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Abstract—While restoration methods have been extensively
studied in ultrasound (US) imaging, only few recent works have
focused on modeling and understanding the blur from a physi-
cal point of view even in simple configurations, such as lossless
homogeneous media. Despite a highly nonstationary blur due to
diffraction effects, many techniques rely on simplistic approxima-
tions based on shift-invariant models or sectional methods and
their efficiency has not been demonstrated for plane-wave (PW)
and diverging-wave (DW) imaging. In this paper, we first pro-
pose a physical model of nonstationary blur in the context of PW
and DW imaging. The blur operation is expressed as a composi-
tion of a U.S. propagation operator and a delay-and-sum operator,
each of which has derived in previous works. We show that such
a composition leads to a standard model of nonstationary blur
as a Fredholm integral of the first kind. Second, we describe an
approximation of the blur in the discrete domain based on the
above decomposition coupled with an appropriate discretization
of the latent element-raw-data space. We show theoretically and
empirically that its evaluation, using such an approximation, scales
linearly instead of quadratically with respect to the grid size, better
than shift-invariant approaches. Through simulations and in vivo
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experimental data, we demonstrate that using the proposed model
in the context of maximum-a-posteriori image restoration results
in a higher image quality than using state-of-the-art shift-invariant
models.

Index Terms—Nonstationary blur, restoration, ultrasound
imaging.

I. INTRODUCTION

U LTRASOUND (US) imaging is a widely used medical
imaging modality due to its non-invasiveness, relative

low-cost and real time capability. By appropriately placing a US
probe, usually composed of an array of piezoelectric transducer
elements, a medical doctor is able to visualize cross-section
images of regions of interest in the body.

The US imaging process exploits the transducer elements for
both transmitting acoustic pulses and recording the response of
the medium to these pulses as echo signals. The set of these sig-
nals is related to the spatial distribution of variations in acoustic
impedance, i.e. in medium density and sound velocity, denoted
as the tissue reflectivity function (TRF), by a US propagation
operator. Due to the finite aperture of the probe and the bandpass
properties of each transducer element, retrieving the TRF from
the echo signals is an ill-posed problem. In standard US imaging,
the delay-and-sum (DAS) operator is used as an approximate ad-
joint of the propagation operator. Such an approximation leads
to a radio-frequency (RF) image, a blurred estimate of the TRF.
The point spread function (PSF) is introduced to relate these
quantities. Because of the wave propagation and diffraction ef-
fects in the medium, the blur is spatially varying, as can be seen
in Fig. 1.

While the principles of the propagation of US waves in a ho-
mogeneous and lossless medium have been known for more than
a century, only few recent studies have focused on understand-
ing the PSF from a physical point of view [1], [2]. In the vast
majority of studies, the PSF is estimated in a preliminary step
either through in vitro measurements or by simulation [3]–[7].
Other approaches estimate directly the PSF on the RF image
in a first stage and then use the estimated PSF to perform the
restoration. In these cases, the PSF estimation is typically per-
formed using homomorphic filtering of the cepstrum [8]–[10],
generalized homomorphic filtering [11], [12], inverse filter-
ing [13]–[17] and power spectrum equalization [18]. Alterna-
tively, blind deconvolution methods, where the PSF and the TRF
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Fig. 1. An example of a TRF (a) and the corresponding demodulated RF
image (b) obtained with the DAS operator. We clearly see the spatially varying
blur induced by classical US imaging system.

are jointly estimated, have been very popular recently with the
development of regularization approaches. Such methods in-
volve either parametric [19]–[21] or non-parametric [6], [22]
models of the PSF.

In addition, evaluating the non-stationary blur, assumed lin-
ear, for image restoration purpose requires to perform matrix-
vector products with large matrices (around 1010 coefficients
for 2D US images) which is very challenging with standard
numerical tools.

Such a problem is standard in shift-variant deblurring and
many simplification strategies have been developed in the
literature. Most of them are based on the assumption that
non-stationary blur can be approximated by a relatively low
number of basis filters. The evaluation of the blur is then
performed as a weighted sum of convolutions with the basis
filters [23]. (See [24] for an exhaustive description of such
methods.)

In this group of techniques, sectional methods are probably
the most popular ones [25]–[29]. In such approaches, the image
is divided into sub-regions where the blur is considered station-
ary. Then, by appropriately masking the image, shift-invariant
convolutions are applied in each sub-region independently form-
ing different sub-images that are interpolated to form the blurred
image. In this case, the basis filters correspond to blur kernels.
Other techniques rely on low-rank approximations of the non-
stationary blur where the basis filters are the corresponding
eigenvectors [24], [30], [31].

Alternatively, several recent works propose to approximate
the blur with an operator that has desirable properties, e.g. di-
agonalizability [32] or sparsity [33], [34] in given frames.

In the context of US imaging, the most advanced techniques
achieve shift-variant restoration using sectional methods [11],
[29], [35] which assume lateral stationarity of the blur, suited to
the case of US imaging with focused waves. These approaches
are evidently not valid in plane-wave (PW) and diverging-
wave (DW) imaging where the diffraction effects are substantial,
as displayed in Fig. 1.

In this work, we propose the following contributions:
� We describe a novel model of non-stationary blur in US

imaging with PW and DW insonifications. We show that
the model can be expressed as a composition of a US
propagation operator [2], [36] and a DAS operator, each

of which described in previous works [37], [38]. We
also relate the proposed model with the one detailed by
Roquette et al. [1].

� We propose an approximation of non-stationary blur for
image restoration which exploits the above introduced de-
composition coupled with an appropriate discretization of
the latent element-raw-data space. We demonstrate that its
evaluation, based on efficient formulations of the discrete
operators [37], scales linearly rather than quadratically,
with the size of the grid, in a better way than shift-invariant
blur evaluation methods.

� We show an example application of US image restora-
tion. More precisely, we use the proposed model in a
maximum-a-posteriori (MAP) estimation algorithm, with
a generalized Gaussian distribution (GGD) prior for the
TRF [6], [12]. We test the method on an extensive number
of experiments, namely a numerical phantom of point re-
flectors, a numerical calibration phantom and two in vivo
carotids, for both DW and PW imaging. We demonstrate
that the proposed restoration method leads to an improve-
ment of the lateral and axial resolution, compared to meth-
ods based on state-of-the-art shift-invariant models of the
blur, on both the point-reflector and the calibration phan-
toms and provides a higher contrast and visual quality on in
vivo carotid images. All the experiments presented in the
paper are reproducible and supporting code is available
at https://github.com/LTS5/us-non-stationary-deconv.

