ∈ Sh . This constrained problem can,
in turn, be recast as a linear program by introducing the slack
variable u ∈ R

N−N0 :

SLP
h = arg min

(c,u)∈R2N−N0

N−N0�

i=1

ui s.t . (33)

u + Lc ≥ 0; u − Lc ≥ 0; Hc = yλ, (34)

where (c, u) is the concatenation of the vectors c ∈ R
N

and u ∈ R
N−N0 . The following proposition characterizes its

solution set SLP
h in terms of Sh :

Proposition 3. SLP
h is a compact convex set which has extreme

points (c∗, u∗) such that c∗ is an extreme point of Sh .

The proof is given in Appendix E. Proposition 3 allows
us to apply the well-known simplex or dual-simplex
algorithms [37], [38] to the linear program (33). These
algorithms are known to converge to an extreme point
(c∗, u∗) of the solution set SLP

h . Since c∗ is an extreme
point of Sh , Theorem 2 then ensures that it is a sparse
solution we are looking for. However, to run this linear
program, yλ needs to be known: hence, we must find a
solution (though not necessarily an extreme point) of the PBP
Problem (26) beforehand using ADMM or any other suitable
algorithm. This solution cADMM ∈ Sh is then used to compute
yλ = HcADMM, which is used in turn to run the simplex

algorithm. This procedure is adapted from [17], in which the
same idea is used in the Green’s function basis.

VI. REFINING THE GRID

In the previous sections, we have established an experi-
mental pipeline to solve the continuous-domain problem in
MLα,h(R) for a fixed grid size h. We now study the behavior
of the solutions when the grid size h decreases, and how they
relate to solutions of the full continuous-domain Problem (10).

A. Convergence of the Cost Function

We place ourselves in the conditions of Theorem 1,
which states that there exists at least one solution to the
continuous-domain Problem (10) of the form s(x) = p(x) +�K

k=1 akρα(x − xk). This solution does not a priori have knots
on a uniform grid, and is thus not included in MLα,h(R).
However, by picking h sufficiently small, it can be approached
arbitrarily closely by

sh(x) = p(x) +
K�

k=1

akρα(x − xh
k ) ∈ MLα,h(R), (35)

where xh
k ∈ hZ converges to xk .

The following lemma shows that sh is indeed a good
approximation of s in terms of cost:

Lemma 2. Let all the hypotheses of Theorem 1 be met for
a spline-admissible operator L. Then, there exists a family of
functions of the form sh = p+�K

k=1 akρL(·−xh
k ) ∈ ML,h(R)

where p ∈ NL, K ≤ M − N0 and xh
k ∈ hZ for any h > 0

such that

lim
h→0

J (sh) = min
f ∈ML(R)

J ( f ) = J 0. (36)

The proof is given in Appendix F. Note that Lemma 2
applies in the most general setting of Theorem 1 and is
therefore not limited to differential operators of the form (12).

Going back to exponential B-splines, let J 0
h =

minc∈�1,hα(Z) Jh(c) be the optimal cost of the discrete
Problem (25). We derive the following theorem, which stems
directly from Lemma 2 and is similar to [14, Lemma 8]:

Theorem 3. (Convergence of the Cost Function of the
Discrete Problem). Let all the hypotheses of Theorem 1 be
met, and Lα be an ordinary differential operator. Then

lim
h→0

J 0
h = J 0. (37)

Proof. Firstly, we observe that

J 0
h ≥ J 0 (38)

since for any c ∈ �1,hα(Z), we can define s(x) =�
k∈Z

c[k]βα,h(x − hk) ∈ MLα,h(R) which verifies Jh(c) =
J (s) ≥ J 0. Next, let sh be a family of functions for any
h > 0 as specified by Lemma 2. Since sh ∈ MLα,h(R),
by (22), sh can be expressed in the B-spline basis as sh(x) =�

k∈Z
c[k]βα,h(x − hk) where c ∈ �1,hα(Z). Therefore,

we have

J 0
h ≤ Jh(c) = J (sh)

h→0→ J 0

which together with (38) proves the desired result.
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This result can in fact be extended to any operator L which
has an admissible B-spline basis. Theorem 3 shows that the
choice of MLα,h(R) as a search space for the continuous-
domain problem is a sound one: by solving the discrete prob-
lem, we recover a solution which is arbitrarily close in terms
of cost to the solution(s) of the continuous problem if h is
sufficiently small. Moreover, note that there is no requirement
in Theorem 3 that the natural gridded approximation sh defined
in (35) is a solution of the discrete Problem (25): J 0

h might
actually be smaller than J (sh). We can therefore hope for a
faster convergence than that of J (sh) → J 0.

