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Bi-Exponential Edge-Preserving Smoother
Philippe Thévenaz, Daniel Sage, and Michael Unser, Fellow, IEEE

Abstract— Edge-preserving smoothers need not be taxed by
a severe computational cost. We present, in this paper, a lean
algorithm that is inspired by the bi-exponential filter and pre-
serves its structure—a pair of one-tap recursions. By a careful
but simple local adaptation of the filter weights to the data, we
are able to design an edge-preserving smoother that has a very
low memory and computational footprint while requiring a trivial
coding effort. We demonstrate that our filter (a bi-exponential
edge-preserving smoother, or BEEPS) has formal links with the
traditional bilateral filter. On a practical side, we observe that
the BEEPS also produces images that are similar to those that
would result from the bilateral filter, but at a much-reduced
computational cost. The cost per pixel is constant and depends
neither on the data nor on the filter parameters, not even on the
degree of smoothing.

Index Terms— Bi-exponential filter, bilateral filter, nonlocal
means, recursive filter.

I. INTRODUCTION

SMOOTHING an image can serve many purposes. One of
them is to remove its confounding details, with the goal

of bringing out its main features. To do so, early works on
image processing were concentrating on the straightforward
theory of space-invariant linear smoothers. Unfortunately, such
filters perform an indiscriminate blurring, whereas maintaining
the sharpness of the main edges would instead be desirable.
Thus, nonlinear filters were soon designed that preserved edges
while still smoothing out uninformative details. Some of them,
like the median filter, do not adapt to the data. Others, like
the bilateral filter first presented in [1] and later attributed
to [2], or the anisotropic-diffusion filter [3], do. It has been
shown in [4] how those two filters, along with additional
denoising approaches, such as weighted least squares and
robust estimation, can be understood and bridged within a
Bayesian framework. A precursor to the bilateral filter was
described in [5], while a modern in-depth analysis is available
from [6]. Moreover, the bilateral filter is also related to the
nonlocal means introduced in [7] and accelerated in [8].

Nowadays, wavelets are often favored when it comes to
denoising data. Notwithstanding, the bilateral filter remains
attractive for data-simplification tasks, even though it is com-
putationally heavy in its original form. Consequently, accel-
erating this filter has attracted the attention of researchers.
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For instance, it was proposed in [9] that speedups could be
obtained by relying on a strict quantization of data on finitely
many intensity levels, in which case the bilateral filter can
be implemented by the appropriate combination of a series of
convolutions. This method was used for instance in [10] to
homogenize the illumination of an image by compressing its
dynamic range, and further refined in [11]–[13]. Substantial
acceleration was also achieved in [14], again at the cost
of some form of quantization. An alternative approach to
accelerate the bilateral filter was proposed in [15], where
the combination of a convolution in a higher-dimensional
space with two simple nonlinearities was down-sampled to
achieve the desired speedup. Performing fast adaptive fil-
tering in a space-intensity manifold was similarly proposed
in [16], where the strength of 1-D edges is determined by
measuring the curvilinear length of the interpolated curve
joining two data samples. Achieving constant-time process-
ing was also proposed in [17] by refraining to actually
operate directly on the data, relying instead on a learning
approach.

The bilateral filter contains two essential ingredients: a
range filter r and a spatial filter s. Some of the acceleration
strategies cited above succeed by focusing on the range filter.
This is also the case with the method proposed by some of us
in [18] where, instead of taking advantage of quantization,
it is shown that a trigonometric form of r can lead to
time savings; meanwhile, s is left unconstrained. One of the
several acceleration methods proposed in [13] follows a similar
approach, by considering a polynomial form for r . In this
paper, however, we take the opposite view and remove every
restriction on r ; in return, we constrain s to take the form of a
bi-exponential filter. This allows for the design of a substitute
to the 1-D bilateral filter that runs as a pair of one-tap recursive
filters. Such a construction is therefore very fast. A major
contribution of this paper is to show that, under appropriate
hypotheses, our filter has formal relations with the bilateral
filter.

This paper is organized as follows. We initiate Section II
with a forthright exposition of the bi-exponential edge-
preserving smoother (BEEPS), which we then discuss in
relation to the traditional bi-exponential filter at the core of
our new method. We devote Section III to the theoretical
relation between the BEEPS and the bilateral filter. The
practical outcome of our proposal and the discussion of its
computational load are provided in Section IV, along with an
extensive experimental qualitative and quantitative comparison
between the BEEPS and the bilateral filter. We give, in
Section V, a glimpse on how to use the BEEPS in conditions
that are unaccessible to the bilateral filter, and we conclude in
Section VI.
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II. PROPOSED ALGORITHM

A. Description

Let r : R
2 �→ [0, 1] be an arbitrary bivariate function that

measures the similarity of its arguments, taken to be a pair
of image intensities. Like in the case of the bilateral filter,
we shall call r a range filter. Moreover, let the parameter λ ∈
[0, 1) control the degree of smoothing of a convolutional space
filter with impulse response s. The algorithm for our BEEPS
then essentially consists of a pair of one-tap recursions.

