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3D Solid Texture Classification Using
Locally-Oriented Wavelet Transforms

Yashin Dicente Cid, Henning Müller, Alexandra Platon, Pierre-Alexandre Poletti, and Adrien Depeursinge

Abstract— Many image acquisition techniques used in
biomedical imaging, material analysis, and structural geology are
capable of acquiring 3D solid images. Computational analysis
of these images is complex but necessary, since it is difficult
for humans to visualize and quantify their detailed 3D content.
One of the most common methods to analyze 3D data is to
characterize the volumetric texture patterns. Texture analysis
generally consists of encoding the local organization of image
scales and directions, which can be extremely diverse in 3D.
Current state-of-the-art techniques face many challenges when
working with 3D solid texture, where most approaches are
not able to consistently characterize both scale and directional
information. 3D Riesz–wavelets can deal with both properties.
One key property of Riesz filterbanks is steerability, which can
be used to locally align the filters and compare textures with
arbitrary (local) orientations. This paper proposes and compares
three novel local alignment criteria for higher-order 3D Riesz–
wavelet transforms. The estimations of local texture orientations
are based on higher-order extensions of regularized structure
tensors. An experimental evaluation of the proposed methods for
the classification of synthetic 3D solid textures with alterations
(such as rotations and noise) demonstrated the importance of
local directional information for robust and accurate solid texture
recognition. These alignment methods achieved an accuracy of
0.95 in the rotated data, three times more than the unaligned
Riesz descriptor that achieved 0.32. The accuracy obtained is
better than all other techniques that are published and tested on
the same database.

Index Terms— 3D solid texture analysis, 3D texture
classification, Riesz–wavelets steerability, aligned higher–order
Riesz–wavelet transform, rotation–covariance.

I. INTRODUCTION

IMAGING techniques in areas such as biomedical
imaging [1], material analysis [2], and structural geol-

ogy [3], allow the acquisition of 3D solid texture (3DST)
images. These images consist of textured dense 3D volumes,
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containing 2D textures in all planes of R
3. Most 3D data are

analyzed in 2D slices, as this is the easiest for volumetric
navigation. Computational approaches are required because
humans are not able to fully visualize, easily interpret and
quantify 3DST properties. The automatic analysis of 3DST
remains a challenging topic. Spatial scales and directions in
images are fundamental for texture discrimination [4], [5].
In most cases, systems capable of acquiring 3D images also
provide voxel sizes in physical dimensions and controlled
viewpoints (such as X–ray computed tomography, CT or
magnetic resonance imaging, MRI). In this case, the analysis
of image scales requires describing 3DST at multiple scales
and not using scale–invariant descriptors, the latter entailing
the risk of regrouping patterns of different nature. Scale is
itself a powerful discriminative property.

Much work has been done on 2D texture analysis since
the 1970s and many approaches exist, as it is less complex
than in 3D [1]. Popular approaches are gray–level matrices
(co–occurrence [6], run–length [7], and size–zone [8]), local
binary patterns (LBP) [9], wavelets and filterbanks (Laplacian
of Gaussian [10], Gabor [11], maximum–response eight [12],
Riesz [13], [14]), fractals [15], and learned representations
(dictionary learning [16], deep convolutional neural net-
works [17]). In natural images, 2D analysis also often includes
visual descriptors such as color, shape, and appearance [18]
that complement texture. 3D extensions of color descriptors
are relatively straightforward. Many 3D shape descriptors exist
and are usually based on 3D surface models but can also be
based on solid 3D information [19]. For image classification
or object recognition these features are aggregated in the form
of visual words or Fisher vectors. This article aims only at
describing texture properties in 3DST, and it does not cover
color or shape features that can be combined with texture.

First attempts for describing 3DST were based on extending
2D texture descriptors to 3D. LBPs [9] were extended to
3D in [20]. 2D LBPs encode the local organizations of
image directions by constructing binary codes over circular
neighborhoods. Histograms of pattern occurrences can be
used as a texture descriptor. Image rotations result in circular
shifts of the LBPs and rotation–invariance can be obtained
by using the magnitude of the discrete Fourier transform
of the LBPs [21]. When extended to 3D, defining ordered
spherical neighborhoods is not trivial, making it difficult
to obtain rotation–invariance. Solutions were proposed using
spherical harmonics [22] and cylindrical neighborhoods [23].
However, the radius of the neighborhood (scale) required
by LBPs is controlled by a parameter that needs to be
optimized for every application. Another set of descriptors

1057-7149 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on May 04,2020 at 23:09:38 UTC from IEEE Xplore.  Restrictions apply. 



1900 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 4, APRIL 2017

used to describe 3DST is based on gray level co–occurrence
matrices (GLCMs) [24], [25]. A GLCM contains the counts of
all co–occurrences between two voxel values separated by a
distance r and in a specific direction. In 3D, the directions are
defined for every surface point of a spherical neighborhood
centered at each voxel. The radius r of the neighborhood
defines the scale. Texture descriptors can be obtained from
each matrix by calculating, for example, the homogeneity,
entropy or energy of a matrix in a specific direction and scale.
Rotation–invariant features can be obtained by summing the
descriptors obtained from GLCMs in all directions, so a subset
of 13 uniformly distributed directions. This procedure discards
the directionality of the descriptor. Similarly to 3D LBPs, the
scales need to be defined manually and require optimization.
GLCMs usually require a reduction of the bit depth used to
describe voxel values: the number of possible co–occurrences
is extremely large, leading to unstable values or extremely
sparsely populated matrices. Run–length encoding (RLE) [7]
was extended to 3D in [26]. Similarly to GLCMs, this method
requires reducing gray–levels and choosing directions. The
requirement of making arbitrary choices entails the risk of
losing important information. However, in RLE, the scale is
not fixed and the descriptor can encode several dominant scales
(run–lengths).