B. Multiresolution Strategy

Although Section V-C provides an experimental pipeline
to solve the continuous-domain problem in MLα,h(R) for
a fixed grid size h, the choice of the latter is somewhat
arbitrary. In practice, in order to choose the grid size, we use
the convergence results of Theorem 3. We recursively split
the grid in half by taking hi = T/2i for increasing values
of i ∈ N, and we solve the corresponding finite problems.
This way, the finest grid (highest value of i ) contains all its
coarser predecessors, which implies that the search spaces are
embedded, i.e., MLα,hi (R) ⊂ MLα,hi+1(R). This allows us to
use the solution obtained with the previous grid as a starting
point of ADMM, which leads to considerable time gains.
Another consequence of this embedding is that J 0

hi
≥ J 0

hi+1
,

which indicates that splitting the grid in half can only improve
the solution in terms of cost. Theorem 3 then guarantees
that limi→+∞ J 0

hi
= J 0. This gives us a natural stopping

criterion: we increment i until the relative decrease of cost
(J 0

hi−1
−J 0

hi
)/J 0

hi−1
is smaller than some tolerance parameter

�. When � is sufficiently small, we consider that the cost
function has converged and that there is no need to make the
grid any finer. Note that the simplex step is only necessary
for the final grid size. This complete procedure is detailed in
Algorithm 1.

Algorithm 1: Pseudocode of our algorithm
Input: ν, α, T , y, λ, imin, �
Output: c∗
i = imin; c = 0; costp = +∞; error = � + 1;
while error > � do

h = T/2i ;
update H, L ; // Depend on h, ν,α, T
c = ADMM(c↑2; H, L, y, λ);
error = |cost (c) − costp|/costp;
costp = cost (c);
i = i + 1;

end
yλ = Hc;
c∗ = Simplex(H, L, y, λ, yλ);

In Algorithm 1, ADMM(c↑2; H, L, y, λ) runs ADMM on
Problem (26) with the starting point c↑2. The latter corre-
sponds to the vector of B-spline coefficients c converted to
the current grid size, which is twice as fine as that of c.

Fig. 1. Reconstruction results for L = D, M = 15 (ideal sampling), grid
size h = 1

128 . Sparsity: 118 after ADMM, 13 after simplex.

Fig. 2. Reconstruction results for L = D(D − I), M = 15 measurements,
grid size h = 1

128 . Ideal sampling (−−): λ = 7.71 · 10−9, Sparsity= 13,
SNR= 13.76 dB; Fourier sampling (··): λ = 1.35 · 10−8, Sparsity= 12,
SNR= 24.04 dB; Dephased cosine sampling (−·): λ = 6.12 · 10−9,
Sparsity= 13, SNR= 24.90 dB.

This conversion is made possible by the embedding of the
search spaces. Similarly, Simplex(H, L, y, λ, yλ) runs the sim-
plex algorithm on the constrained Problem (33) (no starting
point is required). The output c∗ of this algorithm is therefore
a vector whose size is not predetermined, but which represents
a continuous-domain signal in IT that is sparse in the Green’s
function basis, and yields a cost close to J0.

VII. NUMERICAL EXPERIMENTS

We now discuss our implementation of Algorithm 1 and
present some results. The differential regularization opera-
tors that we consider in our experiments either have iden-
tical or unique poles. Our algorithms are implemented using
GlobalBioIm [39], an inverse problem library developed in our
group, as well as the Gurobi optimizer [40] for the simplex
algorithm.