The remainder of the paper is organized as follows. Section II
introduces the model of non-stationary blur and Section III de-
scribes the proposed evaluation strategy in the discrete domain.
Experimental settings are described in Section IV and results
are reported and discussed in Section V. Concluding remarks
are given in Section VI.

II. MATHEMATICAL MODELING OF THE NON-STATIONARY

BLUR AT THE CONTINUOUS LEVEL

In this section, we describe a mathematical model of the
non-stationary blur and propose formulations of the associated
operators at the continuous level.

A. Notation

In the paper, we denote by L2 (Ω) the Hilbert space of the
square integrable functions which take values in a space Ω.
In addition, for f, g ∈ L2 (Ω), we denote their inner product as
〈f, g〉L2 (Ω) and their convolution as f ∗ g. The adjoint of a linear

operator H : L2 (Ω1)→ L2 (Ω2) is given by H† : L2 (Ω2)→
L2 (Ω1). (See Chapter 2 of [39] for a review on linear operators.)

The Hermitian transpose of a matrix X ∈ RM×N is denoted
by X† and the transpose by X�. X•J is the sub-matrix formed
by the restriction of X to the columns indexed by the set
J ⊂ {1, . . . , n}. The Hadamard product between X and Y is
denoted by X ◦ Y .

Given a vector a ∈ RN and a positive real p ∈ R+ , we define

its p-norm as ‖a‖p = p

√∑N
i=1 |ai |p .
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Fig. 2. Standard 2D US imaging configuration (adapted from [37]).

B. Proposed Model of the Non-Stationary Blur in
Ultrasound Imaging

In a standard 2D pulse-echo US imaging configuration, de-
scribed in Fig. 2, an array of transducer elements is used to prop-
agate an acoustic wave in a medium Ω ⊂ R2 which contains
inhomogeneities as local fluctuations in acoustic impedance,
defining the TRF γ ∈ L2 (Ω) [11], [37], [40]. Depending on
the desired transmit wavefront, e.g. PW, DW, focused-wave or
synthetic-aperture approaches, each transducer element starts to
transmit after a given delay defined by an inter-element delay
profile.

In a receive phase, a set of transducer elements, located at
{pi}Ne l

i=1 , pi ∈ R2 , detect echo signals mi (t), t ∈ [0, T ], defin-
ing the following measurements

m(t) := [m1 (t) , . . . , mNe l
(t)] ∈ L2 ([0, T ])Ne l , (1)

where L2 ([0, T ])Ne l := L2 ([0, T ])× · · · × L2 ([0, T ]).
1) Ultrasound Propagation Operator: The measurements

m(t) are related to the TRF γ by the propagation of the US wave
during the time interval [0, T ]. It can be demonstrated using the
first order Born approximation that a linear operator H : γ �→ m,
called the US propagation operator, relates the TRF to the mea-
surements [36]–[38]. The proposed physical modeling of wave
propagation is based on the pulse-echo spatio-temporal impulse
response model introduced by Stepanishen [41]. Furthermore,
the effect of the transducer element surface is approximated by a
directivity function using a far-field assumption [42]. Under this
approximation, we can express the element-raw data received
by the i-th transducer element as

mi (t) =
∫

r∈Ω
o (pi , r) vpe (t− τ (r,pi)) γ (r) dr, (2)

where o (pi , r) accounts for the spatial directivity and de-
cay of the reflected wave and vpe (t) is the pulse-echo wave-
form [43] which depends on the transducer impulse response and
the excitation signal. The round trip time-of-flight τ (r,pi) is

defined as

τ (r,pi) = tT x (r) + tRx (r,pi) , (3)

where tRx (r,pi) = ‖r − pi‖2 /c denotes the propagation de-
lay on receive and tT x (r) is the propagation delay on transmit,
supposed to be independent from the location of the emitters
assuming a planar wavefront in PW imaging [44] or a spherical
wavefront in DW imaging [45].

Equation (2) can be compactly expressed in terms of a linear
integral operator acting on the TRF γ ∈ L2(Ω) and outputting
the measurements

m(t) = H {γ} (t) , (4)

where H : L2 (Ω)→ L2 ([0, T ])Ne l is an operator whose i-th
component is given by

(H {γ})i (t) =
∫

r∈Ω
o (pi , r) vpe (t− τ (r,pi)) γ (r) dr.

(5)
2) Delay-and-Sum Operator: Starting from the measure-

ments m (t), standard US image reconstruction exploits the
well-known delay-and-sum (DAS) algorithm for computing the
following RF image:

γ̂ (r) =
Ne l∑
i=1

a (pi , r) mi (τ (r,pi)) (6)

where a (pi , r) accounts for the aperture-apodization weights,
commonly applied to reduce the sidelobe levels. The intuition
behind DAS is rather simple. In order to estimate the TRF at
location r, we sum the echo signals originating from this point
and reaching the transducer elements at each given time-of-
flight. Reformulating DAS in terms of a linear integral operator
acting on m(t) ∈ L2([0, T ])Ne l is also straightforward,

γ̂ (r) =
∫ T

0

Ne l∑
i=1

a (pi , r) δ(t− τ (r,pi))mi (t) dt

= D {m} (r) , (7)

where D : L2([0, T ])Ne l → L2 (Ω).
3) Proposed Model of the Non-Stationary Blur: Based on

the US propagation and DAS operators previously described,
we define our model of non-stationary blur as a mapping from
the TRF to the RF image given by [1]

K : L2 (Ω)→ L2 (Ω)

γ �→ γ̂ = DH {γ} . (8)
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Now, we make (8) more explicit using (2) and (6):

γ̂ (r) = K {γ} (r)

(6)
=

Ne l∑
i=1

a (pi , r) mi (τ (r,pi))

(2)
=
∫

s∈Ω

Ne l∑
i=1

a (pi , r) o (pi , s) vpe (τ (r,pi)

− τ (s,pi)) γ (s) ds. (9)

Hence, the non-stationary blur model K, defined in (8) as the
composition of the DAS and propagation operators, can also be
expressed as the following Fredholm integral of the first kind,
standard in shift-variant blur modeling [24],

K : L2 (Ω)→ L2 (Ω)

γ �→
∫

s∈Ω
γ (s) k (·, s) ds, (10)

where k : Ω× Ω→ Ω, the bivariate kernel of K, defines the
PSF and can be expressed as follows

k (r, s) =
Ne l∑
i=1

a (pi , r) o (pi , s) vpe (τ (r,pi)− τ (s,pi)) .

(11)
Interestingly, if we assume that γ (r) = δ (r − r0), with r0 ∈

Ω, then

γ̂ (r) = k (r, r0) , (12)

leading to the more natural interpretation of k as the PSF, i.e.
the response of the US system to a TRF composed of a single
point reflector located at r0 .