While these methods presented simple solutions to deal
with texture directionality and rotation–invariance, they do not
encode image scales and directions in a systematic fashion.
Wavelets constitute an attractive solution to fully exploit
texture information at multiple scales through multi–resolution
image representations, where their Fourier transform is sys-
tematically split into a series of dyadic bands [27]. To that
end, wavelets were successfully used for texture analysis in
2D [11], [14], [28]–[30] and 3D [31]–[33]. Fully leverag-
ing the directional information of textures is a challenging
problem, which is even more difficult in 3D. In most cases,
local rotation–invariance is required because class–specific
texture primitives or textons as well as the essential matter
“stiches” have random local orientations [34]. In addition,
the local organization of image directions (LOID), or how
directional structures intersect, is fundamental for texture
segregation [35]. Therefore, an inherent dilemma of direc-
tional texture analysis is to either use (i) texture operators
that are insensitive to directions and invariant to rotations
(such as measurements based on gray–level matrices averaged
over multiple directions or isotropic filters and wavelets) or
(ii) use directional operators that are able to characterize the
LOIDs but not in a rotation–invariant fashion. In particular,
isotropic–wavelets are rotation–invariant but they are not able
to encode the directionality of the texture. The latter can
be recovered by coupling each isotropic bandpass filter with
directional filters, resulting in a loss of rotation–invariance.

The d–dimensional Riesz–wavelet transform combines
isotropic–wavelets and directional all–pass filters [36], [37].
The filters behave like local higher–order partial image
derivatives. Several papers have already shown the ben-
efits of the 3D Riesz–wavelet transform when analyzing
3DST [33], [38]–[41]. The order of the Riesz transform
controls the richness of the directional filterbank, where

Fig. 1. Two examples of 3DST images where a circular section is removed
to show the solidity of the interior.

increasingly complex structures can be described with
higher orders. A key property of Riesz–wavelets is
steerability [42]–[44]. This means that the local response of
each Riesz component to an image rotated by an arbitrary
angle can be derived analytically from a linear combination of
the responses of all components of the filterbank. Therefore,
the descriptor can be locally aligned analytically (meaning that
it does not require convolving the image with the rotated filter)
without losing the directional information. This property is
known as rotation–covariance and it allows comparing textures
with arbitrary local orientations [14], [39]. The steerability
of the 3D Riesz–wavelet transform is described in the liter-
ature [13], [37] in which case the local image directions are
known. The estimation of the latter in the context of complex
3D texture patterns is challenging. Chenouard et al. proposed
to estimate local image orientations when using 1st–order
Riesz–wavelets [45] that encode simple image gradients.
In most cases, the characterization of complex structures
containing subtle directional information requires using
higher–order Riesz filters.

The main contribution of this paper is to develop and com-
pare three methods for estimating local texture orientations
from Riesz transforms of any order in the context of 3DST
analysis. The paper is structured as follows: Section II defines
3DST information and the database used in the experiments.
Section III introduces the formulation and definitions required
to understand the alignment methods presented in Section IV.
The experimental setup is then detailed in Section V, and the
results are presented in Section VI. The discussion of the
results takes place in Section VII, followed by conclusions
and perspectives (Section VIII).

II. 3D SOLID TEXTURE (3DST)

A 3D solidly textured image corresponds to a uniformly
textured volume in 3D. Textures existing in more than two
dimensions cannot be fully visualized by humans. Only vir-
tual navigation in multi–planar rendering or semi–transparent
visualization allows visualizing subregions in 2D projections
or slices. Figure 1 shows two examples of 3DST images.

The methods developed in this work were evaluated using
the RFAI database1 (Reconnaissance de Formes, Analyse

1http://www.rfai.li.univ-tours.fr/fr/ressources
/3Dsynthetic_images_database.html, as of June 13, 2016.
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Fig. 2. A total of 15 classes compose the Fourier dataset of the RFAI
database. A three–dimensional visualization of one instance of every class is
shown. Each instance is a 3D image of 64 × 64 × 64 voxels.

Fig. 3. The Geometric dataset of the RFAI database is composed of
25 classes. Each instance is a 3D image of 64× 64× 64 voxels.

d’Images) of 3D synthetic textured images [46]. This is
one of the few 3DST databases available with clear ground
truth. Two datasets of this database containing images of size
64× 64× 64 voxels of different nature were chosen. The first
dataset is called Fourier and contains 15 classes of texture built
from synthetic distributions in the Fourier domain. The second
is called Geometric and contains 25 classes of texture con-
structed using random positioning of geometric shapes such
as spheres, cubes, and ellipses. A detailed description of the
two datasets can be found in [46]. Figures 2 and 3 show one
instance of every class for the Fourier and Geometric datasets
respectively. Each class contains ten instances generated with
the same random process. Figure 4 shows the ten instances
of one class of the Geometric dataset. Four additional subsets
for each dataset were created by applying various alterations

Fig. 4. Each class in both subsets (Fourier and Geometric) contains ten
instances. The ten images of one class of the Geometric dataset are shown.
They were generated with random positioning of the same basic shape, that
in this example corresponds to cubes with a uniform gray level value.

