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Joint Sparsity With Partially Known Support and
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Abstract—We investigate the benefits of known partial support
for the recovery of joint-sparse signals and demonstrate that it
is advantageous in terms of recovery performance for both rank-
blind and rank-aware algorithms. We suggest extensions of several
joint-sparse recovery algorithms, e.g., simultaneous normalized it-
erative hard thresholding, subspace greedy methods and subspace-
augmented multiple signal classification techniques. We describe a
direct application of the proposed methods for compressive mul-
tiplexing of ultrasound (US) signals. The technique exploits the
compressive multiplexer architecture for signal compression and
relies on joint-sparsity of US signals in the frequency domain for
signal reconstruction. We validate the proposed algorithms on nu-
merical experiments and show their superiority against state-of-
the-art approaches in rank-defective cases. We also demonstrate
that the techniques lead to a significant increase of the image qual-
ity on in vivo carotid images compared to reconstruction with-
out partially known support. The supporting code is available on
https://github.com/AdriBesson/spl2018_joint_sparse.

Index Terms—Compressed sensing, ultrasound, greedy algo-
rithms, joint sparsity, MUSIC.

I. INTRODUCTION

COMPRESSED sensing (CS) [1], [3] aims to solve a single
measurement vector (SMV) problem where one would

like to retrieve a k-sparse vector x ∈ Σk from measurements
y = Ax ∈ Km , where K denotes a scalar field, e.g., R or C,
A ∈ Km×n , Σk = {x ∈ Kn | |supp(x)| ≤ k} and supp (x) =
{i ∈ {1, . . . , n} | xi �= 0}.

Distributed CS extends CS to the multiple measurement vec-
tors (MMV) problem [4], [5] whose purpose is to recover mul-
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tiple sparse vectors X = [x1 ,x2 , . . . ,xN ] ∈ Kn×N from mea-
surements Y = AX ∈ Km×N [6]. Under the assumption that
the signals xi , i = 1, . . . , N , share the same support (JSM-2
model in [6]), the MMV problem can be written as

min
X∈Kn×N

‖X‖0,row subject to Y = AX, (1)

where ‖X‖0,row counts the number of non-zero rows of X .
Many techniques have been introduced to tackle the MMV
problem. A first group exploits the multiple signal classifica-
tion (MUSIC) algorithm, popular in array signal processing.
Indeed, Feng and Bresler [7] demonstrate that X can be re-
trieved using a singular value decomposition of Y in the full-
rank case. Extensions of the MUSIC algorithm to rank-defective
cases have been proposed such as subspace-augmented MUSIC
(SA-MUSIC) [8], compressive MUSIC (CS-MUSIC) [10] and
semi-supervised MUSIC [22]. The second group of techniques
extend algorithms developed for standard CS to the MMV case.
Mixed-norm algorithms exploit extensions of �1-minimization
algorithms [11], [26], [27]. Several greedy algorithms have also
been extended leading to simultaneous orthogonal matching
pursuit [12], [28], simultaneous normalized hard thresholding
pursuit [13], [14], simultaneous compressive sampling matching
pursuit [13] and simultaneous normalized iterative hard thresh-
olding (SNIHT) [13]. In [17], Davies and Eldar introduce the
rank-aware orthogonal recursive matching pursuit (RA-ORMP),
a greedy method which exploits the rank information of X . Lee
et al. [8] propose the orthogonal subspace matching pursuit
(OSMP), very similar to RA-ORMP.

CS with partially known support consists in injecting a prior
knowledge of the support of the unknown signal into the CS
problem resulting in weaker conditions than standard CS. The
concept has been introduced independently by Vaswani and Lu
[23], von Borries et al. [44] and Khajehnejad et al. [45], and
extended by Jacques [24]. Carrillo et al. [15], [16] have also
suggested extensions of various greedy algorithms.