C. Adjoint Operator Associated With the Proposed
Non-Stationary Blur

In most restoration methods, the computation of the adjoint
operator K† is required at some point. For instance, restoration
approaches that require to solve a convex optimization problem
need to compute the gradient of a data-fidelity term, usually
expressed using the squared �2-norm. Such a gradient is defined
as K† (Kγ −m). At the continuous level, the adjoint of the
operator K described in (8) can straightforwardly be expressed
as the composition of the adjoint DAS and adjoint propagation
operators,

K† = H†D†, K† : L2 (Ω)→ L2 (Ω) , (13)

with,

H† : L2 ([0, T ])Ne l → L2 (Ω) ,

D† : L2 (Ω)→ L2 ([0, T ])Ne l .

In addition, the adjoint operators D† and H† are directly obtained
from their definitions,

〈γ, H†m〉L2 (Ω) = 〈Hγ,m〉L2 ([0,T ])N e l , (14)

〈γ, Dm〉L2 (Ω) = 〈D†γ,m〉L2 ([0,T ])N e l , (15)

by simply flipping the order of integration over Ω and [0, T ] [37].
These changes are legitimate thanks to the square integrability
of the involved functions.

Consequently, the adjoint operator of the propagation model
is given by

H† {m} (r) =
Ne l∑
i=1

∫ T

0
o (pi , r) mi (t) vpe (t− τ (r,pi)) dt,

(16)
and the adjoint DAS operator by

(
D† {γ})

i
(t) =

∫

r∈Ω
a(pi , r)δ(t− τ(r,pi))γ(r)dr,

i = 1, . . . , Nel . (17)

Interestingly, using the same reasoning as for K, we show that
K† can also be expressed using the PSF kernel defined in (11),
by flipping the two arguments, i.e. using a symmetrised kernel
k̃(r, s) = k(s, r), such that

K† : L2 (Ω)→ L2 (Ω)

γ �→
∫

s∈Ω
γ (s) k (s, ·) ds. (18)

III. EVALUATION STRATEGY OF THE PROPOSED

MODEL OF NON-STATIONARY BLUR

In this section, we express the non-stationary blur over a
regular grid. More precisely, the TRF Γ ∈ RNx×Nz is de-
fined on a regular grid Ωγ = {suv = (xu , zv ) ∈ Ω, u = 1, . . . ,

Nx, v = 1, . . . , Nz} and the RF image Γ̂ ∈ RN̂x×N̂z is de-
fined on a second regular grid Ωγ̂ = {rkl = (xk , zl) ∈ Ω, k =
1, . . . , N̂x , l = 1, . . . , N̂z}.

A common approximation of (10) is achieved by numerical
approximation of the continuous integral, leading to

Γ̂ = KΓ , (19)

where K : RNx×Nz → RN̂x×N̂z , is defined element-wise by

Kkluv = k (rkl , suv ) Δuv , (20)

where Δuv is the elementary volume for the normalization of

K. The evaluation of (19) requires O
(
NxNzN̂xN̂zNel

)
op-

erations, which is not computable for realistic 2D US imaging
configurations where NxNz and N̂xN̂z are of the order of 104

to 106 .
Many fast approximation strategies of non-stationary blur

models of the form (10) have been described in the literature
and briefly reviewed in Section I (See [24] for an exhaustive re-
view of such methods). In this section, we present an alternative
approach based on the specific property of the non-stationary
blur in US imaging, i.e. its decomposition in terms of the propa-
gation and DAS operators. With an appropriate discretization of
the different spaces involved in the computation of such opera-
tors, we show that (10) can be efficiently approximated, while
its evaluation can be performed with drastically reduced com-
plexity compared to (19).

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on August 02,2020 at 13:36:32 UTC from IEEE Xplore.  Restrictions apply. 



BESSON et al.: PHYSICAL MODEL OF NON-STATIONARY BLUR IN ULTRASOUND IMAGING 385

A. Proposed Evaluation Strategy of the Non-Stationary Blur

As for the continuous model of the blur K, the operator K
defined in (19) can be decomposed as follows

K = DdHd , (21)

where Hd :RNx×Nz →L2([0, T ])Ne l and Dd :L2([0, T ])Ne l →
RN̂x×N̂z are the partly discretized propagation and DAS oper-
ators. More precisely, Dd is computed by evaluating D on the
regular grid Ωγ̂ and Hd is computed element-wise by numerical
approximation of the continuous integral involved in (5) on the
regular grid Ωγ .

As is, the operators Dd and Hd are qualified as “partly”
discretized since they involve as domain and codomain, respec-
tively, the space L2 ([0, T ])Ne l . Such a space, while suitable for
mathematical characterization of the operators is not practical
in terms of computations since we cannot evaluate Dd and Hd .
Hence the sequential split assumption is not useful for evalua-
tion purpose and one would still rely on (19) to compute KΓ .

In order to benefit from the sequential split assumption, we
propose to discretize the time dimension of the element-raw
data such that the continuous space [0, T ] is approximated by
Nt uniformly spaced time instants, with corresponding sam-
pling frequency fs . Such an assumption is particularly suited
to US imaging due to the bandpass signal properties of the
element-raw data, which can be accurately reconstructed from
uniform samples acquired at the Nyquist rate (or using bandpass
sampling). Hence, an appropriate discretization of the element-
raw data space may result in an accurate approximation of the
non-stationary blur. In addition, performing the discretization
of the element-raw data is aligned with most recent US imaging
systems which operate on digitized element-raw data.

Mathematically, we define the discrete element-raw data as
the 2D matrix M ∈ RNt×Ne l , where each element is given by

M ki = mi(tk ), i = 1, . . . , Nel , k = 1, . . . , Nt , (22)

where tk = (k − 1) /fs .
Exploiting this discrete formulation, we express the blur-

model as follows

K = DH, (23)

where D : RNt×Ne l → RN̂x×N̂z is the discretized DAS opera-
tor and H : RNx×Nz → RNt×Ne l is the discretized propagation
operator. The adjoint operator can be straightforwardly deduced
from K as

K† = H†D†. (24)

With this simple discretization of the latent element-raw data
space, we benefit from very efficient matrix-free implementa-
tions of the discretized propagation operator H and DAS oper-
ator D that have been developed in our previous work [37] and
are expressed with more details below. In the remainder of the
paper and without loss of generality, we assume that N̂x = Nx

and N̂z = Nz .
1) Fast Propagation Operator and Its Adjoint: The i-th com-

ponent of the integral operator defined in (5) can be reformulated

as the following convolution,

(H {γ})i (t) = vpe ∗t Gi{γ}(t), (25)

where ∗t denotes the analytical convolution over the time di-
mension and Gi : L2(Ω)→ L2([0, T ]) is defined by