Fig. 5. Every image in the database is provided together with four alterations:
Normal (no alteration), Noise (Gaussian noise), Smooth (Gaussian blur),
Rotate (3D rotation) and Subsampling. This figure shows one image of one
class of the Geometric dataset and its four alterations.

to the initial images. In total, five subsets are available per
dataset corresponding to the following alterations applied to
each image: Normal (no alteration), Noise (Gaussian noise),
Smooth (Gaussian blur), Rotate (3D rotation) and Subsam-
pling. An example of each of the alterations applied to one
image is shown in Figure 5.

The RFAI database was built to provide reference 3DST
data for comparing approaches of 3D texture segmentation,
retrieval and classification. For the segmentation task, the
database was used to evaluate several state–of–the–art descrip-
tors in [47] and [48] and to design new features capable to
encode the human perception of texture [49]–[51]. Suzuki et
al. used the database to evaluate a texture retrieval technique
developed previously [52], [53], as well as a novel key–point
detector [54]. For the classification task, Maani et al. used
this database to compare existing 3DST descriptors in [55].
These were: 3D GLCM [25], 3D LBP [56], second orientation
pyramid (SOP) filtering [57], [58] and a novel approach based
on the local frequency descriptor (LFD) [59]. Unfortunately,
only the Normal subset of the Fourier dataset was used
and can thus be compared to our approach. However, these
classification results are used as a baseline for this subset.
The accuracies of these methods on the chosen subset were:
LFD 0.99±0.01, 3D GLCM 0.73±0.04, 3D LBP 0.80±0.04,
and SOP 0.97 ± 0.02. Wagner et al. selected nine classes of
this database with a similar appearance to biological textures
to test their classification method in [60]. A direct comparison
with the performance achieved by our method is difficult,
since the aforementioned studies did not specify the validation
strategy used to estimate the classification performance, so
how the data was partitioned between training and test data.
The rotation subset was excluded from their experiments,
which limits the evaluation of the rotation–invariance of the
methods used.
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To summarize, this database was used for testing descrip-
tors with several designs but the evaluation was most often
reduced to artificially chosen subsets and classes. In this work,
all texture alterations provided by the authors of the RFAI
database were used to evaluate the robustness of the proposed
methods. The two datasets chosen, Fourier and Geometric,
are complementary in the sense that the former contains
textures with well defined properties in the Fourier domain,
while the latter includes textures based on geometric spatial
shapes. There is a lack of real 3DST in this database as it
only contains synthetic textures. Nonetheless, the two selected
datasets together include a broad range of texture patterns that
can be found in areas such as biomedical imaging [1], and
material composition [2].

III. HIGHER–ORDER RIESZ–WAVELET TRANSFORM

This section presents all the preliminary knowledge required
to introduce the methods explained in Section IV. We first
introduce the notation used in this paper that is common to
the state–of–the–art. Then, the higher–order Riesz transform
is defined for a 3D image. The following subsection shows
how to steer the Riesz components when the orientation
of the original image is known. The coupling of the Riesz
transform with isotropic–wavelets is explained in the next
subsection. It also explains how the steering of the Riesz
components commutes with the isotropic–wavelet framework.
The approach proposed by Chenouard and Unser [45] to
estimate the local orientation of 1st–order Riesz components is
then introduced. The formal definition of rotation–covariance
follows. Finally, a differentiation of the Riesz components
based on their profile is defined. This distinction is required
to highlight the importance of the methods proposed in this
work.

A. Notation

1) The image as a 3D Signal: A 3D image is considered a
3D signal f indexed by the continuous–domain space variable
x = (x1, x2, x3) ∈ R

3. The 3–dimensional Fourier transform
F of f is noted as:

f (x)
F←→ f̂ (ω) =

∫
R3

f (x)e− j 〈ω,x〉dx1dx2dx3, (1)

with the pulsation vector ω = (ω1, ω2, ω3) ∈ R
3.

2) Multi–Index Notation: Following the notation used
in [37], we consider 3D index vectors of the form
n = (n1, n2, n3) ∈ N

3. The following multi–index notations
and operators are used:
• Sum of components: |n| = n1 + n2 + n3,
• max of components: max(n) = max(n1, n2, n3),
• factorial: n! = n1!n2!n3!,
• exponentiation of a vector v = (v1, v2, v3) ∈ R

3:
vn = vn1

1 v
n2
2 v

n3
3 .

B. Higher–Order Riesz Transforms of 3D Signals

Unser and Van de Ville presented in [43] the N th–order
Riesz transform of a d–dimensional signal R(N) { f }. In the

Fig. 6. 1st–order Riesz filters Rn convolved with Gaussian kernels G(x).
The three filters have exactly the same profile but different orientations. They
are oriented along each of the three directions x1, x2 and x3 of R

3.

Fig. 7. 2nd–order Riesz filters Rn convolved with Gaussian kernels G(x).
There are two groups of three filters with the same profile but different
orientations.

case of 3–dimensional signals, the Riesz transform of order
N ∈ N is composed of M = (N+2)(N+1)

2 components that are
denoted by Rn, with n = (n1, n2, n3) ∈ N

3 such that |n| = N .
Given ω = (ω1, ω2, ω3) ∈ R

3, each of these operators is an
all–pass filter with the directional frequency response defined
in Fourier as

R̂n(ω) = (− j)N

√
N !

n1!n2!n3!
ω

n1
1 ω

n2
2 ω

n3
3

(ω
n1
1 + ωn2

2 + ωn3
3 )

N
2

. (2)

Figures 6 and 7 show the 1st– and 2nd–order Riesz compo-
nents. They are presented convolved with Gaussian kernels
in order to visualize the profile since the support of the
components is all R

3. The 2nd–order Riesz filters shown in
Figure 7 are used to illustrate properties of the higher–order
components in further sections.