A. Experimental Setting

1) Test Signal: We attempt to reconstruct sparse signals of
the form

s(x) =
Ks�

k=1

akρL(x − xk) +
N0�

n=1

bn pn(x), (39)

for which gTV regularization is an adequate prior by
Theorem 1. The sparsity index Ks is chosen by the user
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Fig. 3. Reconstruction results after simplex for L = D2, M = 31 (dephased cosine sampling) with decreasing h. (a) h = 1
4 . (b) h = 1

8 . (c) h = 1
16 .

and the knots xk are drawn at random in the interval of
interest IT following a uniform distribution. The coefficients
ak and bn are i.i.d Gaussian random variables projected on the
subspace of vectors (a, b) ∈ R

K+N0 for which s is supported
in IT . This is to enforce the finite support assumption on
the test signal, which is implicit in the discrete problem
formulation (26). Therefore, aside from the approximation
error on the knot locations, the test signal in (39) is in the
span of feasible signals reconstructed by the discrete problem,
which is obviously a desirable property.

2) Measurements: We implemented three types of measure-
ment operators ν:

• Ideal sampling: This case corresponds to a measurement
operator ν( f ) =

�
�δ(· − x1), f �, . . . , �δ(· − xM ), f �

�
=

�
f (x1), . . . , f (xM)

�
, where x ∈ (IT )M . Given the form

of NL in (13), it can be shown that ν satisfies the well-
posedness assumption Nν ∩NL = {0} as soon as M ≥ N0
and all sampling points xm are pairwise distinct. We either
take uniformly spaced knots or random samples following
a uniform distribution in IT for x.

• Fourier sampling: For an odd number of measurements
M , we define the measurement operator
ν( f ) =

�
�f|IT (0), Re( �f|IT (ω2)), Im( �f|IT (ω2)), . . . ,

Re( �f|IT (ω M+1
2

)), Im( �f|IT (ω M+1
2

)
�

where f|IT = f ×
�[0,T ] is f to which a rectangular window function on
the interval IT is applied. The sampling frequencies are
ω1 = 0 and ωm for 2 ≤ m ≤ M which are drawn
from a uniform distribution in (0, ωmax]. Since �s(0) ∈ R

when s is a real signal, there is no need to take the
real and imaginary parts; however, this is necessary for
non-zero frequencies in order to have real measurements.
The maximum frequency ωmax is chosen such that the
spectrum of s has small energy above this threshold.

• Inner product with dephased cosines: This type of mea-
surement is a variation of Fourier sampling: we take the
inner product with functions x 
→ cos(ωm x + θm) where
the θm are drawn from a uniform distribution in [0, π).
Compared to Fourier sampling where each sampling
frequency accounts for two measurements, this allows
for the sampling of a broader spectrum of frequencies:

ν( f ) =
�

�f|IT (0), �cos(ω2 x +θ2), f|IT �, . . . , �cos(ωM x +
θM ), f|IT �

�
, where as for Fourier sampling, ω1 = 0 and

ωm ∈ (0, ωmax] for m = {2, . . . , M}.
We compare experimental results using these measurement

operators, predicting that reconstructed signals should be
closer to the test signals when sampling in the Fourier domain
than with ideal sampling. This ensues from the theory of
compressed sensing: Fourier matrices are known to have good
recovery properties with few measurements [41], whereas
sampling matrices clearly do not. In order to be more realistic
and to verify the robustness of our algorithm, we add Gaussian
noise to the measurements with standard deviation σ computed
from a given Signal-to-Noise Ratio (SNR).

3) Regularization Parameter: The choice of the regulariza-
tion parameter λ is critical, as it greatly affects the recon-
structed signal: high values of λ can lead to overly regularized
solutions, whereas low values tend to suppress the effect of
regularization. The value of λ should be tuned according to
the type of measurement. To this end, in our experiments,
we choose a value of λ among a list of potential values such
that the SNR between the reconstructed signal and the test
signal is the highest for a certain value of h. The selected λ
is then used for all values of h, as specified in Algorithm 1.

B. Experimental Results

We now present several results of our numerical implemen-
tation.

1) Sparsity: In our experiments, we observe that, as pre-
dicted by Theorem 2, the final reconstructed signal has sparsity
K ≤ M − N0 in the Green’s function basis.

However, running the simplex after ADMM is far from
being superfluous: reconstructed signals after ADMM are
typically not sparse at all. This is best illustrated in the case of
ideal sampling, where we observe a staircase effect between
measurements (Fig. 1). Although this phenomenon does not
affect the cost function, it is clearly not optimal in terms of
sparsity, and it illustrates the non-uniqueness of Sh . However,
after the simplex step, the sparsity improves dramatically,
going from 118 to 13 ≤ M − N0 in Fig. 1, as predicted by
Theorem 2.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on September 01,2020 at 09:03:08 UTC from IEEE Xplore.  Restrictions apply. 