The first recursion is progressive. Letting x[k] be the current
sample of an input sequence x at location k ∈ Z, we
recursively compute the elements of an auxiliary sequence ϕ as

ϕ[k] = (1 − �[k] λ) x[k] + �[k] λϕ[k − 1] (1)

where
�[k] = r(x[k], ϕ[k − 1]). (2)

The second recursion is regressive and very similar to the
first one, except for a reversal of the order in which the indices
are traversed. We recursively compute a second auxiliary
sequence φ as

φ[k] = (1 − ρ[k] λ) x[k] + ρ[k] λφ[k + 1] (3)

where
ρ[k] = r(x[k], φ[k + 1]). (4)

We complete our algorithm by merging the resulting pro-
gressive sequence ϕ and regressive sequence φ to produce the
samples of the output sequence y as

y[k] = ϕ[k] − (1 − λ) x[k] + φ[k]
1 + λ

. (5)

B. Initialization of the Recursions

The algorithm of Section II-A requires a small, finite
number of operations per pixel. In return, the forward and
backward recursions must be properly initialized. In practice,
we often know the sequence x only through K samples
indexed by k ∈ [0, . . . , K − 1]. Thus, we now face the task of
choosing ϕ[0] and φ[K − 1], which depend on the unknown
values x[−1] and x[K ], respectively. We propose the trivial
choice

ϕ[0] = x[0] (6)

φ[K − 1] = x[K − 1] (7)

which offers the convenience of speed and simplicity.

C. Synthetic Whirl

To provide a preliminary illustration of the effect of the
BEEPS, we suggest to apply it to a synthetic image w that
contains a variety of frequencies and contrasts, to which
we have applied the BEEPS with λ = 0.9 and s(u, v) =
exp(−(u − v)2/(2 σ 2)), where σ = 50. This resulted in the
image shown at the bottom of Fig. 1. There, we see that the
features of w that had a low contrast (bottom-half) have been
smoothed away, unless their frequency content was low. All
the same, the features of w that had a high-frequency content

(a)

(b)

Fig. 1. Whirl. (a) Original image w displaying a variety of frequencies
and contrasts. (Details about the synthesis of this image are discussed in the
appendix.) (b) BEEPS suppresses features of jointly low contrast and high
frequency.

were also smoothed away (top-right), unless their contrast was
strong (top-left). Therefore, the general behavior of the BEEPS
is that of an edge-preserving smoother, akin to what would
have resulted from a bilateral filter.

D. Origin of the Proposed Algorithm

Since the range filter r is arbitrary, in general, the BEEPS
output y is made to depend on the data in nonlinear fashion
through (2) and (4). Thus, to simplify our initial understanding
of the BEEPS, we start by removing this nonlinearity and
temporarily set r(u, v) = 1 for all u, v ∈ R. Then, Recursions
(1) and (3) become recursive filters with constant coefficients
since � = 1 = ρ. The progressive and regressive z-transforms
P(z) = ∑

k∈Z
ϕ[k] z−k and R(z) = ∑

k∈Z
φ[k] z−k now exist
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Fig. 2. Frequency response ŝ for λ = (2/3).

for z ∈ C \ {0} and for λ ∈ (−1, 1). They are given by

P(z) = 1 − λ

1 − λ z−1 X (z) (8)

R(z) = 1 − λ

1 − λ z
X (z) (9)

where X (z) = ∑
k∈Z

x[k] z−k is the z-transform of the input
sequence x . Thus, from (5) with the simplification r = 1, the
BEEPS behaves like a linear filter with the transfer function

S(z) =
∑

k∈Z

s[k] z−k = (1 − λ)2
(
1 − λ z−1

)
(1 − λ z)

. (10)

In an imaging context, the filter described by (10) is known
as the bi-exponential filter. It is a classical convolutional filter
with an even impulse response s that has an infinite support.
In the 1-D discrete domain, s is given by the samples at k ∈ Z

of an exponential that decays away from the origin like

s[k] = � λ|k| (11)

where the contra-decay λ controls the decay (1 − λ) of the
impulse response and where � is the normalization factor

� = 1 − λ

1 + λ
. (12)

By convention, we shall assume that s[k] = δ[k] when λ = 0.
(There, δ[·] represents the unit sample.) Various decomposi-
tions of the bi-exponential filter, either as a cascade [19] or as
a sum [20] of two recursive filters, have been proposed in the
literature.

The zeroth-order moment of s is unity because
∑

k∈Z

s[k] = S(ej ω)
∣
∣
∣
ω=0

= 1. (13)

Likewise, the �1 norm ‖s‖�1
is also unity for a nonnegative

contra-decay, since then s = |s|. Therefore, the filter is
stable in the bounded-input, bounded-output sense—albeit the
filter is noncausal. Moreover, the first-order moment vanishes
since s[k] = s[−k]. Finally, the variance of s is finite for
nonnegative contra-decays because

∑

k∈Z

k2 s[k] = j2
d2S(ej ω)

dω2

∣
∣
∣
∣
ω=0

= 2 λ

(1 − λ)2 . (14)

As illustrated in Fig. 2, it turns out that the bi-exponential filter
is lowpass for λ ∈ [0, 1), the discrete-time Fourier transform
ŝ of its impulse response s being given by

ŝ(ω) = S(ej ω) = 1

1 + 4 λ
(1−λ)2 sin2 ω

2

. (15)

It is a remarkable fact that the bi-exponential filter exhibits
no ripples in the frequency domain, which makes it better
suited than the box filter that is at the core of many histogram-
based versions of the bilateral filter [9]–[13]. Moreover, his-
tograms typically require quantization of some sort, while no
quantization is required with the BEEPS.