C. Steerability

The Riesz filterbanks are steerable [43], [44], which means
that the local response of each component Rn of an image
f (x) rotated by an arbitrary rotation matrix R ∈ R

3×3

(represented by fR) can be derived analytically from a lin-
ear combination of the responses of all components of the
filterbank, using a steering matrix SR as

R { fR} = SRR { f } , (3)

where R denotes the Riesz transform of any order.
Unser et al. demonstrated in [13, Th. 1] that for a given 3D

rotation matrix R = (r1, r2, r3)
T with r i ∈ R

3, the steering
matrix SR with elements sn,m (in multi–index notation) is
defined as

sn,m =
√

m!
n!

∑
|k1|=n1

∑
|k2|=n2

∑
|k3|=n3

δk1+k2+k3,m

· n!
k1!k2!k3! r

k1
1 rk2

2 rk3
3 , (4)

where ki ∈ N
3 and δk1+k2+k3,m is the Kronecker symbol used

to exclude the summation terms with k1 + k2 + k3 �= m.
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This steering matrix preserves the inner–structure of the Riesz
filters, i.e., rotating their coefficients in a coherent way by
preserving the angles between the elements of the filterbank.

A consequence of this theorem is that, if the rotation
matrix R is known, it is possible to analytically align the Riesz
coefficients applying the steering matrix SR, where the Riesz
transform of f (x) is computed only once.

D. 3D Riesz–Wavelet Pyramid

The Riesz transform has the property to map any frame
of L2(R

3) (including wavelet frames) into L2(R
3) since it

preserves the inner product of L2(R
3) [36]. In this work, we

used the Riesz–wavelet construction proposed by Chenouard
and Unser in [45]. The latter consists in applying the 3D
Riesz transform to the coefficients of an isotropic–wavelet
pyramid2 to build a steerable wavelet transform in 3D. In
this case, the Riesz and wavelet transforms can be commuted.
The Riesz transform is applied to each scale of the isotropic
pyramid defined by the wavelet function ψ . When using an
isotropic primary wavelet, the directionality information is
encoded at each scale of the pyramid by the Riesz transform
only. The Riesz–wavelet coefficients can thus be steered using
the same steerability matrix SR as the Riesz coefficients (see
Eq. (3)). Specifically, the coefficients qk,U(x) corresponding
to a rotation of the Riesz–wavelet atoms by the unitary matrix
U are computed as:

qk,U(x) =RU {ψk ∗ f } (x) = UR {ψk ∗ f } (x) = Uqk(x),

(5)

where ψk is the ψ isotropic wavelet at scale k.

E. Tensor–Based Estimation of Local Orientations

In [45], Chenouard and Unser presented a tensor–based
estimation of the local orientation for the 1st–order Riesz
transform at a position x0. This estimation relies on computing
the eigenvectors of the tensor matrix J(x0), with

J(x0)

=
⎛
⎝ R2

1{g ∗ f }(x0) R1R2{g ∗ f }(x0) R1R3{g ∗ f }(x0)

R2R1{g ∗ f }(x0) R2
2{g ∗ f }(x0) R2R3{g ∗ f }(x0)

R3R1{g ∗ f }(x0) R3R2{g ∗ f }(x0) R2
3{g ∗ f }(x0)

⎞
⎠,
(6)

where g(x) is the regularization function of the orien-
tation map, in our case a 3D Gaussian window, and
R = (R(1,0,0),R(0,1,0),R(0,0,1)) = (R1,R2,R3).

The collection of eigenvectors of J(x0) sorted by eigen-
value, defines a rotation matrix Ug . For each location x0,
the resulting matrix Ug maximizes the energy of the first
component of the rotated Riesz transform UgR { f }. It then
maximizes the residual energy for the second component, and
then for the third.

2A redundant pyramid is used to ensure translation–invariance of the wavelet
transform.

F. Rotation–Covariance

Orienting the Riesz operators Ri locally following
the approach explained in Section III-E, is referred to as
rotation–covariance (represented by RRC{ f }(x)), where the
organization of image directions is characterized indepen-
dently from its local orientation [14], [39]. The latter dif-
fers from the monogenic signal [45], since all the scales
of the wavelet frame are aligned using the same rotation
matrix Ug derived from the highest image resolution regu-
larized by g(x). It also differs from rotation–invariant oper-
ators since RRC{ f }(x) is directional. Rotation–covariance is
warranted while the Riesz operators are steered coherently.
In the case of the 2nd–order Riesz transform, if after steering
the components the response corresponding to the component
G ∗R(0,2,0) is moved to the component G ∗R(2,0,0), then, to
preserve the relation between the components, the response
to the component G ∗ R(0,1,1) needs to be moved to the
component G ∗R(1,0,1) (see Figure 7). The steering matrix SR
defined in Eq. (4) preserves the coherence between the compo-
nents. In the case of the 1st–order Riesz transform, as defined
in Section III-E, given a rotation matrix Ug , it results that
SUg = PUg , where P ∈ R

3×3 is a permutation matrix. P does
not affect the property of rotation–covariance, thanks to the
equivalence of the profiles of the Riesz components of order 1
(see Figure 6).

G. Uni–Directional and Multi–Directional Riesz Components

In the following sections, we distinguish uni– from
multi–directional components. This distinction is based on the
directional profiles of the Riesz components.