In this work, we propose to study the benefits of known
partial support on the performance of joint-sparse recovery al-
gorithms. In Section II, we present uniqueness conditions for
the solution of Problem (1) in case of partially known support.
We also propose extensions of several algorithms, i.e., SNIHT,
RA-ORMP, OSMP and subspace augmented MUSIC methods
which are validated on numerical experiments. In Section III, we
show an application of the proposed algorithms to the recovery
of ultrasound (US) signals from multiplexed measurements.
Concluding remarks are given in Section IV.
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II. JOINT SPARSITY WITH PARTIALLY KNOWN SUPPORT

A. Notation

Given a space I ⊂ KN , PI and P⊥
I define the projectors

onto I and its orthogonal complement I⊥. Similarly, given a
set of integers J ⊂ {1, . . . , n}, J̄ = {1, . . . , n} \ J denotes its
complement and |J | its cardinality. The Hermitian transpose of
a matrix X ∈ Kn×n is denoted by X∗. ‖X‖F is the Frobenius
norm of X . XJ0 ∈ Kn×|J0 | is the sub-matrix formed by the
columns of X indexed by J0 . X(J0 ) ∈ Kn×n is the matrix X
restricted to the rows indexed by J0 . Hence, all the rows with
entries indexed by J0 are unchanged while the others are set to
0. The space spanned by the columns of X is defined byR (X).
The rank of X is designated by rank (X) and spark (X) defines
its spark i.e., the smallest number of columns from X that are
linearly dependent. We use supp (X) as the row-support of X

and Σ(n,N )
k as the set of k-row-sparse matrices of Kn×N . We also

refer the reader to the definition of the upper and lower asymmet-
ric restricted isometry (ARIP) constants of order k [13], denoted
as Uk and Lk and whose definitions are given in supplementary
material of this work. In the remainder, we are interested in re-
covering X ∈ Σ(n,N )

k such that supp (X) = J = J0 ∪ J1 , with
J0 ⊂ {1, . . . , n} and J1 ⊂ J̄0 , from measurements Y = AX ,
with A ∈ Km×n . We assume that J0 is known a priori.

B. Uniqueness of the �0-Norm Minimization

In this section, we extend the uniqueness condition derived
by Vaswani and Lu [23] to the MMV problem. The objective
is to establish guarantees of uniqueness of the solutions in the
case of MMV problems with partially known support that are
weaker than the ones for standard MMV problems [4], [5].
In order to do that, we reformulate the problem with partially
known support as:

min
X∈Kn×N

‖X(J̄0 )‖0,row subject to Y = AX. (2)

The following theorem provides a guarantee for uniqueness of
the solution of (2) expressed in terms of an upper bound on the
row sparsity k.

Theorem 1: The matrix X ∈ Σ(n,N )
k , with supp(X) = J0

∪ J1 , J0 known, is the unique solution of (2), if Y = AX and

k <
spark (A) + |J0 |

2
. (3)

Proof: The proof follows by contradiction. Define X1 ,X2

∈ Σ(n,N )
k such that X1 �= X2 and both are solutions of (2).

Consider that the rows of X1 (resp. X2) are supported on J0 ∪
Δ1 (resp. J0 ∪ Δ2) such that |Δ1 | = |Δ2 | = u ≤ k − |J0 |. The
rows of X1 − X2 are supported on J0 ∪ Δ1 ∪ Δ2 and the sub-
matrix defined by the rows indexed by J0 ∪ Δ1 ∪ Δ2 belongs to
the null-space of AJ0 ∪Δ1 ∪Δ2 . When spark (A) > |J0 ∪ Δ1 ∪
Δ2 |, AJ0 ∪Δ1 ∪Δ2 has full column rank and its null-space is
trivial. If (3) holds, then spark (A) > 2k − |J0 | ≥ k − 2u ≥
|J0 ∪ Δ1 ∪ Δ2 | and X1 = X2 . �

Theorem 1 is an extension to the MMV problem of Proposi-
tion 1 of [23] and the upper bound is the same as for the SMV
problem. At this point, it would be beneficial to combine the in-
formation on rank (Y ) and the partially known support to relax

the uniqueness condition provided for rank-aware algorithms
[4], [7], [17]. We first remind the following lemma.

Lemma 1 (Theorem 2.4 of [4]): The matrix X ∈ Σ(n,N )
k is

the unique solution of (1), if Y = AX and

k <
spark (A) + rank (Y ) − 1

2
. (4)

We can now state the main claim of the section.
Theorem 2: The matrix X ∈ Σ(n,N )

k , with supp (X) =
J0 ∪ J1 , J0 known, is the unique solution of (2), if Y = AX
and

k <
spark (A) + rank (Y a) − 1

2
, (5)

where Y a = [Y ,AJ0 ].
Proof: Consider Y a = [Y ,AJ0 ]. We define the augmented

signal matrix Xa = [X, IJ0 ], where I ∈ Rn×n is the identity
matrix, such that Y a = AXa . Define the following augmented
MMV problem:

min
X∈Rn×(N + |J 0 |)