4466 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 7, JULY 2019

2) Measurement Types Comparison: Fig. 2 shows a typi-
cal example of reconstruction results after the simplex step
for all three measurement types, with an identical grid size
h = 1/128. The SNR values are computed with respect to
the test signal; they show that as predicted, reconstruction
results are much better in terms of SNR when sampling is
done in the Fourier domain. Indeed, for ideal sampling, when
there are no measurement points in the vicinity of a jump
(around x = 0.3 and x = 0.8 in Fig. 2), the reconstruction
result can vastly deviate from the test signal. On the other
hand, the reconstruction using Fourier and dephased cosine
samples is remarkably similar to the test signal, despite
the small number of measurements (M = 15) and a test
signal with comparatively high sparsity (Ks = 30). Note
that in all three cases, the reconstructed signals have sparsity
K ≤ M − N0 = 13 which conforms with Theorem 2.

3) Decreasing Grid Size: As the grid size decreases,
the search space of our optimization problem becomes larger:
we can therefore reconstruct functions in finer detail. This is
illustrated in Fig. 3, in which we observe that very coarse
grids approximate complex signals very poorly, whereas after
splitting the grid in half recursively, these signals can rapidly
be approximated much better (Fig. 3c).

To illustrate the effect of the decreasing grid size in terms
of cost, we present an example run of Algorithm 1 with a reg-
ularization operator L = D3 in Fig. 4. The final reconstructed
signal is shown in Fig. 4a: notwithstanding the reasonably fine
grid size (h = 1/28), the reconstruction is near-perfect. The
evolution of the cost function with respect to the grid size
in our example is shown in Fig. 4b: we observe that after
an initial rapid decrease, the cost function starts plateauing,
which is in line with Theorem 3. Given the aspect of this
evolution, it is safe to assert that the cost is very close to its
limit value J0 specified by Theorem 3. Although we could
consider tightening the tolerance � to get a marginally smaller
cost, this is not necessarily a sensible choice. Indeed, for very
fine grids (e.g., h < 1/211), the increased scale of the problem
can cause computational problems larger than the potential
gain in terms of cost. We found the choice of � = 10−3 to
be a good compromise in our experimental setting: the final
grid size h is typically coarser than 1/210, even for very non-
sparse test signals (Ks ≈ 100) and with many measurements
(M ≈ 100). For such grid sizes, due to the good conditioning
of the system matrix H, the optimization problems are entirely
feasible (ADMM typically converges in a few seconds with
a properly tuned penalty parameter ρ) and computational
problems are avoided.

In order to compare reconstruction results for different grid
sizes, we applied the simplex step as described in Sec. V-C for
every grid size h in our example. Despite the convergence of
the cost function for the finer grid sizes observed in Fig. 4b,
the variations in the sparsity (Fig. 4c) indicate that the recon-
structed signals are not identical from one grid size to the
next. However, in regard to the optimization problem, there
is no reason to decrease the grid size any further or to favor
one solution over another if both yield the same cost within a
user-defined tolerance.

Fig. 4. Example run for L = D3 (quadratic splines), M = 31 (dephased
cosine sampling). (a) Reconstructed signal (grid size h = 1

28 ). (b) Evolution
of the cost of the reconstructed signal. (c) Evolution of the sparsity index of
the reconstructed signal.

C. Comparison With Discrete Methods

In this section, we assess the pertinence of our framework
by comparing it with a purely discrete method. The standard
way of discretizing Problem (10) would be to consider uniform
samples of the reconstructed function, i.e., a pixel basis, and
to approximate derivative operators with finite differences.
Within this framework, the underlying discrete optimization
problem of the form (26) is very similar for both methods.
Indeed, in both cases, the regularization matrix L is a finite
difference-type matrix as in (28). However, since the basis
functions are different, the number of coefficients N and the
system matrix H differ. We solve both problems using our
pipeline described in V-C.
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Fig. 5. Comparisons between our continuous model and the pixel-based
discrete model for L = D4, M = 100 (dephased cosine sampling).
(a) Reconstructed signals (grid size h = 1

16 ). (b) Evolution of the SNR with
respect to the test signal.