Definition 1: We define as uni–directional Riesz compo-
nents the components Rn with max(n) = N. Multi–directional
Riesz components are then those with max(n) < N.
As an example, Figure 7 contains three uni–directional com-
ponents (G ∗R(2,0,0), G ∗R(0,2,0), and G ∗R(0,0,2)) and three
multi–directional components (G ∗R(1,1,0), G ∗R(1,0,1), and
G∗R(0,1,1)). For a 3–dimensional signal there are always three
uni–directional Riesz components. These filters are encoding
the variations of a signal only along one of the three main
directions of the image f (x). In the particular case of the
1st–order Riesz transform, all components are uni–directional
(see Figure 6).

IV. METHODS

Based on these points, the open questions are the following:
“How can we estimate local image orientations based on
higher–order Riesz transforms?” and, “Can we apply the same
technique as defined in Section III-E?”. In this section, three
approaches for estimating local image orientations based on
3D Riesz transforms of any order are proposed and qualita-
tively compared.

A. Local Image Orientation Estimation Based
on M–D Riesz Representations

This section presents the straightforward extension of the
technique explained in Section III-E from the 1st– to the
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N th–order. The N th–order Riesz transform is composed
of M components. This extension consists in building a
matrix J(x0) ∈ R

M×M with all the Riesz components
(R1, . . . ,RM ) as

J(x0) =
⎛
⎜⎝

R2
1{g ∗ f }(x0) · · · R1RM {g ∗ f }(x0)

...
...

RMR1{g ∗ f }(x0) · · · R2
M {g ∗ f }(x0)

⎞
⎟⎠. (7)

It is worth to notice that the Riesz filters (R1, . . . ,RM ) do not
have the same profile when N > 1. This was not the case in
Eq. (6), where the three filters only differed in their orientation
and yet had the same profile (see Figures 6 and 7). Following
Eq. (6) in Section III-E, an M–dimensional unitary matrix Ug

can be built from a sorted collection of the eigenvectors
of J(x0). Ug can be used as a rotation matrix in R

M to
align the Riesz transform. Eq. (8) shows the final form of
this aligned transform RMD.

RMD { f } = UgR { f } (8)

This procedure yields rotation–invariant texture descrip-
tors but it does not rotate the Riesz components coherently,
breaking then their directional inner structure. In this case,
Ug cannot be used as a steering matrix following Eq. (4)
(see Section III-F). This method reorders the responses of
the Riesz filters independently from the directional pattern
that they are encoding, discarding the property of rotation–
covariance as well as the ability to characterize the local
organization of image directions. We demonstrate why the
inner–structure of the Riesz filterbanks is not preserved
with the application of Ug and what is its inconvenience.
Proposition 1 demonstrates that the result of applying Ug to
a given Riesz vector R always produces the same aligned
vector, independently of the initial order of the components.

Proposition 1: Let R(x0) ∈ R
M be the Nth–order Riesz

transform at the position x0 ∈ R
3 of f (x0), and let

J(x0) be the matrix defined in Eq. (7). Let U be the
matrix composed of the sorted collection of eigenvectors
of J(x0). Given a permutation matrix P ∈ R

M×M , we define
R̃(x) = PR(x),∀x ∈ R

3. We name J̃(x0) the matrix defined
in Eq. (7) for R̃. Then, ∀ P,UR(x0) = ŨR̃(x0), where Ũ is
the sorted collection of eigenvectors of J̃(x0).

Proof: To simplify the notation we omit specifying the
position x0.

It is straightforward that J̃ = PJP−1. This expression
corresponds to a change of the basis and the eigenvalues of the
matrices J̃ and J are the same. Let � be the diagonal matrix
containing the eigenvalues of J and J̃ ordered in descending
order. Then,

J̃ = PJP−1 = PUT�(UT )−1P−1 = PUT�(PUT )−1. (9)

Since J̃ = ŨT�(ŨT )−1, then ŨT = PUT , i.e., Ũ = UPT .
Hence,

ŨR̃ = UPT PR = UR, (10)

because by definition PT = P−1 as P is a permutation
matrix.

The limitation of this approach is exemplified when two
different patterns yield identical overall filterbank responses
but are distributed in components with different profiles.
In this case, aligning the Riesz components with the
M–dimensional matrix Ug produces the same vector R̃ for
both texture patterns, even if they differ. This method entails
the risk of mixing image responses to Riesz components with
different profiles, creating a rotation–invariant but not rotation–
covariant descriptor, i.e., not preserving the directional rela-
tions between filters. The method only assigns the response of
the filter with the highest energy to the first component of the
Riesz transform, no matter which is the first component. The
resulting feature vector is always the same for any sorting
of the Riesz components. This technique is referred to as
M–dimensional alignment in the following sections.

B. Local Image Orientation Estimation Based
on Uni–Directional Riesz Components

This method only uses the Riesz coefficients corresponding
to the uni–directional Riesz components to estimate local
image orientations (see Def. 1). These three components
are orthogonal and encode the N th–order image derivatives
along each 3D direction (∂N/∂x N

1 , ∂
N /∂x N

2 , ∂
N /∂x N

3 ). Their
profiles are rotated versions of each other and encode the
same type of texture patterns but along different direc-
tions. Every N th–order Riesz transform contains exactly three
uni–directional Riesz components.

For this alignment, the tensor J(x0) proposed in Eq. (6)
is constructed using the response at the position x0 to these
three filters. We refer to this tensor as JUd(x0). The rotation
matrix UUd

g can be computed from the eigenvectors of JUd(x0)
(see Section III-E). Eq. (4) yields the steering matrix SUUd

g
,

that is M ×M . This steering matrix is used to align the Riesz
components as shown in Eq. (11).