Finally, our proposed algorithm originates from—and
closely follows the structure of—a bi-exponential filter, except
that the BEEPS has space-varying coefficients. By setting
r = 1, we just showed that the BEEPS is able to replicate a
bi-exponential filter for any value of its parameter λ. Moreover,
for the special case λ = 0, we leave to the reader to check that
the restriction r = 1 can be lifted: in the absence of smoothing,
the BEEPS acts as the identity, irrespectively of the choice of
the range filter r . Furthermore, in the special case, when the
range filter is chosen to satisfy r(u, v) = 0 for u �= v and
r(u, u) = 1, then it can be seen that the BEEPS again falls
back to identity, this time irrespectively of the choice of the
smoothing parameter λ of the space filter s. Taken together,
these properties conspire at making the BEEPS a well-behaved
method that gracefully accommodates widely different range
filters, from r = 1 (the variance of r is infinite) to r(u, v) = 0
for u �= v (the variance of r is zero).

III. EDGE PRESERVATION

A. BEEPS

We consider now the general use of the BEEPS, with
some nonvanishing degree of smoothing 0 < λ < 1 and a
nontrivial range filter r . Although r can be chosen freely, it
is customary to assume that it takes the shape of a centered
bump function. In particular, a prototypical instance is the de-
normalized Gaussian function

r(u, v) = e− (u−v)2

2 σ2 (16)

where σ is a parameter that controls the width of the bump.
Focusing on the progressive recursion (1) and (2) in which

ϕ and � are determined, respectively, we can check that the
hypothetical case x[k] ≈ ϕ[k − 1] would lead to �[k] ≈ 1
in (2) and consequently, to ϕ[k] ≈ x[k] in (1). Additional
implications would then be ϕ[k] ≈ ϕ[k − 1] and x[k] ≈
x[k − 1], which shows that this hypothetical case corre-
sponds to that of a sequence x that has slow local variations.
In other words, the hypothesis x[k] ≈ ϕ[k − 1] is valid
away from edges. Conversely, as an edge is encountered
during the progressive recursion k → (k + 1), the hypothesis
x[k] ≈ ϕ[k − 1] must be abandoned. Then, because of (2)
and (16) we have that �[k] ≈ 0, which loosens the depen-
dence of ϕ[k] on ϕ[k − 1] through (1) and reinitializes the
recursion like in (6). Consequently, when r is a bump-like
function, we observe that � measures the degree of monotony
experienced during the recursion: unless an edge is found, �

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on July 14,2020 at 15:49:47 UTC from IEEE Xplore.  Restrictions apply. 



THÉVENAZ et al.: BI-EXPONENTIAL EDGE-PRESERVING SMOOTHER 3927

remains close to unity. In the presence of an edge between
indices (k − 1) and k, however, the value of �[k] drops and
ϕ[k] is properly reinitialized before the recursion is resumed.
A similar reasoning applies to ρ and φ in the context of the
regressive recursion.

Finally, the effect of our proposed algorithm is to smooth
the data sandwiched between edges, and to maintain the edges
themselves. The function r provides the tool to gradually
discriminate between edge and nonedge. Smoothing is pro-
vided by a bi-exponential filter s controlled by the contra-
decay parameter λ. We chose to name r a range filter and s
a space filter to suggest a link between our BEEPS and the
bilateral filter. In the next sections, we investigate this link
further.

B. Bilateral Filter

The bilateral filter has been proposed as another heuristic
solution to the preservation of edges while smoothing an
image [4], [6]. The governing principle is to locally adapt the
coefficients of a linear smoothing filter to perform smooth-
ing only over neighboring data of similar photometry (i.e.,
intensity). In its discrete version, the value y0 at coordinates
k ∈ Z

d that results from the application of a bilateral filter to
the image x is given by

y0[k] =
∑

n∈Zd r(x[k], x[k − n]) s[n] x[k − n]
∑

n∈Zd r(x[k], x[k − n]) s[n] . (17)

There, the bivariate function r is used to measure the degree
of photometric similarity of its arguments, while the spatial
filter of impulse response s determines the spatial extent of the
bilateral filter. By convention, it is customary to assume that
the values taken by the range filter r satisfy r ∈ [0, 1], so that a
small r forbids any sort of smoothing, and a large r authorizes
the smoothing provided by the spatial filter s. By design,
the denominator of (17) ensures a proper normalization—
observe that, through r , this normalization depends on data
in a nonlinear fashion and must therefore be computed anew
at every coordinate k.

For the purpose of discussion, we assume 1-D data, with
d = 1. Moreover, we take s to be the bi-exponential filter (11).
This leads us to rewrite (17) as

y0[k] =
∞∑

n=1

rk,k−n �

B0[k] λn x[k − n] + rk,k �

B0[k] x[k]

+
∞∑

n=1

rk,k+n �

B0[k] λn x[k + n] (18)

where the normalization factor B0 of the bilateral filter is

B0[k] =
∞∑

n=1

rk,k−n � λn + rk,k � +
∞∑

n=1

rk,k+n � λn (19)

and where we have taken advantage of the short-hand
notation

∀m, n ∈ Z : r(x[m], x[n]) = rm,n . (20)

C. Link Between the BEEPS and the Bilateral Filter

To discover a relation between (18) and the algorithm of
Section II, we suggest first to rewrite (1) and (3) in a way that
conceals the explicit dependence of ϕ[k] on ϕ[k − 1] and of
φ[k] on φ[k + 1]. By expanding the recursions, we obtain

ϕ[k] =
∞∑

n=1

⎛

⎝
n−1∏

p=0

�[k − p]
⎞

⎠ (1 − �[k − n] λ) λn x[k − n]