Gi{γ}(t) =
∫

r∈Ω
o (pi , r) γ(r)δ(t− τ(r,pi))dr. (26)

Alternatively, Gi{γ}(t) can be expressed as

Gi{γ}(t) =
∫

r∈Ω
o (pi , r) γ(r)δ(gi (t, r)) dr, (27)

where gi(t, r) = t− τ(r,pi).
Using the co-area formula, (27) can be re-written as the fol-

lowing line integral [37],

Gi{γ}(t) =
∫

r∈Si (t)

o (pi , r) γ (r)
| ∇rgi(t, r) | dσ (r) , (28)

where Si (t) is the 0-level set of the function gi (t, r) given by

Si(t) = {r ∈ Ω : gi(t, r) = 0} . (29)

By an appropriate reparameterization of Si (t) described in
our previous work [37], [38], (28) can be expressed as

Gi{γ}(t) =
∫

α∈R

o (pi , r (α,pi , t)) γ (r (α,pi , t))
| ∇rgi(t, r (α,pi , t)) | |Jr|dα,

(30)
where r (α,pi , t) = [α, z (α,pi , t)]

� and |Jr| : R2 → R de-
notes the Jacobian associated with the change of variable.

The numerical approximation of the integral over α leads to

(H {γ})i (t) ≈
⎡
⎣vpe ∗t

⎛
⎝

Nx∑
j=1

wj (pi , ·) γ (r (αj ,pi , ·))
⎞
⎠
⎤
⎦ (t) ,

(31)
where wj (pi , t) accounts for the spatial directivity, the decay
of the reflected wave, the Jacobian, the gradient of gi and the
weights related to the numerical approximation of the integral.

Discretizing (31) with respect to t leads to

(HΓ )li ≈ (V pem̂i)l , l = 1, . . . , Nt , (32)

where V pe ∈ RNt×Nt is the Toeplitz matrix associated with the
discrete convolution with vpe ∈ RNt and m̂i ∈ RNt is defined
element-wise as

m̂i (tl) =
Nx∑
j=1

wj (pi , tl) γ (r (αj ,pi , tl)) . (33)

It can be noticed that (32) approximates the continuous con-
volution in (31) by its discrete counterpart which is crucial in
the acceleration of the forward operator. Without loss of gener-
ality, we consider a “half-padded” convolution [46] with zero-
padding at the boundary which explains why V pe is a square
matrix. “Fully-padded” and “non-padded” convolutions as well
as alternative boundary methods may also be considered. Since
we work on a discrete grid Ωγ , we have to introduce Nx inter-
polation operators Ij : RNz → RNt×Ne l such that

γ (r (αj ,pi , tl)) ≈ (IjΓ •j )li , j = 1, . . . , Nx. (34)
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We can now approximate (33) as

m̂i (tl) ≈
Nx∑
j=1

wj (pi , tl) (IjΓ •j )li . (35)

Consequently, the application of the discretized forward opera-
tor H over the TRF image can be formulated as

HΓ = V pe

⎡
⎣

Nx∑
j=1

W j ◦ IjΓ •j

⎤
⎦ ∈ RNt×Ne l , (36)

where W j ∈ RNt×Ne l is defined element-wise as (W j )li =
wj (pi , tl).

More practically, the action of the discretized forward opera-
tor defined inside the sum in (36) can be described as a sequential
application of

1) a masking operation which selects the sub-region
of Γ •j , j = 1, . . . , Nx , that interpolates the points
{γ (r (αj ,pi , tl))}Nt ,Ne l

l,i=1 ;
2) a point-wise multiplication with the weighting matrix

W j ;
3) a convolution with the pulse-echo waveform.
Thus, one can see the analogy with sectional methods in the

context of spatially-varying blur modeling. The main difference
is that the mask does not aim to isolate regions where differ-
ent stationary blurs are applied. It rather selects sub-regions
where the convolutions with the pulse-echo waveform have to
be applied depending on US propagation and acquisition set-
tings (which define the parametric curves). Then, the same con-
volution with the pulse-echo waveform is performed in every
sub-region. The adjoint operator H† defined in (16) can be seen
as the following operation,

H† {m} (r) =
Ne l∑
i=1

o (pi , r) (upe ∗t mi) (τ (r,pi)) , (37)

where upe (t) = vpe (−t) is the matched filter of the pulse-echo
waveform.

We introduce the convolved raw data m̃i = upe ∗t mi , for
i = 1, . . . , Nel , such that

H† {m} (rsq ) =
Ne l∑
i=1

o (pi , rsq ) m̃i (τ (rsq ,pi)) , (38)

for rsq = (xs, zq ) ∈ Ωγ̂ , s = 1, . . . , Nx , q = 1, . . . , Nz .
The discretization of (38) with respect to t is achieved into

two steps. The first one approximates the convolved raw data
m̃i with its discrete counterpart as

M̃ •i = V �
peM •i . (39)

To complete the discretization, we introduce Nel interpolation
operators I ′i : RNt → RNx×Nz such that

m̃i (τ (rsq ,pi)) ≈
(
I ′iM̃ •i

)
sq

, i = 1, . . . , Nel , (40)

and (38) is approximated as

(
H†M

)
sq

=
Ne l∑
i=1

o (pi , rsq )
(
I ′iM̃ •i

)
sq
∈ R. (41)

The adjoint propagation operator H† expressed over the grid is
therefore given by,

H†M =
Ne l∑
i=1

Oi ◦ I ′i
(
V �

peM •i
) ∈ RNx×Nz , (42)

where Oi ∈ RNx×Nz is defined element-wise as (Oi)sq =
o (pi , rsq ).

Similarly to the forward operator, the action of the discretized
adjoint operator defined inside the sum in (42) can be seen as
the application of:

1) a convolution of M •i with the matched filter of the pulse-
echo waveform;

2) a masking operation which selects the sub-region of the
M •i that interpolates the points {m̃i (τ (rsq ,pi))}Nx ,Nz

s,q=1 ;
3) a point-wise multiplication with Oi .
The same remarks as for the discretized forward operator

hold.
2) Fast Delay-and-Sum Operator and Its Adjoint: The DAS

operator, defined in (6), can be seen as an approximation of the
adjoint operator H† under the following assumptions:

� The pulse-echo waveform is a Dirac delta, i.e. vpe (t) =
δ (t);

� the aperture-apodization weights replace the spatial direc-
tivity and the radial decay 1/r of the reflected wave.

Thus, the application of the discretized DAS operator on the
grid is directly defined by the interpolation operation introduced
in (42) as

DM =
Ne l∑
i=1

Ai ◦ I ′iM •i ∈ RNx×Nz , (43)

where Ai ∈ RNx×Nz is defined element-wise as (Ai)sq =
a (pi , rsq ).