RUd { f } = SUUd
g

R { f } (11)

In this particular case, the estimation of the local orientation
is solely based on the uni–directional components of the
N th–order Riesz transform. All Riesz components are subse-
quently aligned with the M–dimensional steering matrix SUUd

g
.

This technique is referred to as uni–directional alignment in
the following sections.

C. Local Orientation Estimation Based
on 1st–Order Riesz Components

The estimation of the local orientation described in
Section III-E can be used to align higher–order filters. Using
the 1st–order filters, the local orientations of the image are
estimated by the technique explained in Section III-E, yielding
the matrix Ug . In this case, we refer to this unitary matrix
as UO1

g since only the 1st–order filters are used. Applying
then Eq. (4), the M–dimensional steering matrix SUO1

g
for the

N th–order Riesz transform is computed. Then, the
M–dimensional vector of Riesz components can be aligned
applying this steering matrix (see Eq. (12)).

RO1 { f } = SUO1
g

R { f } (12)
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This technique is referred to as 1st–order alignment in
the following sections. In this case, the local orientation is
computed based on image gradients. Since the estimation of
the local orientations is always based on the 1st–order Riesz
components, it remains stable when the order of the transform
increases. Thanks to steerability, the three uni–directional
components of the 1st–order Riesz transform cover all 3D
image directions. However, this coverage is not complete when
only using uni–directional components of the higher–order
Riesz transform. In addition, the 1st–order Riesz transform
of the image is required for this alignment, but since higher–
order Riesz transforms can be obtained from recursions of the
1st–order Riesz transforms, the latter can be kept for further
estimation of the local orientations.

V. EXPERIMENTAL SETUP

Our methods were evaluated and compared across five
orders of the Riesz transform (from 0 to 4). Order 0 means that
only the wavelet framework was applied, resulting in only one
feature per spatial point and scale. To maintain the property
of translation–invariance, the undecimated wavelet transform
was used. The wavelet framework used is based on isotropic–
wavelets with optimal bandwidth [33], [61]. The dimension
M of the Riesz transform of each scale for the orders 1 to 4
are 3, 6, 10 and 15 respectively. The number of scales was set
up with respect to the side length (cv ) of the cubic volumes
as log2(cv )− 1. Which results in five scales, as every image
in the selected datasets contains 64 × 64 × 64 voxels. The
steering matrix SR presented in Eq. (4) was only computed
for the first scale and was then applied to all the scales. One
important parameter when aligning the Riesz filters is the σ
of the regularization Gaussian window applied to compute the
neighborhood of the point x0 (see Sections III-E, IV-A, IV-B
and IV-C).

The final feature space consisted in the concatenation
of the energies of the Riesz–wavelet coefficients averaged
over the entire solid volumes. One–versus–all support vector
machine (SVM) [62] classifiers with a linear kernel were used
to learn and predict the class labels. The LIBSVM library [63]
was used. When using linear SVMs, the only parameter to
optimize is the cost (C) of errors. Values from 10−4 to 104

with a logarithmic step of 1 were tested (9 values in total).
A leave–one–out (LOO) cross–validation (CV) was used to
optimize C and to estimate the testing performance. For all
image alterations (including Normal) and each fold of the
LOO CV, the training of the classifier was performed using
exclusively the unaltered images (Normal subset).

The overall effectiveness of the methods proposed is com-
pared using the average accuracy (Accav) of the classification.
Accav is a trustworthy measure when evaluating classifiers on
balanced classes with similar distributions [64]. The repre-
sentation of classes in all subsets is strictly balanced, and
the different elements inside a class were generated with a
similar random process. The resulting classes have a similar
distribution in the aligned and unaligned M–dimensional Riesz
space. For a multi–class classification problem with l classes

Fig. 8. The cost C is optimized for each fold of the LOO CV with the Normal
subset. The accuracy of our method is defined as the accuracy obtained when
using the value of C that performed best on the training set. This example is
based on an M–dimensional alignment method, Riesz order 1, σ = 3, dataset
Geometric, and testing with the Rotate subset. The maximum accuracy in the
training phase (using the Normal dataset) was 0.99 and was achieved when
C = 103 (marked in red). The accuracy on the test set (using the Rotate data)
for this C was 0.77 and is marked in green. The selected accuracy on the
test set was not the best achieved, which is 0.78 and is marked in blue). This
method prevents data overfitting when selecting the value of C .

{Class1, . . . ,Classl}, the average accuracy is

Accav =
∑l

i=1
tpi+tni

tpi+fni+fpi+tni

l
, (13)

where tpi , fpi , tni and fni are the true positives, false posi-
tives, true negatives and false negatives of Classi respectively.
Accav is referred to as accuracy.

VI. RESULTS

The accuracy shown in this section was obtained on the test
sets of the LOO CV (see Section V). The cost parameter C
that performed best in the training set, i.e., Normal subset,
was used. Figure 8 details the procedure to select the best C
from the training set.

This procedure is repeated for each Riesz order tested
(from 0 to 4) and each alignment method explained in the
previous sections. We recall that order 0 means using the
isotropic–wavelet framework only, which does not require
aligning the Riesz components. The influence of the σ value
of the regularization Gaussian window used to compute the
local orientations was investigated for each alignment method
and Riesz order. 8 σ values were chosen in [0.5; 4] with a
step of 0.5. These bounds were chosen based on preliminary
experiments but did not guarantee to find the optimal value
of σ in all cases. Figure 9 shows a detailed example with
the accuracy obtained for each σ . The σ did not affect the
unaligned Riesz transform (dark blue).