+ (1 − �[k] λ) x[k] (21)

φ[k] =
∞∑

n=1

⎛

⎝
n−1∏

p=0

ρ[k + p]
⎞

⎠ (1 − ρ[k + n] λ) λn x[k + n]

+ (1 − ρ[k] λ) x[k]. (22)

These expressions will come useful for analysis purpose only.
Next, we adopt the hypothesis of weak smoothing whereby

0 ≤ λ � 1. This allows us to use (21) and (22) to write one
sample of the output (5) of the BEEPS as

y[k] = �[k] (1 − �[k − 1] λ)

1 + λ
λ x[k − 1] + 1 − �[k] λ

1 + λ
x[k]

+ ρ[k] (1−ρ[k + 1] λ)

1+λ
λ x[k+1]+ 1 − ρ[k] λ

1 + λ
x[k]

− � x[k] + O(λ2)

= �[k] λ

1 + λ︸ ︷︷ ︸
aP

x[k − 1] + ρ[k] λ

1 + λ︸ ︷︷ ︸
aR

x[k + 1]

+
(

1 − (�[k] + ρ[k]) λ

1 + λ

)

︸ ︷︷ ︸
a

x[k] + O(λ2). (23)

We apply the same hypothesis to write the normalization factor
of the bilateral filter as

B0[k] = rk,k−1 � λ + rk,k � + rk,k+1 � λ + O(λ2). (24)

In the weak-smoothing regime, we also establish the outcome
of the bilateral filter (18) as

y0[k] = rk,k−1 λ

rk,k+1 λ + rk,k + rk,k−1 λ + O(λ2)
︸ ︷︷ ︸

a0P

x[k − 1]

+ rk,k

rk,k+1 λ + rk,k + rk,k−1 λ + O(λ2)
︸ ︷︷ ︸

a0

x[k]

+ rk,k+1 λ

rk,k+1 λ + rk,k + rk,k−1 λ + O(λ2)
︸ ︷︷ ︸

a0R

x[k + 1]

+ O(λ2). (25)

We are now equipped to perform a term-by-term comparison
of (23) and (25). Given the definitions of {aR, a, aP} and
{a0R, a0, a0P} provided in (23) and (25), respectively, the ratio
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of the coefficients of matched terms is

aP

a0P
= �[k] λ

(
rk,k+1 λ + rk,k + rk,k−1 λ + O(λ2)

)

rk,k−1 λ (1 + λ)

= �[k] λ rk,k + O(λ2)

rk,k−1 λ + O(λ2)
(26)

a

a0
=

(
1− (�[k]+ρ[k])λ

1+λ

)(
rk,k+1 λ + rk,k + rk,k−1 λ + O(λ2)

)

rk,k

= 1 + rk,k+1 − �[k]+ρ[k]
1+λ rk,k + rk,k−1

rk,k
λ + O(λ2) (27)

aR

a0R
= ρ[k] λ

(
rk,k+1 λ + rk,k + rk,k−1 λ + O(λ2)

)

rk,k+1 λ (1 + λ)

= ρ[k] λ rk,k + O(λ2)

rk,k+1 λ + O(λ2)
. (28)

We then assume that the otherwise arbitrary range function
r is constrained to reach unity when its two arguments take
the same value, which is usually the case for the functions of
interest. Formally, we demand that

rk,k = 1. (29)

We then conclude from (2), (4), and (20) that

lim
λ→0

aP

a0P
= r(x[k], ϕ[k − 1])

r(x[k], x[k − 1])
lim
λ→0

a

a0
= 1

lim
λ→0

aR

a0R
= r(x[k], φ[k + 1])

r(x[k], x[k + 1]) . (30)

Finally, we observe from (1) and (3) that a vanishing
λ would lead to ϕ[k] = x[k] = φ[k]. This results in
limλ→0(aP)/(a0P) = 1 = limλ→0(aR)/(a0R), which shows
that the BEEPS and the bilateral filter are equivalent under
the conditions described.

The equivalence established in this section can be sum-
marized by observing the parallel between (23) and (25),
like in

y[k] = aP x[k − 1] + a x[k] + aR x[k + 1] + O(λ2) (31)

y0[k] = a0P x[k − 1]+a0 x[k]+a0R x[k+1]+O(λ2). (32)

In doing so, it is crucial to remember that the various coef-
ficients {aP, a, aR, a0P, a0, a0R} are not constant-valued but
depend on the data. What we have shown is that this data
dependence is identical for the bilateral filter and for the
BEEPS when λ vanishes. For small λ, it follows that these two
edge-preserving methods will yield nearly identical results. For
larger λ, we shall see in Section IV that the two methods still
behave similarly.

D. Adjustment of the Contra-Decay

While, in its original form, the bilateral filter (17) can
accommodate any arbitrary range filter r and spatial filters s,
it has nonetheless become customary to choose a Gaussian in
each case. Since the BEEPS can accommodate any arbitrary
range filter as well, it is natural to impose that the range
filter of the BEEPS be proportional to the range filter of a

Fig. 3. Average of the row-first and column-first separable application of
the BEEPS.

bilateral filter when it is desired that the former copies the
behavior of the latter. However, the normalization found in
the denominator of (17) is indeed explicit, while it is only
implicit in the BEEPS. Thus, a de-normalized Gaussian taking
the form (16) has to be used in the case of a BEEPS, while
normalization or de-normalization is irrelevant in the case of
the bilateral filter.