The application of the discretized adjoint DAS operator D†

expressed over the grid can be deduced from (36) as

D†Γ =
Nx∑
j=1

W j ◦ IjΓ •j ∈ RNt×Ne l , (44)

where the apodization weights are used in the computation of
W j .

B. Computational Complexity of the Proposed Evaluation
Strategy

As already mentioned, the evaluation of K : RNx×Nz →
RNx×Nz defined in (19) requires a priori O((NxNz )2Nel) oper-
ations using (11). Such a complexity prevents its use in realistic
imaging cases, where NxNz ranges between 104 and 106 and
Nel is few hundreds.
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To solve the above limitation, the proposed evaluation strat-
egy decomposes the computation of KΓ as follows:

KΓ = D (HΓ ) , (45)

where HΓ is first performed, generating a pseudo raw data M ,
followed by the application of the DAS DM .

The computation of HΓ requires to perform the following
operations:

1) Nx interpolations IjΓ •j where each interpolation has
a computational complexity of O (LNtNel) with L the
support of the interpolation kernel (L� Nz );

2) Nx point-wise multiplications with W j , each of which
having a cost of O (NelNt);

3) Nx convolutions with vpe each of which with a complexity
of O (Nt log Nt).

The overall computational complexity of HΓ is therefore:

Cost (HΓ ) = O (LNxNelNt + NxNelNt + NxNt log Nt)

= O (NxNelNt) , (46)

since log Nt � Nel and L� Nel in US imaging.
The computation of DM necessitates rather similar opera-

tions as the ones described above, apart from the convolution:
1) Nel interpolations I ′iM •i where each interpolation has

a computational complexity of O (L′NxNz ) with L′ the
support of the interpolation kernel (L′ � Nt );

2) Nel point-wise multiplications with Ai , each of which
having a cost of O (NxNz ).

The computational complexity of DM is:

Cost (DM) = O (L′NelNxNz + NelNxNz ) (47)

= O (NelNxNz ) . (48)

The overall complexity of the operation KΓ can be easily
deduced from (46) and (48) as:

Cost (KΓ ) = O (NelNx (Nt + Nz )) (49)

≈ O (NelNxNz ) , (50)

since Nt ≈ Nz in standard US imaging configurations. Thus we
have the following:

Cost (KΓ )� O((NxNz )2Nel). (51)

An equivalent reasoning for the computation of the adjoint
operation K†Γ̂ leads to the same computational complexity as
for the forward operation. Indeed, the only difference between
the two computations resides in the convolution which is negli-
gible in the computational cost.

Thus, the proposed decomposition results in a significant de-
crease of the computational complexity from quadratic to linear
with respect to the number of grid points NxNz .

Compared to the common approximation strategies of
the shift-variant blur we can draw the following conclu-
sions. If we assume that shift-variant blurs have been stored
as matrices of size Nb

x ×Nb
z , where Nb

z < Nz and Nb
x <

Nx (as it is often the case), their evaluations would require
O (NxNz log NxNz ) computations using a Fourier-domain ap-
proach or O

(
Nb

xNb
z NxNz

)
otherwise.

TABLE I
PROBE CHARACTERISTICS

Fig. 3. Numerical point-reflector phantoms used for (a) diverging wave and
(b) plane wave imaging configurations.

Using the Fourier-domain approach, the complexity is usually
slightly lower than the proposed approach since log NxNz <
Nel but the method does not scale as well as the proposed ap-
proach with respect to the grid size. Otherwise, the complexity
highly depends on the size of the blur matrix while the com-
plexity of the proposed approach remains linear with respect to
the grid size.

IV. EXPERIMENTS

This section describes the imaging configurations, for both
DW and PW imaging, used to evaluate the proposed non-
stationary PSF estimation against state-of-the-art methods. It
also describes the �p -based image restoration method.

A. Diverging-Wave Imaging Configuration

A simulated experiment is performed with a standard
phased-array probe (P4-2v) whose characteristics are given
in Table I. A single DW (2.5 MHz, 1-cycle excitation) is
transmitted with a corresponding virtual point source located at
zn equal to −2.9 mm and laterally centered. No apodization is
used on transmit.

The data are acquired on a numerical point-reflector phantom
with eight reflectors with unit amplitude and located at positions
described on Fig. 3(a). The simulation software used for this
experiment is Field II [43].

B. Plane-Wave Imaging Configurations

Two standard linear-array probes are used, namely the L11-
4v and the L12-5 50 mm, whose characteristics are given in
Table I.

The L11-4v is used in two simulated configurations (using
Field II) for which a single PW (5.208 MHz, 2.5-cycle excita-
tion) with normal incidence is transmitted without apodization:
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Fig. 4. Log-compressed B-mode image of the PICMUS numerical phantom.
The points labeled “A” and “B” are used in Section V-B.

� A point-reflector phantom with reflectors described in
Fig. 3(b);

� the PICMUS numerical phantom,1 whose example B-
mode image is displayed in Fig. 4.

The L12-5 50 mm is used to acquire in vivo measurements
of two carotids on a Verasonics Vantage 256 system (Redmond,
WA, USA). A single PW (5 MHz, 1-cycle excitation) with nor-
mal incidence is transmitted without apodization.

C. Proposed �p -Based Restoration Method

We use a �p -norm minimization, one of the most recent meth-
ods introduced in US image restoration [1], [6], [12], [19], [20],
[22]. Since the discretized PSF operator has been described as a
tensor in Section III-A, we have to introduce the reshaping op-
erator P : RNx×Nz → RNx Nz , such that γ = PΓ ∈ RNx Nz .
We are therefore interested in solving the following optimiza-
tion problem,

min
γ̃∈RN x N z

λ ‖γ̃‖pp +
1
2

∥∥∥γ̂ − K̃γ̃
∥∥∥

2

2
, (52)

where K̃ = PKP † ∈ RNx Nz ×Nx Nz accounts for the dis-
cretized PSF operator and γ̂ = P Γ̂ ∈ RNx Nz , where Γ̂ is the
RF image acquired by the US imaging system. In the objective
function minimized in (52), the first term is the prior, the second
term is the data-fidelity, λ ∈ R+ is a regularization parameter
and p is a real so that 1 ≤ p ≤ 2 [47].

The values of p are set to 1, 4/3 or 3/2, depending on
the experiment, similar to the values used in [6] since their
corresponding proximity operator are analytically defined (see
appendix). The optimization algorithm used to solve the restora-
tion problem is the fast iterative shrinkage thresholding algo-
rithm (FISTA) described in the appendix [48].