Figures 10 and 11 show the accuracies obtained for
the datasets Fourier and Geometric respectively. In order to
summarize the results achieved (1,600 accuracies obtained in
total after the parameter selection), only two values are shown
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Fig. 9. Influence of tensor regularization σ on the classification accuracy.
These accuracies were obtained with the subset Rotate of the Geometric
dataset when using the 4th–order Riesz transforms. Each color corresponds
to a different alignment technique. Dark blue corresponds to unaligned Riesz
transforms. Each bar corresponds to the accuracy obtained for a single value
of σ ∈ [0.5; 4]. The dashed line shows the maximum accuracy achieved and
its color corresponds to the method achieving this maximum.

TABLE I

BEST CLASSIFICATION ACCURACY OBTAINED BY EACH ALIGNMENT
METHOD FOR THE Fourier SUBSETS. THE LAST FOUR METHODS

CORRESPOND TO THOSE PRESENTED IN [59] (SEE SECTION II)

TABLE II

BEST CLASSIFICATION ACCURACY OBTAINED BY EACH

ALIGNMENT METHOD FOR THE Geometric SUBSETS

per alignment strategy (M–dimensional, uni–directional and
1st–order), Riesz order, and subset. These values correspond
to the worst and best accuracies obtained when varying the
σ value. For order 1, the three alignment methods are
equivalent. In the case of order 0, only one bar is presented,
as σ is not used. Only one bar is also shown for the unaligned
method. Tables I and II summarize the results obtained for
each subset, where the best performance achieved by each
alignment method is shown. Moreover, Table I contains the
performance of the methods obtained in [59] on the Normal
subset.

a) Fourier dataset: The average accuracy of a random
multi–class classifier is 1/ l, where l is the number of classes.
In the case of the Fourier dataset that contains 15 classes
this is 0.07. Figure 10 summarizes the results obtained for the
Fourier dataset. For the subsets Normal, Rotate and Noise, the
isotropic–wavelet framework (with Riesz order 0) achieved

Fig. 10. Accuracies obtained for the Fourier dataset. Maximum and minimum
accuracies with respect to σ are shown for each combination of alignment
methods, Riesz order and texture alteration. For each subset, the maximum
accuracy obtained is highlighted with a dashed line in the color corresponding
to the method that achieved it. In the case of the Normal and Noise
subsets, most aligning strategies achieved the maximum accuracy of 1.00 for
orders > 1. The dashed line is then shown in black and one colored–value
per method is shown at the right of the graph.

an accuracy above 0.87 in all cases. It did not perform as
good for Smooth and Subsampling. It is worth noticing that
for Rotate, it performed better than using the unaligned Riesz
transforms of any order > 0. The advantage of using the
aligned Riesz transform is highlighted in this subset. It can also
be observed that the uni–directional alignment is not as good
as any of the others. Moreover, this method performed worse
when the Riesz order was increased. The M–dimensional
and the 1st–order alignment strategies performed similarly
for this dataset. Both had an overall performance better than
the uni–directional and much better than the unaligned Riesz
transform. Furthermore, their performance increased with the
order of the Riesz transform.

b) Geometric dataset: The average accuracy of a random
multi–class classifier for the Geometric dataset containing
25 classes is of 0.04. Figure 11 illustrates the results obtained
for this dataset and shows that the accuracy of the unaligned
Riesz transforms were below this threshold in some cases. This
happens in the Subsampling subset for orders 2 to 4. Moreover,
it only slightly reached this value for order 1. The aligned
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Fig. 11. Accuracies obtained for the Geometric dataset. Max and min
accuracy with respect to σ are shown for each combination of alignment
method, Riesz order and subset. For each subset, the maximum accuracy
obtained is highlighted with a dashed line in the color of the corresponding
method and its value is shown at the right of the graph.

methods performed much better on this dataset in comparison
with the unaligned Riesz transform. The isotropic–wavelet
framework alone (Riesz order 0) obtained similar performance
in subsets Normal, Rotate, and Noise (between 0.64 and 0.68),
but lower than in the Fourier dataset, which was above 0.87.
The improvement when using any of the alignment strategies is
very strong in the Geometric dataset. The 1st–order alignment
method outperformed all others for Rotate, Noise, and Smooth,
while the M–dimensional method performed similarly on the
other two (Normal and Subsampling).

VII. DISCUSSION

The results presented in Section VI show the benefits
of both increasing the order of the Riesz transform and
the necessity of aligning the Riesz-wavelet coefficients. The
unaligned Riesz transform generally performed better than the
isotropic–wavelet itself (Riesz order 0). However, in the case
of rotated data, the latter clearly outperformed the unaligned
Riesz transform.

We selected a linear SVM classifier to highlight the strength
of the aligned descriptors, independently of the classifier
used. Although non–linear classifiers could potentially perform