When as much similarity as possible is desired between
the BEEPS and the bilateral filter while keeping the spatial
filter a bi-exponential for the former and a Gaussian for the
latter, the contra-decay λ of the BEEPS must be tuned to
match the spatial standard deviation σs that characterizes the
spatial Gaussian filter of the bilateral filter. To do so, we take
advantage of (14), which suggests the relation

λ = 1 −
√

2 σ 2
s + 1 − 1

σ 2
s

. (33)

E. Application to Several Dimensions

The BEEPS proposed in Section II is 1-D, such as the
bi-exponential filter it originates from. Likewise, it contains
progressive and regressive recursions, which precludes a com-
prehensive extension of these two filters to higher-dimensions.
Thus, the prevailing way to apply either filter in several
dimensions is to design a separable implementation where
successive 1-D operations are carried over various directions.
This extension is natural with the bi-exponential filter because
it is a linear filter and the order of exploration of the 1-D
operations does not matter. However, one major issue with the
BEEPS is that it is nonlinear. This implies that the order of
exploration matters for the BEEPS. Along D directions there
are D! possible ways to put separability to fruition, which
leads to (d D!) 1-D processes in d dimensions. In the context
of 2-D images, the standard practical choice consists in D = 2
and D! = 2, which corresponds to the application of the
BEEPS along rows and columns, in either order. The next
practical choice for d = 2 would be D = 4 and D! = 24,
where the main diagonals would be added to the mix.

In this paper, we choose to apply the 1-D BEEPS four
times to process a 2-D image, with d = 2 and D! = 2.
More precisely, we apply first a horizontal BEEPS to the
original image and submit the resulting intermediate image
to a subsequent vertical application. These two sequential
applications we call row-first. Separately, we also apply the
opposite sequence of vertical then horizontal BEEPS to the
original image, which we call column-first. We then average
the row-first and column-first outcomes to obtain the final
result. We give a sketch of our strategy in Fig. 3. This
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Fig. 4. Gallery of results of the BEEPS applied to the GreekDome image. The spatial smoothing increases from top to bottom with λ ∈ {0.8, 0.9, 0.95}.
From left to right, there is an increase in the standard deviation of the range filter σ ∈ {20, 50, 100}. The original image is visually close to the topmost,
left-most image in the gallery. The computational cost was identical for all images.

strategy comes at the price of doubling our computational cost
because we consider two branches in the sketch of Fig. 3,
but improves over the early solution for the separability of
the bilateral filter proposed in [21] where a single branch
was followed. As discussed in [16], a complementary way
to increase isotropy would be to iterate the separable 1-D
filters n times. In that case, due to the additivity of the
variance (14), the target compound variance σs is achieved
after n applications of BEEPS, each of which with the contra-
decay λn = 1 − (

√
2 n σ 2

s + n2 − n)/σ 2
s .

Our proposed algorithm offers improvements over several
aspects of the edge-aware recursive filtering that is briefly
described in [16] and that also involves 1-D recursive filters.
In particular, our range filter can be chosen and tuned freely,
while the weight-adaptive method of [16] restricts itself to
the use of curvilinear lengths in a space-intensity manifold.
Moreover, we take advantage of the recursive feedback offered
by (2) and (4) to make the adaptation of the range filter less
local than that proposed in [16]. Finally, we apply the two
recursions (1) and (3) in parallel and merge them in (5), which
ensures that our filter is anisotropic in one dimension. By
contrast, the formulation of [16] suggests that the progressive
and the regressive recursions be applied in sequence instead.
Suppose that the progressive recursion is applied first: this
would imply that the interruption of the forward propagation
chain mentioned in [16] would be smoothed out when the sub-

sequent regressive filter is applied, thus leading to anisotropy,
even with 1-D data.

IV. EXPERIMENTS

A. Illustration

We now apply the BEEPS to the (876 × 584) GreekDome
image found in a publicly available collection devoted to the
task of investigating bilateral filters.1 To illustrate the impact
of several combinations of the range parameter σ and of the
spatial parameter λ, we organize Fig. 4 as a grid of images
where σ increases from left to right and λ from top to bottom.
More precisely, the spatial smoothing corresponds to a filter of
standard deviation {6.3, 13.4, 27.5}, while the range filter takes
a Gaussian shape and is characterized by σ ∈ {20, 50, 100}.

With σ = 100, the right-most part of Fig. 4 presents
results that are close to those that would be achieved by the
bi-exponential linear filter of Section II-D, because there r is
flat and barely distinguishes low-contrast from high-contrast
features. In particular, because of the initialization we chose to
implement for ϕ[0] and φ[K − 1], the image that corresponds
to λ → 1 will take a constant value that is the average of
the four corner pixels of the input image. Meanwhile, with
σ = 20, the left-most part of Fig. 4 presents results that take

1Available at http://people.csail.mit.edu/sparis/bf/.
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TABLE I

SIZE (Ws × Ws) OF THE SPATIAL FILTER s OF THE BILATERAL FILTER

λ 0.25 0.50 0.80 0.90 0.95 0.98

σs 0.9 2.0 6.3 13.4 27.5 70.0

Ws 7 13 39 83 167 421

a cartoon-like appearance when the spatial smoothing becomes
large enough, which is indeed the hallmark of edge-preserving
smoothers.