We consider noiseless Fourier-domain measurements
(dephased cosine sampling) with M = 100. As explained
earlier, this bolsters the recovery properties of the reconstruc-
tion, and thus allows us to use similarity metrics between the
reconstructed and test signals to compare both methods.

Such a comparison is made in Figure 5, with L = D4

and λ = 10−15. For the sake of fairness, we use a piecewise
linear test signal, since the latter does not resemble the basis
functions of either method. Figure 5a shows the reconstruc-
tion result, using a coarse grid for visualization purposes.
Our continuous-domain reconstruction is clearly a lot closer
to the test signal; this observation is confirmed by looking at
the SNR of both reconstructions in Figure 5b. We notice that
the SNR is similar for both methods using finer grids: this is
in keeping with [42], which demonstrates some form of con-
vergence of discrete methods towards solutions of continuous-
domain problems as the grid size goes to zero. However, our
continuous-domain method converges much faster (i.e., for
coarser grids) towards a very faithful reconstruction.

Note that the observed linear regime of the blue curve
in Fig. 5b is consistent with the approximation power of
pixels, which is well known to be in O(h). Moreover, using
finite differences instead of the derivative yields additional
errors which increase with the order N0 of the operator
and when the grid gets coarser. Conversely, our method is
exact in the continuous domain for any grid size, which
explains why a grid of h = 1/25 can be sufficiently fine.

Finally, note that although the discrete method leads to a
slightly better-conditioned problem, the difference in speed
is negligible due to the Riesz basis property of exponential
B-splines.

VIII. CONCLUSION

In this paper, we have devised an efficient multiresolu-
tion algorithm to compute sparse solutions of continuous-
domain inverse problems with gTV regularization numerically.
Our grid-based discretization uses the B-spline dictionary
basis matched to the operator L. On the theoretical side,
we proved that this is an exact discretization of the under-
lying continuous-domain problem restricted to a search space,
and that this discrete problem converges in terms of cost
towards the continuous problem when the grid size decreases.
On the experimental side, we implemented this discretization
scheme for ordinary differential regularization operators L,
and several different measurement operators. Our experimental
results demonstrate that our formulation is computationally
inexpensive, well suited for practical problems and compares
favorably to standard, purely discrete methods.

APPENDIX

A. Proof of Proposition 1

We first prove the inverse inclusion c ∈ �1,hα(Z) ⇒ s =�
k∈Z

c[k]βα,h(· − kh) ∈ MLα,h(R). The innovation (19)
of the exponential B-spline shows that the latter is indeed
an L-spline in the sense of Definition 2. Next, a simple
calculation using (19) yields a = 1

hN0−1 (dhα ∗ c) ∈ �1(Z),
which implies that s ∈ MLα,h(R).

We now show the direct inclusion, i.e., that MLα,h(R) is
spanned by B-splines. It can be shown [31, eq. (22)] that there
exists a unique sequence phα that is an inverse of dhα for the
discrete convolution product and verifies

ρα(x) = hN0−1
�

k∈Z

phα[k]βα,h(x − hk). (40)

This sequence phα is slowly growing with the same growth
rate n0 as ρα , meaning that phα[k]/|k + 1|n0 is a bounded
sequence. Next, the proof that Nα is spanned by the cardinal
B-spline basis is given in [31, Sec. III., C., 2)]. Both these
properties are given for cardinal B-splines (i.e., h = 1), and
they can be adapted without difficulty for B-splines with knots
spacing h. There only remains to prove that the sequence c
of B-spline coefficients of s = p + �

k∈Z
a[k]ρα(· − kh) ∈

MLα,h(R) (i.e., a ∈ �1(Z)) is in �1,hα(Z). A simple calcula-
tion yields c = hN0−1(phα ∗ a), which is clearly well defined
when a ∈ S(Z) (the space of rapidly-decreasing sequences)
since phα is slowly growing. Next, S(Z) is dense in �1(Z),
which allows us to extend this definition to any a ∈ �1(Z) by
continuity [5, Th. 16]. We thus have dhα ∗ c = a ∈ �1(Z).
Finally, for elements of Nα , the sequence c of B-spline
coefficients verifies dhα ∗ c = 0 ∈ �1(Z). This proves the
direct inclusion and thus the desired result.
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B. Proof of Proposition 2

The second item of Proposition 2 entails the existence of
bijective linear map θ : Sh → Sh such that θ(c∗)|I = c∗ for
any c∗ ∈ Sh . In order to construct this mapping, we rely on
the following lemma:

Lemma 3. Assume that the νm (1 ≤ m ≤ M) functionals are
supported in IT . Then solutions c∗ ∈ Sh of Problem (25) are
uniquely determined by their N coefficients c∗|I .