‖X‖0,row subject to Y a = AX. (6)

By applying Lemma 1, Xa is the unique solution of (6) if the
inequality (4) holds. Now, we show that if (6) has a unique so-
lution, then (2) has a unique solution. Define X1 ,X2 ∈ Σ(n,N )

k
such that X1 �= X2 and both are solutions of (2). The aug-
mented matrices X1

a and X2
a are both solutions of (6) which is

impossible since Xa is unique. �
Theorem 2 can be interpreted in terms of subspace augmen-

tation discussed in Proposition 5.4 of [8]. Indeed, the partially
known support J0 is used to augment the signal subspaceR (Y )
with basis vectors of R(AJ0 ). Thus, it is advantageous when
some of the basis vectors of R(AJ0 ) are orthogonal to R (Y ).
Now that we have established uniqueness conditions, we pro-
pose extensions of existing joint sparse algorithms to partially
known support.

C. Greedy Methods With Partially Known Support

1) RA-ORMP and OSMP: RA-ORMP and OSMP are very
similar as explained in [8] and the argument detailed below
may be applied to both algorithms. For conciseness, we focus
on RA-ORMP in the remainder. The partially known support
can be exploited in the initialization step of the RA-ORMP
algorithm [17]. The idea is to consider J0 as the initial support
in the algorithm and perform the following initialization:

R0 = P⊥
R(AJ 0 )Y (7)

Φ′ = P⊥
R(AJ 0 )A, Φ̃

′
n = Φ′

n/‖Φ′
n‖2 , ∀n /∈ J0 , (8)

where R0 is the residual and the notations Φ′ and Φ̃
′
n , which

account for the projected measurement matrix, are used to be
consistent with [17]. RA-ORMP initalized with the above steps
is denoted as RA-ORMP-PKS. The remaining steps of RA-
RORMP-PKS are the same as RA-ORMP (Algorithm 3 of [17])
and aim to recover the unknown support J1 . Regarding the
recovery, RA-ORMP-PKS is guaranteed to recover X from Y
in the noiseless case provided that rank (Y a) = k [17].
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2) SNIHT: SNIHT proposes an extension of the iterative
hard thresholding (IHT) algorithm [18] to the MMV problem
[13]. Based on the extension of IHT to partially known support
[15], we suggest SNIHT-PKS in which steps 7 – 9 of SNIHT
(Algorithm 1 in [13]) are replaced by the following:

X i = HJ0
k−|J0 |(X

i−1 + ω(A∗Ri−1)), (9)

where Ri−1 are the residuals at iteration i − 1, ω ∈ R and
the non-linear operator HJ

k (·) is defined for an index set
J ⊂ {1, . . . , n} as

HJ
k (X) = X(J ) + Hk (X(J̄ )), (10)

where Hk (X) is the hard-thresholding operator which selects
the k rows of X with largest �2-norm. We state the main result of
this section, which provides an upper bound on the discrepancy
between the output of SNIHT-PKS and the optimal row-sparse
approximation of the solution.

Theorem 3 (Simultaneous Sparse Approximation with Par-
tially Known Support): Consider that Y = AX(J0 ∪J1 ) + Ẽ.
If A satisfies the following ARIP conditions: 2Uck + 2Lck +
Lk < 1 where c ∈ N is such that ck ≥ 3k − 2|J0 |, then the
error of SNIHT-PKS at iteration i is bounded by:

‖X i − X(J )‖F ≤ αi‖X(J )‖F +
β

1 − α
‖Ẽ‖F , (11)

where α = 2Uc k +Lc k

1−Lk
, β = 2

√
1−Ud k

1−Lk
and d ∈ N is such that

dk ≥ 2k − |J0 |.
The proof is given in the supplementary material of the pro-

posed work. It can be seen that the results are closed to the one
obtained by Carillo et al. [15] for the SMV case, in which the
matrix A has to meet the RIP property of order 3k − 2|J0 |. In ad-
dition, the ARIP conditions provided by Theorem 3 are weaker
than the ones of SNIHT, which can be translated into fewer
measurements necessary to fulfill (11). However, compared to
the bound established in Theorem 1, SNIHT-PKS requires A to
be ck-RIP which is stronger than spark (A) > 2k − |J0 |.