B. Comparison to the Bilateral Filter

Since we could establish in Section III-C a formal link
between the BEEPS and the bilateral filter, and since prac-
titioners were able to gain proficiency in tuning the parame-
ters of the long-established bilateral filter, a direct practical
comparison between these two filters is of relevance. At the
same time, we feel the need to stress that the BEEPS is
a filter in its own right, and that the bilateral filter is as
much an approximation of the BEEPS as the BEEPS is an
approximation of the bilateral filter.

The theoretical result of Section III-C is valid in 1-D and
when the spatial filter of the bilateral filter is bi-exponential,
which lead to (18). Thus, to maximize the fairness of the
comparisons in the context of 2-D images, we have let s
in (17) be the tensor product of bi-exponential filters as well.
Further, to make its nonrecursive implementation practical,
we have truncated this impulse response to a half width
of three standard deviations. We indicate, in Table I, the
size of the truncated filters for the series of contra-decays λ
used in this paper, along with the corresponding standard
deviation of the spatial filter. Furthermore, we have followed
a brute-force approach to implement (17) in a nonsepara-
ble and straightforward—albeit excruciatingly slow—fashion.
To compute the sums in (17) while letting the index n run
over the whole support of s, we have extended virtually the
input image x in a way that is consistent with (6) and (7), as

x[k1, k2] =

⎧
⎪⎪⎨

⎪⎪⎩

x[0, k2], k1 < 0
x[K1 − 1, k2], K1 ≤ k1
x[k1, 0], k2 < 0
x[k1, K2 − 1], K2 ≤ k2.

(34)

Our first comparison is visual. We give, in Fig. 5, the
outcome of applying the bilateral filter [Fig. 5(a)] and the
BEEPS [Fig. 5(b)] to the Rock image, for a series of range
filters and for a fixed spatial filter. We qualitatively observe
that the bilateral and the BEEPS results are very much alike in
the sky region, which is characterized mostly by smooth edges.
This is also true of the widely separated sharp edges found in
the rocky area. In the tree area, characterized by fine-grained
texture, the BEEPS may appear—on print—to maintain more
details than the bilateral filter when the standard deviation of
the range filter is strong. A full-scale zoom on the image
(not shown) reveals, however, that the anisotropy of the
BEEPS is defective in this region.

In our next comparison, we let the range filter r of the
bilateral filter and the range filter of the BEEPS be fixed,

TABLE II

SIMILARITY OF THE BILATERAL FILTER WITH RESPECT TO THE BEEPS

AT OPTIMAL AND MATCHED CONTRA-DECAYS

σr 2 5 10 20 50 100 200

σs λBF Optimal λopt

0.9 0.25 0.231 0.233 0.231 0.234 0.237 0.241 0.243

2.0 0.50 0.411 0.416 0.415 0.447 0.473 0.485 0.489

6.3 0.80 0.367 0.619 0.672 0.719 0.776 0.800 0.798

13.4 0.90 0.196 0.704 0.857 0.864 0.891 0.910 0.905

27.5 0.95 0.108 0.211 0.948 0.956 0.962 0.964 0.956

70.0 0.98 0.052 0.105 0.177 0.999 0.999 0.996 0.986

σs λBF Jopt (PSNR) at optimal λopt

0.9 0.25 74.2 66.5 60.0 55.7 57.0 63.4 68.8

2.0 0.50 63.9 56.3 49.9 45.5 46.7 53.8 62.5

6.3 0.80 57.6 49.6 43.4 38.7 38.7 45.3 53.9

13.4 0.90 56.7 47.5 41.5 36.7 35.6 40.4 47.1

27.5 0.95 57.1 46.8 40.3 35.3 33.1 36.2 41.7

70.0 0.98 58.3 47.2 39.6 33.7 30.7 33.2 38.2

σs λBF Similarity loss
(
Jopt − J

)
at matching λ = λBF

0.9 0.25 0.57 0.34 0.30 0.32 0.99 2.48 4.18

2.0 0.50 0.58 0.47 0.38 0.24 0.33 0.70 2.55

6.3 0.80 1.16 0.33 0.20 0.14 0.08 0.00 0.02

13.4 0.90 2.46 0.17 0.03 0.04 0.01 0.28 0.58

27.5 0.95 4.14 0.85 0.00 0.00 0.07 0.83 1.10

70.0 0.98 6.40 2.57 0.65 0.10 0.61 1.90 1.99

built according to (16). We then vary the contra-decay λBF
associated to the bilateral filter; independently, we explore
several (possibly mismatched) values of the contra-decay λ
associated with the BEEPS and measure the mean-square
difference between the images resulting from the application
of these two edge-preserving smoothers. This difference is
expressed in dB as the peak signal-to-noise ratio (PSNR) J
defined by

J {y0, y} = 10 log10
2552

1
|�|−1

∑
k∈� (y0[k] − y[k])2

. (35)

We give, in Fig. 6, a few typical curves that correspond to this
experiment for the Rock image. We see that the highest sim-
ilarity between the bilateral filter and the BEEPS is achieved
when the contra-decays λ and λBF approximately match each
other. This provides us with an experimental verification of
the prediction made in Section III-C, according to which the
similarity J is maximized by letting λ = λBF. Moreover,
the examination of Fig. 6 also confirms the prediction that
the degree of similarity increases when the contra-decays
get smaller. We confirm these results in Table II, which
complements Fig. 6 by extending the domain of explored range
variances and contra-decays for the Rock image. We conclude
from this table that setting λ to λBF (instead of the objectively
optimal λopt) leads to a decrease in similarity that has no
practical impact. We illustrate visually in Fig. 7, the results of
the comparison at σ = 50 and matching λ. Additional images
lead us to the same conclusions (results not shown).