Proof. Let c∗ ∈ Sh be a solution of the discrete Problem (25).
Consider a sequence c such that c|I = c∗|I and whose
remaining coefficients are free. The latter do not affect the data
fidelity term due to the finite support assumption on the νm .
When N > N0, c[imax + 1] can be uniquely chosen such that
(dhα∗c)[imax+1] = �N0

k=0 dhα[k]c[imax−k+1] = 0. Similarly,
all c[k] coefficients for k > imax can be uniquely determined
recursively to nullify (dhα ∗ c)[k] as a linear combination
of the N0 − 1 previous coefficients. The same can be done
for coefficients c[k] with k ≤ 0, using this time the N0 − 1
following coefficients of c. By construction, this sequence c
yields a regularization cost smaller or equal to that of c∗,
and since both yield the same data fidelity cost, we have
Jh(c) ≤ Jh(c∗). Since c∗ is a solution of (25) and the
construction of c is unique, we necessarily have c = c∗.

The proof of Lemma 3 details the construction of an
injective linear map θ̃ : R

N → �1,hα(Z) such that for any c ∈
R

N , θ̃ (c)|I = c. Let c ∈ R
N , and consider the corresponding

sequence θ̃ (c) ∈ �1,hα(Z). Following the proof of Lemma 3,
Jh(θ̃(c)) can be computed using only the N coefficients c.
Indeed, all other coefficients (θ̃ (c)[k])k �∈I do not affect the data
fidelity term and cancel out all the regularization terms which
they affect. This implies that Jh(θ̃ (c)) = Jh(c) = �Hc −
y�2

2 +λ�Lc�1, where H and L are defined as in (27) and (28)
respectively. Since by Lemma 3, Sh ⊂ θ̃ (RN ), problems (25)
and (26) are equivalent in the sense that θ̃ (Sh) = Sh , and the
restriction θ = θ̃ |Sh : Sh → Sh is a bijective linear map.

Concerning the first item of Proposition 2, let c ∈
ker H ∩ ker L, the corresponding signal s verifies s =�

k∈Z
θ̃ (c)[k]βα,h(· − kh) ∈ Nν ∩ Nα = {0} (well-posedness

assumption in Theorem 1), which implies that c = 0. Hence,
ker H ∩ ker L = {0}, which implies that Problem (26) is well-
posed and thus that its solution set Sh is a non-empty compact
set. The latter is also convex due to the convexity of the cost
function Jh .

C. Proof of Theorem 2

Let J : c 
→ �Hc − y�2
2 + λ�Lc�1. Since J is continuous

and coercive due to the well-posedness assumption ker H ∩
ker L = {0}, S is a non-empty, closed compact set. Therefore,
by the Krein-Milman theorem, it is the closed convex hull of
its extreme points.

Let c∗ be an extreme point of S. Assume by contradiction
that Lc∗ has sparsity K > M − N0, i.e. Lc∗ = �K

k=1 ank enk

where the nk ∈ {1, . . . , N} are distinct, ank �= 0 and {ei }N−N0
i=1

is the canonical basis of R
N−N0 . Consider the vector space

T = ran L ∩ span{enk }K
k=1. To find a lower bound on the

dimension of T , we use the relation

dim (X ∩ Y ) = dim X + dim Y − dim (X + Y )

≥ dim X + dim Y − P, (41)

where X and Y are vector subspaces of R
P . Since the rank

of L is N − N0, for X = ran L and Y = {enk }K
k=1, (41) yields

R = dim T ≥ K > M − N0 (with P = N − N0). Let {tr }R
r=1

be a basis of T . By definition of T , there exist vectors gr and
coefficients tr

k ∈ R such that tr = Lgr = �K
k=1 tr

k enk .
Next, we define yr = Hgr ∈ R

M for all r ∈ {1, . . . , R},
and zn = Hpn ∈ R

M for all n ∈ {1, . . . , N0} where
{pn}N0

n=1 is a basis of ker L. The collection of vectors
{y1, . . . , yR, z1, . . . , zN0 } has R + N0 ≥ K + N0 > M
elements, and is thus linearly dependent. Therefore, there exist
coefficients αr , βn ∈ R such that