Three different PSF estimation techniques are compared:
� The proposed non-stationary PSF;
� a stationary PSF estimated from the data using the method

described in [11], denoted as stationary PSF 1;
� a stationary PSF previously simulated on Field II using

a phantom made of a single scatterer located at 25 mm

1[Online]. Available: https://www.creatis.insa-lyon.fr/EvaluationPlatform/
picmus/index.html

TABLE II
COMPARISON OF THE METHODS ON THE POINT-REFLECTOR PHANTOM IN

THE DIVERGING WAVE EXPERIMENT

for PW imaging and 45 mm for DW imaging, denoted as
stationary PSF 2.

The restoration is performed on RF images, obtained by ap-
plying the DAS operator on the element-raw data. The image
grid spacing is set to one third of the wavelength in the lateral
direction and one eighth of the wavelength in the axial direc-
tion. The apodization used on receive is the element-directivity
according to Selfridge et al. [42].

D. Implementation Details

The methods are implemented using MATLAB.2 For the sta-
tionary methods, we store the PSF in a matrix form and we com-
pute the shift-invariant convolutions using the Fourier domain
approach. For the proposed non-stationary blur, we implement
a parallelized matrix-free evaluation of the different operators
as described in [37].

Concerning FISTA, we consider a maximum number of 100
iterations and we set a stopping criterion if the relative evolution
of the solution between two consecutive iterations is lower than
10−3 . The regularization parameter λ is empirically tuned for
each method and each experiment. Automatic optimization of
such a parameter is left for future work.

V. RESULTS AND DISCUSSION

A. Point-Reflector Experiment

For these experiments, the �p -based restoration is tested with
a value of p equal to 1 since we are dealing with sparse images.
The comparison is based on the axial and lateral resolution,
calculated as the full-width-at-half maximum (FWHM) [49]
computed on the log-compressed B-mode image. The regular-
ization parameter is empirically set to its highest value so that
all the point reflectors are visible, if possible.

Table II reports the lateral and axial resolution values for the
DW configuration described in Fig. 3(a). We can see that the
proposed method outperforms the models based on a stationary
PSF on the lateral resolution especially. This makes sense since
the diffraction effect is important in DW imaging configurations
resulting in significant variability in the lateral dimension. Re-
garding the axial resolution, it is relatively stationary along the
imaging plane and the proposed method does not significantly
outperform the stationary models. Fig. 5 shows the B-mode im-
ages of the point reflectors for standard DAS beamforming (top

2[Online]. Available: https://github.com/LTS5/us-non-stationary-deconv
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Fig. 5. Close-up of log-compressed (40 dB dynamic range) B-mode images of point-reflector 1 to point-reflector 8 (from left to right) of the DW configu-
ration (Fig. 3(a)) obtained with standard DAS beamforming (top row), restoration with the proposed method (middle row) and restoration with the stationary
PSF 1 (bottom row).

TABLE III
COMPARISON OF THE METHODS ON THE POINT-REFLECTOR PHANTOM IN

THE PLANE WAVE EXPERIMENT

row), restoration with the proposed method (middle row) and
restoration with the stationary PSF 1 (bottom row). It illustrates
the benefit of the proposed method compared to stationary mod-
els for image restoration in case of imaging configurations with
high lateral variability.

When using the method with the stationary PSF 2, it can be
noted that the values for both the axial and the lateral resolution
are not satisfactory, except for point-reflectors 4, 7 and 8. This
is due to the fact that the PSF used in the restoration experiment
has been simulated with a point reflector centered at 45 mm,
close to point-reflector 4, and that point-reflectors 7 and 8 are
centered as well. The high values of the resolution that one may
observe in Table II are due to the fact that several points are not
reconstructed. Regarding the method with the stationary PSF 1,
the results are better. This can be explained by the fact that
the PSF estimation method returns a sort of “averaged PSF”
over the entire image, resulting in a rather uniform value of the
resolution. We can nevertheless observe a non-uniformity of the
resolution with respect to depth (point-reflectors 7 and 8), which
emphasizes the inability of the method to capture non-stationary
blur.

In the PW experiment, it can be noticed in Table III that the
proposed approach is either close to or better than the best of
the methods based on a stationary PSF, which means that it rep-
resents a best compromise between lateral and axial resolution.
However, the results on the lateral resolution are less striking
than for the DW experiment which is justified by the reduced
non-stationarity of the blur compared to the DW experiment.

Regarding the stationary PSF 2, while the lateral resolution
is relatively constant along the image, the values of the axial
resolution are varying significantly. This is due to our choice of
the regularization parameter. Indeed, it is set so that all the point

reflectors are visible. When the regularization parameter is too
high, the first point reflectors that vanish are point-reflectors 3
and 7 since they are the ones with the highest mismatch with
the centered PSF pattern used in the restoration.

With a close look on Tables II and III, one may highlight
some non-uniformity in the values of the resolution obtained
with the proposed method. This can be explained by several
approximations made in the physical model of the blur:

� No three-dimensional propagation: The proposed model
neglects the effects related to the three-dimensional prop-
agation in the Field II simulation, especially the element
height and the elevation focus;

� planar/spherical wavefront assumption: We assume that a
planar or spherical wavefront, for PW and DW respec-
tively, of constant amplitude propagates in the medium;

� grid mismatch induced by the discretization of the contin-
uous propagation operator and the continuous medium.

B. PICMUS Phantom Experiment

In this experiment, we compare the methods based on the
dB-contrast-to-noise ratio (CNR) and lateral and axial resolu-
tion, computed on the PICMUS phantom displayed in Fig. 4.
The CNR [49] is a measure of the contrast, calculated on the
normalized envelope image, i.e. on the envelope image divided
by its maximum value, as follows,

CNR = 20 log10
|μt − μb |√

σ 2
t +σ 2

b

2

, (53)

where (μt, μb) and (σ2
t , σ2

b ) are the means and the variances of
the target inclusion (anechoic region in Fig. 4) and the back-
ground, respectively.

The results are reported in Table IV for the �p -based restora-
tion, with p = 1.3 and 1.5, and with the proposed non-stationary
PSF as well as the two stationary ones. The corresponding B-
mode images are available as supplementary material of this
manuscript.

In Table IV, one can see that the proposed PSF outper-
forms the other methods on the lateral resolution. Indeed, the
variability of the PSF in the axial dimension is mainly due
to variations of the pulse-echo waveform induced either by
frequency-dependent attenuation or by near-field effects (due
to the finite element height). In the proposed simulation, we
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Fig. 6. x-axis (top row) and z-axis (bottom row) sections corresponding to the points A and B in Fig. 4, located at z = 14 mm and x = 0 mm and 15 mm
respectively, for p = 1.5 (2 left plots) and p = 1.3 (2 right plots) and for the different blur models.