In our final comparison, we consider only the case λ =
λBF and investigate how the bilateral filter and the BEEPS
differ, on the basis of the series of images that we provide
in Fig. 8. At first, we investigate the visual impact of both
filters on the cutouts indicated in this figure. The results are
provided at constant spatial smoothing corresponding to the
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(a)

(b)

Fig. 5. (a) Bilateral filter and (b) BEEPS, as applied to the Rock image. The contra-decay is constant with λ = 0.9. The standard deviation of the range
filter increases from left to right with σ ∈ {10, 20, 50, 100}.

(a) (b) (c) (d)

Fig. 6. PSNR versus contra-decay λ of the BEEPS, between the bilateral filter and the BEEPS applied to the Rock image. (a)–(d) Contra-decay associated
to the bilateral filter is indicated by a vertical bar, with λBF ∈ {0.5, 0.8, 0.9, 0.95}. The dotted, dashed, long-dashed, and mixed curves correspond to the
standard deviations σ ∈ {10, 20, 50, 100} of the range filter, respectively.

(a)

(b)

Fig. 7. (a) Bilateral filter and (b) BEEPS, as applied to the Rock image. The contra-decay increases from left to right with λ ∈ {0.5, 0.8, 0.9, 0.95}. The
standard deviation of the range filter is constant with σ = 50.

contra-decay λ = 0.9 in Fig. 9, and at constant range filter
characterized by σ = 50 in Fig. 10. At constant smoothing
(Fig. 9), we observe that the BEEPS removes details earlier
than the bilateral filter as the range filter becomes flatter.
This is particularly true at σ = 50 where edges of medium
strength seem to resist simplification with the bilateral filter
but do disappear with the BEEPS, like those found in the
tunic of the eye (Dragon), in the texture of the scales and the

lower eyelid (Turtle), and the fine structure of stone (Rock).
Instead, the BEEPS and the bilateral filter seem to be in
agreement for weaker and stronger edges alike, for instance
the weak edges found in the texture of the wall (GreekDome)
and of the sky (Rock); this agreement extends to the strong
edges of the lintel (GreekDome) and the contrast between
stone and sky (Rock). At constant standard deviation of the
range filter (Fig. 10), we observe that the bilateral filter yields
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(a)

(b)

(c)

(d)

Fig. 8. Test images and cutouts. (a) (80 × 182) cutout of the Dragon image encloses its eye and has high contrast, with round and wavy shapes.
(b) (80 × 60) cutout of the GreekDome image encloses the lintel of a window and contains both low- and high-frequencies. (c) (80 × 60) cutout of the Turtle
image encloses a part of its head and has a wide dynamic range. (d) (80 × 60) cutout of the Rock image encloses an outline of the rock against a fuzzy texture
in the sky.

sometimes unforeseen results. For instance, the outlines of the
scale (Turtle) are attenuated when increasing λ from 0.5 to
0.8, which is expected; however, it is an unexpected result that
they seem to get sharper as smoothing increases from λ = 0.8
to λ = 0.95. Similarly, details in the corner of the mouth
of the dragon are present with strong smoothing and absent
with weak smoothing. This at-first counter-intuitive aspect of
the bilateral filter is absent from the BEEPS, which makes this
filter easier to understand: the image just gets simpler and less
detailed as the smoothing is increased, all the while preserv-
ing edges in accordance with the prescriptions of the range
filter.

We provide in Table III an objective comparison of the
bilateral filter and the BEEPS, where we give the similarity J
computed over the whole support of the images used in this
paper, for various combinations of spatial smoothing and range
filters. Again, at small λ, we verify the validity of the predic-
tions of Section III-C. As λ increases, the two methods con-

sistently produce diverging results. The divergence is the most
pronounced when the range filter takes the standard deviation
σ = 50. For both smaller and larger values, however, the bilat-
eral filter and the BEEPS tend to agree more with each other.
In particular, the two methods produce very similar results for
narrow range filters, which are difficult to handle by several
of the acceleration techniques applied to the bilateral filter.

C. Performance

A remarkable feature of the BEEPS is that it runs in
constant time, irrespective of λ or σ. For instance, the powerful
smoothing appearing in the bottom row of Fig. 4 is achieved
as quickly as the unobtrusive smoothing found in the top
row of the same figure. In this respect, the BEEPS differs
markedly from methods like the bilateral filter, where the
degree of smoothing is ultimately controlled by the support
of s, which imposes the number of terms that participate
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(a)

(b)

Fig. 9. (a) Application of the bilateral filter and (b) BEEPS to the cutouts from Fig. 8. The contra-decay of the bi-exponential spatial filter is kept constant,
with λ = 0.9. The Gaussian range filter takes the standard deviation σ ∈ {10, 20, 50, 100}, from left to right.

(a)

(b)

Fig. 10. (a) Application of the bilateral filter and (b) BEEPS to the cutouts from Fig. 8. The bi-exponential spatial filter takes the contra-decay λ ∈
{0.5, 0.8, 0.9, 0.95}, from left to right. The standard deviation of the Gaussian range filter is kept constant, with σ = 50.

in both the numerator and denominator sums found in (17).
For instance, even in [22], the computational cost of exploring
s depends on the perimeter of the support of s.