�R
r=1 αr yr +�N0

n=1 βnzn = 0
and (α,β) �= 0. We then define c0 = �R

r=1 αr gr +
�N0

n=1 βnpn ∈ R
N , which is clearly in ker H. Assume by

contradiction Lc0 = �R
r=1 αr tr = 0. We thus have c0 ∈

ker H ∩ ker L = {0}. Moreover, since the tr are linearly
independent, we have α = 0, and thus c0 = �N0

n=1 βnpn = 0.
Yet the pn are also linearly independant, which means that
β = 0, which contradicts (α,β) �= 0. Therefore, we have
Lc0 �= 0, which implies that c0 �= 0.

Finally, we pick an � > 0 such that

� <
mink ank

maxk | �R
r=1 αr tr

k | . (42)

Note that � is well defined since for all k, ank > 0 and�R
r=1 αr tr

k = 0 for all k would imply that Lc0 = �R
r=1 αr tr =

�K
k=1

��R
r=1 αr tr

k

�
enk = 0, which we have proved to be

false. We can then compute:

�L(c∗ ± �c0)�1 = �
K�

k=1

�

ank ± �

R�

r=1

αr tr
k

�

enk �1

=
K�

k=1

�

ank ± �

R�

r=1

αr tr
k

�

= �Lc∗�1 ± �

K�

k=1

R�

r=1

αr tr
k

since by definition of �, ank ± �
��R

r=1 αr tr
k

�
> 0 for all k.

Notice that both vectors (c∗ ±�c0) yield the same data fidelity
cost as c∗ in Problem (26): indeed, H(c∗ ± �c0) = Hc∗ since
c0 ∈ ker H. Therefore, if

�K
k=1

�R
r=1 αr tr

k �= 0, then either
(c∗ + �c0) or (c∗ − �c0) yields a cost strictly smaller than
that of c∗ in Problem (26), which is impossible since c∗ is a
solution of the latter. Consequently,

�K
k=1

�R
r=1 αr sr

k = 0 and
so (c∗±�c0) ∈ S. Yet c∗ = 1

2 (c∗+�c0)+ 1
2 (c∗−�c0), and since

�c0 �= 0, c∗ is not an extreme point of S, which contradicts our
initial assumption. This proves the desired result K ≤ M−N0.

D. Proof of Lemma 1

Due to the well-posedness assumption, the cost function J
is coercive and since it is continuous, Sh is non-empty and
bounded. Let c1, c2 ∈ Sh be two (possibly identical) solutions.
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We have J (c1) = J (c2) = J0, and for any α ∈ [0, 1],
we define cα = αc1 + (1 − α)c2. The convexity of J yields
J (cα) ≤ αJ (c1) + (1 − α)J (c2) = J0. Yet, since J0 is
the minimum of the cost function J , we have J (cα) = J0,
which implies that cα ∈ Sh and thus that Sh is a convex set.
Another implication is that the convexity inequality is in fact
an equality. For the data fidelity term, the strict convexity of
the squared �2 norm implies that Hc1−y = Hc2−y ⇔ Hc1 =
Hc2 = yλ.

The second property (31) results from the case of equality in
the triangular inequality of the �1 norm: we have �Lcα�1 =
α�Lc1�1 + (1 − α)�Lc2�1. Each coordinate can be treated
separately, yielding

| (Lcα)i | = α|(Lc1)i | + (1 − α)|(Lc2)i |
⇔(Lc1)i × (Lc2)i ≥ 0 ∀i ∈ {1, . . . , P}.

E. Proof of Proposition 3

We prove the following statement, which is stronger than
that of Proposition 3:
SLP

h is a compact convex set, and Sh and SLP
h have cor-

responding extreme points through the one-to-one mapping
φ : Sh → SLP

h defined by φ(c) = (c, |Lc|) and its inverse
φ−1 : SLP

h → Sh defined by φ−1((c, u)) = c.