better than the linear SVM, they require more parameters to
tune, resulting in problem–specific approaches and with high
risk of overfitting. In our experiments, the linear classifier can
not handle the dispersion of the Riesz descriptors in the feature
space caused by the 3D rotations applied to the 3DST. On the
other hand, the isotropic–wavelet framework is rotation–
invariant, and its performance is not affected by this alteration,
showing similar performance in the Normal and the Rotate
subsets of both datasets. This highlights the necessity of an
aligning method, which regroups texture patterns with similar
local organization of image directions in consistent regions of
the feature space. The linear classifier can therefore better learn
and perform with this cleaned feature space. In this case, all
aligning strategies presented outperform the isotropic–wavelet
framework (even with worst σ ). Moreover, all best accuracies
were obtained when using orders superior to 1, and most were
obtained with the highest order tested. This supports the initial
assumption that locally–oriented higher–order Riesz–wavelets
are needed to characterize complex three–dimensional mor-
phological properties of 3DST. However, increasing the order
of the Riesz transform was not always beneficial, for example
in the subset Rotate of the Geometric dataset. In particular,
in the case of the uni–directional alignment applied to the
Rotate subsets, augmenting the order of the Riesz transform
was found to be a disadvantage. This is due to the use of only
a subset of the components to compute the local orientation,
which does not cover all possible local 3D image directions.
The Riesz filters have the property to cover all directions
but the range of directions covered by each component is
inversely proportional to the order of the transform (i.e., the
filters are increasingly selective in terms of directionality).
This problem did not exist when using the M–dimensional or
the 1st–order alignments. In both cases, all the components of
the Riesz–wavelet transform are used, i.e., the M components
of the N th–order and the three components of the 1st–order
respectively, covering all image directions. It is important to
notice the stable behavior of the unaligned Riesz transforms
when increasing the order. The performance is strictly related
to the distribution of the descriptors in the feature space. In this
case, increasing the order varies the dimension of the feature
space but the feature vectors preserve a similar distribution.
Therefore, the linear classifier performs similarly.

As expected, the alignment methods presented the highest
improvement in the subset Rotate of both datasets when
considering the worst and the best accuracies obtained.
Particularly, the unaligned Riesz transform performed worse
than the isotropic–wavelets in these sets. The benefits of the
alignments were observed for most texture alterations of both
datasets. However, all three alignment strategies proposed used
the σ parameter (see Sections III-E, IV-A, IV-B and IV-C).
This parameter that was already introduced in the tensor–based
alignment for the 1st–order Riesz transform in [45], has shown
to have a strong influence on the classification performance.
Surprisingly, the M–dimensional alignment achieved
one of the best overall results. This technique provides
rotation–invariant descriptors but does not preserve the
directional inner relations of the Riesz components
(see Section IV-A). In the Fourier dataset, the benefits
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of maintaining this inner–structure are not clear and both
M–dimensional and 1st–order alignments behaved similarly.
This is not the case for the Geometric dataset, where the
sharp textures with strong directional gradients require these
directional relations to be well described (see Figure 3). The
1st–order alignment preserves these inner–relations, achieving
the highest performance on this dataset.

The overall best results are achieved by the 1st–order
alignment. The reason behind this is that this alignment is
the only one that uses all directions for all Riesz orders when
estimating the local orientation of the texture, while keeping
the rotation–covariance. Uni–directional alignment only uses
all of the directions for Riesz order 1. Otherwise, it uses a
subset of directions. On the other hand, the M–dimensional
alignment always uses all directions. Nonetheless, as demon-
strated in Proposition 1, it does not preserve the directional
inner relations of the Riesz filters, therefore not preserving
rotation–covariance.

As we mentioned before, a full comparison with other
techniques was difficult, as only a part of the dataset had
been used in publications previously. Considering the results
found in the literature (see Table I), we can see that our
techniques achieved what is considered a perfect classification
in the subset where other techniques were evaluated. Only
LFD achieved a similar accuracy.

The Riesz–wavelet framework used in this work relies on
the frequency analysis of the texture. Therefore, this descriptor
is more affected by changes in texture sharpness. The Geomet-
ric subset contains by construction very sharp transitions at the
boundaries of the geometric shapes. Thus, it is consistent to
observe an important degradation of performance for the sub-
sets altered by Gaussian blur (Smooth) and subsampling. These
two alterations result in frequency shifts towards the center of
the spectrum. The Fourier subset contains fewer sharp spatial
transitions and these alterations have a lower impact when
using the Riesz–wavelet descriptor. Trying to classify blurred
sharp patterns using well–defined sharp models in the training
set is not common (the Normal subset was always used for
training). This particular case could be addressed by applying
a Gaussian smoothing before training the classifiers.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a novel method for extract-
ing rotation–covariant features from solid textures commonly
found in biomedical imaging, material analysis, and structural
geology. Three methods are based on locally–oriented wavelet
transforms and extend the state–of–the–art techniques to use
higher–order Riesz–wavelet transforms. These extensions were
developed for any order of the Riesz transform but we limited
our experiments to order 4. The three alignment strategies are
equivalent for order 1, and also equivalent to the existing
tensor–based approach for order 1 proposed by Chenouard
and Unser in [45] (see Section III-E). A complete exper-
imental evaluation of the classification capabilities of the
aligned descriptors was performed using the RFAI dataset. The
results show the benefits of increasing the order of the Riesz
transforms and support the appropriate local alignment of the

Riesz components. The performance of the three alignment
strategies outperforms all unaligned Riesz–wavelet transforms.
The comparison with state–of–the–art descriptors is difficult
since there is no equivalent evaluation in the literature that
covers all aspects of the same database. However, LFD,
3D GLCM, 3D LBP, and SOP descriptors were tested on
the Normal subset of Fourier dataset (see Section II). The
methods presented here outperform these techniques achieving
an accuracy of 1.00 for all orders in this subset.

Next steps include a complete comparison between the
methods presented and the state–of–the–art 3DST descriptors.
Ideally, a database with real 3D data should be used for such an
analysis. The RFAI database provides images with four alter-
ations, but these alterations were not mixed. An intermediate
step is to create a database combining possible alterations that
can be found in real 3DST data. Moreover, these methods
provide the opportunity to learn steerable models of class–
specific local organization of image directions to estimate the
local orientations, which showed to provide excellent results
for 2D texture classification in [14].
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