TABLE IV
COMPARISON OF THE METHODS ON THE NUMERICAL PICMUS PHANTOM

are at sufficiently far-field and the frequency-dependent attenu-
ation is not taken into account. Thus, a shift-invariant model is
relatively accurate.

In order to illustrate the above remarks, Fig. 6 displays the
x-axis and z-axis sections corresponding to the points A and B
in Fig. 4, located at z = 14 mm and x = 0 mm and 15 mm,
respectively. While the effect of the proposed method is not
evident on the axial dimension (bottom row), it is significant in
the lateral dimension (top row).

Regarding the results of the restoration procedure, we ob-
serve that p = 1.3 leads to a better resolution (as can be seen
in Fig. 6) but a lower contrast than p = 1.5. This can be ex-
plained by a close look at the definition of the CNR. Indeed,
it may be deduced from (53) that the CNR favors piecewise-
continuous regions where σb and σt tend to 0. On the contrary,
high-resolution images exhibit a more “spiky” behaviour in the
speckle region than low-resolution images which usually results
in a lower mean and a higher variance, therefore in a lower CNR.
In �p -based restoration, the value of p impacts the shape of the
GGD prior, resulting in a variation of the resolution of the re-
covered TRF. The lower p, the tighter the shape of the prior, the
better the resolution and the lower the CNR.

C. In Vivo Carotid Experiments

Low resolution demodulated RF images of the two carotids,
obtained by DAS beamforming without restoration, are

displayed on Fig. 7(a) and 7(e). The B-mode images of the �p -
based restoration technique for the first carotid, and for p = 1.5,
are displayed on Figs. 7(b), 7(c) and 7(d). The B-mode images
of the �p -based restoration technique for the second carotid, and
for p = 1.3, are displayed on Fig. 7(f), 7(g) and 7(h).

In order to quantify the benefits of the proposed model of the
blur, we rely on the tissue-to-clutter ratio (TCR) [49] and the
signal-to-noise ratio (SNR) [49] metrics. The TCR is a widely
used measure of the contrast defined as the ratio between the
average pixel intensity in a tissue region and in a background
region at the same depth (to avoid bias due to time-gain com-
pensation). Formally, it is given by

TCR = 20 log10

(
μt

μb

)
, (54)

where μt and μb designate mean pixel intensities inside the
tissue and the background regions, respectively, calculated on
the normalized envelope.

The SNR is calculated as

SNR =
|μt − μb |√

σ2
b + σ2

t

, (55)

where (μt, μb) and (σt, σb) are the mean and standard devi-
ation of the pixel intensities of a tissue and a blood regions,
respectively, calculated on a linearized image obtained from the
log-compressed B-mode image. We choose a background re-
gion located inside the carotid artery and a tissue region located
at the same depth, as described in Fig. 8.

TCR and SNR values, reported in Table V, demonstrate that
the proposed non-stationary model outperforms stationary mod-
els for nearly all experiments. Regarding the impact of the value
of p, the same trend as for the PICMUS experiment is observed,
i.e. a lower value of p leads to a lower SNR induced by higher
variance of the speckle pattern. In addition, visual assessment
of the B-mode images displayed in Fig. 7 shows that the restora-
tion methods all lead to a significantly higher resolution than
the unprocessed B-mode image. The deblurring effect is more
pronounced for the proposed method and the stationary PSF 1
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Fig. 7. (a)-Low resolution (LR) image of carotid 1; High-resolution (HR) image obtained for p = 1.5 with (b)-the proposed method, (c)-the stationary PSF 1 and
(d)-the stationary PSF 2; (e)-LR image of carotid 2; HR image obtained for p = 1.3 with (f)-the proposed method, (g)-the stationary PSF 1 and (h)-the stationary
PSF 2.

Fig. 8. Tissue (1) and blood (2) regions used for the computation of the
tissue-to-clutter ratio and contrast-to-noise ratio.

TABLE V
COMPARISON OF THE METHODS ON THE IN-VIVO CAROTIDS

than for the stationary PSF 2, as can be seen on the artery wall.
In addition, the proposed method allows a better reconstruction
of the textured area, such as the speckle region under the lower
artery wall, than the methods based on a stationary PSF.

D. On Computation Times of the Proposed Strategy

In Section III-B, we have derived the computational complex-
ity of the proposed evaluation strategy and demonstrated that it

TABLE VI
COMPUTATION TIMES OF DIFFERENT BLUR EVALUATION STRATEGIES

scales linearly with respect to the grid size. In this section, we
discuss the practical implications of this in terms of computation
times necessary to evaluate the forward blur operator.

More precisely, we consider a PW experiment with the L11-
4v probe described in Table I. We compare various grid sizes
characterized by the corresponding values of Nx and Nz . For
each tuple (Nx,Nz ), we estimate the average evaluation time
of the forward blur operator over 10 runs on an Intel Core i7-
4930K CPU @ 3.40 GHz equipped with MATLAB R2017A.
We compare the proposed evaluation strategy, the one described
by Roquette et al. [1] and the evaluation of a stationary blur
model using the Fourier domain approach. Table VI reports the
computation times of the three methods for the different grid
sizes.

We can see that the proposed strategy is two orders of mag-
nitude faster than the one developed by Roquette et al. even in
the configuration with the smallest grid size. In addition, we ob-
serve significant differences in scaling between the two methods
resulting from the difference in computational complexity.

We notice that the proposed strategy is several orders of mag-
nitude slower than the stationary method. This is due to the fact
that the Fourier-domain approach relies on fast Fourier trans-
forms which have been highly optimized in MATLAB (built-
in function) while the proposed approach entirely relies on a
non-optimized MATLAB code. First implementations of the
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Fig. 9. Ratio of computation times between the proposed evaluation strategy
and the Fourier domain evaluation of the stationary blur for varying grid sizes.

propagation and DAS operators on graphical processing units
highlight the high potential for parallelizability of the proposed
method [37], [38].

In addition, Fig. 9 displays ratios of evaluation times be-
tween the proposed method and the stationary model for real-
istic values of the grid sizes. Indeed, we fix Nx = 512 which
corresponds to one fourth wavelength spacing and we vary Nz

between 1000 and 8000.
We empirically observe that the proposed method scales

better with the grid than the Fourier domain approach
which corroborates the theoretical study of the complexity of
Section III-B.

E. Proposed Method in the Context of Shift-Variant
Deblurring Approaches

In Section III, we have shown that the model of non-stationary
blur cannot be neither evaluated nor stored in realistic imaging
scenarios, which is a common problem in many image restora-
tion tasks [24].