D. MUSIC-Based Methods With Partially Known Support

MUSIC-based algorithms exploit additional information pro-
vided by the signal subspace to help the recovery of X [7]. In
the case of partially known support, we rely on the augmented
measurement matrix Y a rather than Y and we use the following
criterion to identify supp (X): ∀j ∈ J̄0 , j ∈ J1 if and only if
Q∗

aAj = 0 and rank (Y a) = k, where Qa ∈ Rm×(m−k) is an
orthonormal basis of R (Y a)⊥.

In the rank-defective case where rank (Y a) < k, we first
identify k − rank (Y ) components of supp (X) using a greedy
algorithm initialized with the partially known support. The re-
maining rank (Y ) components either come from the signal sub-
space (SA-MUSIC [8]) or are identified based on a generalized
MUSIC criterion (CS-MUSIC [10]). We use the partially known
support to initialize the greedy algorithm since the success of
subspace augmented methods relies on the successful partial
support recovery of the greedy algorithm and it is known that
forward selection approaches perform far better when smaller
subsets have to be recovered [8].

Fig. 1. (a) and (d) Recovery probability of SA-MUSIC-PKS for varying num-
ber of measurements and size of the known support. (b)-(c)-(e)-(f) Recovery
probability of SA-MUSIC-PKS, RA-ORMP-PKS and SNIHT-PKS against SA-
MUSIC, RA-ORMP and SNIHT for varying number of measurements ((b) and
(e)) and varying ranks ((c) and (f)) in a noiseless ((b) and (c)) and in a noisy
scenario ((e) and (f)).

E. Validation on Numerical Experiments

We explore the empirical performance of SA-MUSIC-PKS,
RA-ORMP-PKS and SNIHT-PKS in a noiseless situation and
under additive Gaussian noise with a signal-to-noise ratio of
30 dB. We consider a Gaussian random measurement matrix
A ∈ Rm×n , with Aij ∼ N (0, 1/

√
m) and n is fixed to 128.

The signal matrix X ∈ Rn×N is built as a random matrix, with
N = k = 30. 1000 random trials of the algorithms are run for
each experiment and the recovery probability is computed as
the rate of successful support recovery.

The impact of the partially known support is first analyzed
by comparing the recovery probability of SA-MUSIC-PKS for
a fixed rank (s = 10), for a number of measurements ranging
between 30 and 90, when 0%, 25%, 50%, and 75% of the support
is known a priori. Then, we compare the methods with their
counterpart without known support on two experiments: fixed
rank (s = 10) for a number of measurements ranging between
30 and 90 and fixed number of measurements (m = 51) for a
rank varying between 1 and 30. For both experiments, 75% of
the support is assumed to be known.

On Fig. 1(a) and 1(d), we can see that SA-MUSIC-PKS is
more accurate when larger part of the support is known for both
the noiseless and the noisy cases, as expected. On Fig. 1(b), we
observe that the methods with partially known support achieve
significantly better reconstruction than their counterpart without
known support in a noiseless scenario which validates the main
results of Section II. On Fig. 1(e), we see that the conclusions
drawn for the noiseless scenario extend to the noisy scenario
for SA-MUSIC and SNIHT. Regarding RA-ORMP, we observe
that the results in the noisy scenario are significantly worse than
in the noiseless scenario. Indeed, Y is now full rank which
perturbates the correlation step in the subspace pursuit (widely
studied in the SMV problem [25]). In this case, RA-ORMP-PKS
is only slightly better than RA-ORMP since the algorithm fails to
recover the unknown part of the support. Fig. 1(c) and 1(f) show
the benefits of partially known support in terms of the minimal
value of s for perfect support recovery. As for Fig. 1(b) and 1(e),
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Fig. 2. Ultrasound compressive multiplexer architecture.

we notice that the partially known support significantly helps the
recovery of the different algorithms except for RA-ORMP in the
noisy case. Experiments dedicated to the empirical validation
of Theorem 2 are described in the supplementary material.

III. MULTIPLEXING OF ULTRASOUND SIGNALS

A. Proposed Approach

High-quality 3D US imaging necessitates a US probe of thou-
sands of transducer elements. Connecting such a probe to the
back-end system would require as many cables as the number of
elements which is either unfeasible or prohibitively expensive.
To address this issue, sparse array techniques have been in-
vestigated [30]. Many layouts have been designed, e.g.random
sparse arrays [31], [32], Vernier arrays [33] and row-column
addressed arrays [34]–[36]. Alternatively, micro-beamforming
methods, where part of the imaging process is achieved in the
head of the probe [39], and time multiplexing techniques have
been investigated for both dense and sparse arrays [39]–[41].
While proposing a drastic reduction on the number of elements,
such methods come with a degraded image quality [30].