Proof. Let us first observe that SLP
h is of the form

SLP
h = {(c, |Lc|) ∈ R

2N−N0 , c ∈ R
N }, where |x| is the vector

of component-wise absolute values of x. This implies that
{c ∈ R

N , (c, |Lc|) ∈ SLP
h } is the solution set of the constrained

optimization Problem (32), which is equal to Sh . Therefore,
we have proved that Sh = {c ∈ R

N , (c, |Lc|) ∈ SLP
h }, and

thus that SLP
h = {(c, |Lc|) ∈ R

2N−N0 , c ∈ Sh}. Hence, SLP
h

is a non-empty compact set as the continuous image of the
non-empty compact set Sh through φ. Moreover, SLP

h is
convex as the solution set of a linear program.

Next, (31) in Lemma 1 implies that φ : Sh → SLP
h is a linear

map. Moreover, φ is invertible and its inverse φ−1 : SLP
h → Sh

is also linear. The desired result immediately follows.

F. Proof of Lemma 2

We first recap some useful properties of ML(R) given
in [15]. Let (φ, p) be a biorthogonal system for NL in the
sense of [15, Definition 3]. Therefore, p = (p1, . . . , pN0)
is a basis of NL and φ = (φ1, . . . , φN0 ) is a basis of N 	

L
the dual space of NL. Referring to Part 2 of [15, Th. 5],
any element f ∈ ML(R) has a unique representation as
f = L−1

φ {w}+q where w ∈ M(R) and q ∈ NL. The operator

L−1
φ is specified by [15, Th. 4] and is a right inverse of L

such that φ(L−1
φ {w}) = 0 for any w ∈ M(R). Next, by [15,

Th. 6], the predual of ML(R) is CL(R) = CL,p(R) ⊕ N 	
L,

where CL,p(R) = L∗{C0(R)}, L∗ being the adjoint operator
of L and C0(R) the set of continuous functions which vanish
at infinity. Finally, we remind our reader that given a space A
with predual B (i.e., B	 = A), the sequence (ak)k∈N where
ak ∈ A converges towards a ∈ A for the weak∗ topology if
∀b ∈ B, limk→∞�ak, b� = �a, b�.

By Theorem 1, there exists a solution s to Problem (10) such
that L{s} = �K

k=1 akδ(· − xk) where K ≤ M − N0 and all xk

are pairwise distinct. As stated earlier, s can be represented as
s = L−1

φ {w} + p where w = �K
k=1 akδ(· − xk) and p ∈ NL.

We thus have J (s) = J0 = �ν(s) − y�2
2 + λ�a�1. For a given

h > 0, let xh
k ∈ hZ be the grid element closest to xk for all

k ∈ {1, . . . , K }, i.e., |xk − xh
k | ≤ h

2 . For small enough values
of h, all xh

k are pairwise distinct; we place ourselves in this
configuration. We then define sh = p+�K

k=1 akL−1
φ {δ(·−xh

k )},
which is in ML,h(R) since it can also be written sh = q +�K

k=1 akρL(· − xh
k ) where q ∈ NL. It yields a cost J (sh) =

�ν(sh) − y�2
2 + λ�a�1 since the xh

k are pairwise distinct.
Hence, there only remains to prove that ν(sh) converges

to ν(s) when h → 0. We now show that sh → s for the
weak∗ topology when h → 0; i.e., �sh , f � → �s, f � for
any f ∈ CL(R). Let f = f1 + f2 ∈ CL(R) be the unique
representation of f such that f1 ∈ CL,p(R) and f2 ∈ N 	

L.
We first notice that φ(s − sh) = 0 since φ(L−1

φ {w}) = 0 for

any w ∈ M(R). Therefore, since f2 ∈ span{φn}N0
n=1 we have

�s − sh, f2� = 0. Next, by definition of CL,p(R), ∃g ∈ C0(R)
such that f1 = L∗{g}. We thus have

�s − sh , f1� = �s − sh , L∗{g}�
= �L{s − sh}, g�

=
K�

k=1

ak�δ(· − xk) − δ(· − xh
k ), g�

=
K�

k=1

ak(g(xk) − g(xh
k )).

Moreover, from the definition of C0(R), g is continuous,
and since limh→0 xh

k = xk , we have limh→0�s − sh, f1� = 0.
We have thus proved that sh converges to s for the
weak∗ topology. Since ν is weak∗-continuous, we have
limh→0 ν(sh) = ν(s) and thus limh→0 J (sh) = J (s).
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