At this stage, we may have leveraged various existing approx-
imations of shift-variant blur, depending on the properties of the
PSF field, e.g. dimensionality and smoothness, and solved the
corresponding image restoration task. Instead, we have proposed
a strategy based on a decomposition of the blur-model coupled
with an appropriate discretization of the latent element-raw data
space.

A legitimate question that one may wonder is to what ex-
tent existing shift-variant deblurring strategies, based on differ-
ent approximations of the non-stationary blur can be compared
to the proposed approach. Indeed, given the bivariate kernel
k (r, s) defined in (11), it would be possible to apply shift-
variant approximation methods such as sectional methods or
interpolation of the PSF.

While such approaches may be computationally advanta-
geous in some cases, their complexity does not scale as well
as the proposed approach (they rely on convolutions that can
be achieved in O (NxNz log (NxNz ))). More importantly,
shift-variant approximation techniques, based on sectional
methods [24]–[29] or on the interpolation of few kernels

evaluated in different regions of the image [24] would be
intrinsically less accurate than the proposed strategy. Indeed,
the strength of the proposed approach is that it leads to an exact
approximation of the blur matrix (provided a sufficiently high
sampling of the time dimension which is easily feasible) while
existing methods would always return an approximation of the
blur matrix. It is especially the case in PW and DW imaging
where the PSF is anisotropic and highly spatially varying due
to diffraction effects.

Other approaches, based on column-wise or row-wise decom-
position of the blur matrix K̃ [23], [30] require to compute the
singular value decomposition of K̃, unfeasible in US imaging
due to the large size of the matrix.

VI. CONCLUSION

In this work, we present a physical model of non-stationary
blur in the context of 2D ultrasound imaging with plane-wave
and diverging-wave insonifications and propose an evaluation
strategy for image restoration purpose. The model is expressed
as the composition of an ultrasound propagation operator which
relates the tissue-reflectivity function to the measured echo
signals, and a delay-and-sum operator which forms the radio-
frequency image from the echo signals. We demonstrate by an
explicit derivation of the operators that the proposed model can
be expressed as a Fredholm integral of the first kind, standard
in shift-variant blur modeling.

The evaluation strategy exploits such a decomposition at the
discrete level coupled with an additional discretization of the
latent element-raw data space, the latter being motivated by
bandpass signal properties of echo signals in ultrasound imag-
ing. These two aspects allow us to benefit from computationally
efficient formulations of the ultrasound propagation and delay-
and-sum operators, derived in previous works and based on
parametric formulations of time-of-flight equations, interpola-
tion on appropriate grids and discrete convolutions. We demon-
strate theoretically that the proposed strategy scales linearly,
rather than quadratically, with the number of grid points and we
show its benefits in practical scenarios.

As an example application, we use the model for ultrasound
image restoration with a maximum-a-posteriori estimation al-
gorithm. We demonstrate through simulated and in vivo exam-
ples that the restoration approach with the proposed model can
outperform recent state-of-the-art restoration methods based on
stationary models of the blur.

APPENDIX

FAST ITERATIVE SHRINKAGE THRESHOLDING

ALGORITHM AND PROXIMITY OPERATORS

A. Fast Iterative Shrinkage Thresholding Algorithm

This section briefly presents the fast iterative shrinkage
thresholding algorithm (FISTA) used to solve Problem (52).
For an in-depth description of the method, please refer to [48].
FISTA is an accelerated version of the well-known iterative soft
thresholding algorithm (ISTA), that can be used to solve the
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Algorithm 1: FISTA Used to Solve Problem (56).

Require: A, φ,y, L ≥ λmax

(
AT A

)
initialization: i = 1, t0 = 1,x−1 = x0 = 0
repeat

ti ← 1+
√

1+4t2
i−1

2 , αi ← 1−ti−1
ti

ci ← αixi−2 + (1− αi) xi−1
xi ← proxφ

(
ci + 1

L AT (y −Aci) ; 1
L

)
i← i + 1

until stopping criterion
return xi

following problem:

min
x∈RN

‖y −Ax‖22 + φ (x) , (56)

where y ∈ RM , x ∈ RN , A ∈ RM×N , φ : RN → R is a non-
smooth convex regularizer.

FISTA is composed of an acceleration step and a proximal
gradient step described in Algorithm 1. The proximal gradient
step involves the following proximity operator [50]:

proxφ (x; λ) = arg min
z∈RN

λφ (z) +
1
2
‖z − x‖22 . (57)

In Algorithm 1, λmax

(
AT A

)
denotes the highest eigenvalue

of AT A.

B. Proximity Operators Associated With the �p -norm

We consider the proximity operator defined in (57), where
φ (x) = ‖x‖pp and p ≥ 1. Thanks to the separability of the two
functions involved in the proximity operator, the problem can
be solved element-wise. According to Table 10.2 of [50], the
following equivalence holds:

zi = arg min
zi ∈R

λ|zi |p +
1
2

(zi − xi)
2 , ∀ (xi, zi) ∈ R×R, λ > 0

(58)

⇔ zi = sign (xi) q, q ≥ 0, q + pλqp−1 = |xi |. (59)

Thus, in order to derive the proximity operator associated
with the �p -norm, one has to solve (59), which involves finding
roots of a polynomial with arbitrarily high degree and can be
achieved using Newton’s method.

For specific values of p, the polynomial may have a degree
lower or equal to 3. In such cases, (59) has an analytical solution.
This is the case for the values of p considered in the study.

1) Case p = 1: The solution of (59) is immediately deduced
as:

zi = sign (xi) max (|xi | − λ, 0) , (60)

which is the well-known soft-thresholding operator.

2) Case p = 3/2: The solution of (59) involves to find the
positive root of the following polynomial of order 2:

0 = q +
3
2
λq1/2 − |xi | (61)

⇔ 0 = q2 −
(

2|xi |+ 9
4
λ2
)

q + x2
i , |xi | ≥ q (62)

⇔ q = |xi |+ 9
8
λ

(
λ−

√
16
9
|xi |+ λ2

)
. (63)

3) Case p = 4/3: The solution of (59) involves to find the
positive root of the following polynomial of order 3:

0 = q +
4
3
λq1/3 − |xi | (64)

⇔ 0 = q3 − 3|xi |q2 +
(

3|xi |2 +
64
27

λ3
)

q − |xi |3 . (65)

Using Cardano’s method and after several calculations not
detailed here, one may obtain the following value of q:

q = |xi |+ 1
9

(
− 16 · 21/3 · λ2

(z − 27|xi |)1/3 + 25/3λ (z − 27|xi |)1/3

)

(66)

z =
√

256λ3 + 729|xi |2 . (67)
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