In this section, we describe a direct application of the pro-
posed algorithms for compressive multiplexing of US signals.
More precisely, we propose to exploit the compressive multi-
plexer (CMUX) [19] architecture to reduce both the number of
coaxial cables and the number of analog-to-digital converters
(ADC) in the back-end system. We consider a US probe made
of N transducer elements which receive signals as backscat-
tered echoes from a previously insonified medium, at a rate Ω
during a time T . The set of those signals is denoted as element
raw-data and stored as M ∈ Rn×N , where n = TΩ. In the pro-
posed architecture, described in Fig. 2, we equip the head of
the probe with Nc CMUX, each of which working at Ω and
compressing Nt signals, with N = NtNc . Thus, one may re-
quire only Nc � N coaxial cables connecting the probe to the
back-end system and only Nc � N ADCs. Formally, the mea-
surements have the following form: Y = A (M) + E, where
A : Rn×Nt → Rn×Nc is the linear operator associated with the
CMUX architecture [19] and E ∈ Rn×Nc is the noise.

US signals are known to have a relatively sparse spectrum
[20], [21] due to the bandpass properties of transducer elements
and the high sampling frequency required for delay resolution
in delay-and-sum (DAS) beamforming [29]. In addition, we

Fig. 3. Log-compressed B-mode images (40 dB) of an in-vivo carotid. (a)-
Reference. (b)-SNIHT-PKS (PSNR = 45 dB). (c)-SNIHT (PSNR = 28 dB).

usually have a partial knowledge of such a spectrum which
is measured by probe manufacturers. Thus, we are in a sce-
nario where joint sparse algorithms with partially known support
can be leveraged. Puts formally, we introduce the 1D discrete
Fourier transform F ∈ Cn×n and the associated Fourier coeffi-
cients M̂ = FM such that supp(M̂) = J0 ∪ J1 , where J0 is
the known part of the spectrum, |supp(M̂)| � n, and we solve
the following joint-sparse regularization problem:

min
M̂∈Cn×N

‖M̂‖0,row subject to Y = A(F ∗M̂) + E. (12)

B. In Vivo Ultrasound Signals

US signals from in vivo carotids have been acquired using a
Verasonics Vantage 256 equipped with the ATL-L7-4 probe (128
el., 5.2 MHz center freq., 60% bandwidth). The CMUX architec-
ture is simulated off-line using Python and works at 62.5 MHz,
with a multiplexing ratio 1/8. On the reconstruction side, we use
SNIHT-PKS with 500 iterations. The reasons for the choice of
SNIHT-PKS are the high rank-deficiency which motivates the
use of rank-blind algorithms; the robustness to noise of SNIHT-
PKS (Theorem 3); and the high dimensionality of the data which
prevents us from using pseudo-inverses or EVD, necessary for
RA-ORMP and SA-MUSIC. We assume that J0 contains the
indices of the frequencies lying between 2.9 MHz and 6 MHz
which corresponds to 85% of the signal energy. DAS beamform-
ing is applied on the recovered US signals followed by envelope
detection, normalization and log-compression. The reference B-
mode image is displayed in Fig. 3(a). The images corresponding
to the reconstructions with SNIHT-PKS and SNIHT are given
in Fig.3(b) and 3(c).

Both visual assessment and values of the peak-signal-to-
noise-ratio (PSNR), computed on the B-mode image and re-
ported in the caption of Fig. 3, show the superior quality of the
reconstruction with SNIHT-PKS compared to SNIHT.

IV. CONCLUSION

We investigate the recovery of jointly sparse vectors when
partial support is known. We quantify the benefits of the known
support in terms of a higher upper bound on the row-sparsity than
standard MMV problems. We also suggest adaptations of greedy
algorithms as well as MUSIC-based methods to incorporate the
additional information. We apply the proposed algorithms to the
recovery of ultrasound signals from compressed measurements,
where the objective is to multiplex signals in order to reduce
the number of coaxial cables and ADCs. By exploiting the prior
knowledge on the frequency support of the signals, we demon-
strate that the proposed algorithms significantly outperform the
standard MMV ones.
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