Many proposals have been put forth to accelerate traditional
edge-preserving smoothers. Most of those that reach real-time
performance, however, rely on technological aids, such as

graphic cards [23] or FPGAs [24]. In this paper, we propose an
algorithmic solution that we have implemented in a general-
purpose language (Java), and that runs on a general-purpose
processor. We found its execution is so fast that we have no
need to seek further acceleration, all the while keeping a min-
imalistic coding effort, and at a negligible memory footprint.
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TABLE III

PSNR WITH RESPECT TO THE BILATERAL FILTER

σr 2 5 10 20 50 100 200

σs λ Whirl

0.9 0.25 76.6 68.5 61.2 54.3 47.8 47.0 50.2

2.0 0.50 66.0 58.0 51.0 44.6 38.5 38.6 44.6

6.3 0.80 59.1 51.3 44.8 38.9 32.7 30.2 38.1

13.4 0.90 58.4 49.9 43.6 37.4 30.7 28.0 36.4

27.5 0.95 57.9 49.2 42.8 36.6 29.7 27.1 35.8

70.0 0.98 56.7 48.1 41.7 35.7 29.1 27.0 35.8

σs λ Dragon

0.9 0.25 71.2 63.7 60.1 58.2 59.0 61.4 62.6

2.0 0.50 60.9 53.4 49.8 47.9 49.7 54.6 57.4

6.3 0.80 54.7 46.6 42.2 39.4 40.3 45.9 54.1

13.4 0.90 53.3 44.7 39.8 36.1 35.4 39.2 46.9

27.5 0.95 52.6 43.6 38.3 33.9 31.6 33.7 40.0

70.0 0.98 52.2 42.8 37.1 32.1 28.2 29.0 33.7

σs λ GreekDome

0.9 0.25 72.3 66.2 62.9 61.6 63.8 67.7 69.5

2.0 0.50 62.6 56.0 52.7 51.5 54.6 61.0 64.7

6.3 0.80 56.5 49.4 45.6 43.7 45.8 52.4 60.8

13.4 0.90 54.9 47.6 43.2 40.3 40.8 45.2 53.1

27.5 0.95 53.7 46.5 41.6 37.7 36.4 38.9 45.0

70.0 0.98 52.0 45.1 39.8 35.1 31.9 33.3 38.2

σs λ Turtle

0.9 0.25 72.0 64.7 60.2 56.9 55.8 58.0 60.5

2.0 0.50 61.7 54.6 50.0 46.6 45.7 49.4 54.5

6.3 0.80 55.2 47.7 42.7 38.6 36.6 39.9 47.2

13.4 0.90 53.5 45.6 40.2 35.6 32.5 34.1 39.6

27.5 0.95 52.6 44.4 38.7 33.7 29.4 29.3 33.1

70.0 0.98 52.0 43.4 37.4 31.9 26.5 24.6 26.8

σs λ Rock

0.9 0.25 73.6 66.2 59.7 55.4 56.0 60.9 64.6

2.0 0.50 63.3 55.9 49.5 45.2 46.4 53.1 59.9

6.3 0.80 56.4 49.3 43.2 38.5 38.6 45.3 53.8

13.4 0.90 54.2 47.3 41.5 36.6 35.6 40.2 46.5

27.5 0.95 52.9 45.9 40.3 35.3 33.1 35.4 40.6

70.0 0.98 51.9 44.6 39.0 33.6 30.1 31.3 36.2

Nonetheless, such acceleration remains easy to achieve, for
the BEEPS lends itself well to parallelization. The following
strategies are compatible with one another; each one brings
additional time savings.

1) The top and bottom branches of Fig. 3 can be executed
concurrently, which can potentially double the speed.

2) Each line (whether a row or a column) can be processed
independently of the other lines, which can potentially
multiply the speed by K for an image of size (K × K ).

3) Within a line, the progressive recursion and the regres-
sive recursion of Section II can proceed in parallel,
which can multiply the speed by a factor about 3/2.

TABLE IV

PERFORMANCE OF THE BEEPS

Size [Mpixel] Time [s] Frame rate [Hz]

256 × 256 0.1 0.014 69.4

512 × 512 0.3 0.039 25.5

1024 × 768 0.8 0.165 6.0

1280 × 720 0.9 0.196 5.1

1024 × 1024 1.0 0.205 4.8

1920 × 1080 2.1 0.426 2.3

Fig. 11. Our algorithm can generate a dithered image.

We give in Table IV, the time spent processing images of
different sizes. (The processor was a 2 × 2.8 GHz Quad-Core
Intel Xeon.) Under these conditions, we were able to measure a
consistent throughput of about 5 × 106 pixel-per-second. The
code is freely available as a plugin for ImageJ.2 We finally
observe that the BEEPS allows for high-throughput processing
without recourse to specialize hardware.

V. POSSIBLE EXTENSIONS

In some respects, the BEEPS is very much similar to the
bilateral filter. In that capacity, it can be used as its potential
substitute, for instance in some popular applications like the
compression of high-dynamic-range images [9]. However, it
also allows for the emergence of additional capabilities, as we
are now going to demonstrate.

Definition (17) of the bilateral filter involves a ratio of terms.
With uncooperative data, it could happen that the numerator
differs from zero while the denominator vanishes, provided at
least one of the range filter r or the spatial filter s is allowed
to take negative values. For this reason, the conditions 0 ≤ r
and 0 ≤ s are enforced in the context of the bilateral filter.

By contrast, the BEEPS described in Section II-A suffers
no such limitation, which offers new intriguing opportunities.
For instance, the spatial filter can be made to promote high
frequencies by choosing −1 < λ < 0. We illustrate in
Fig. 11, the application of the BEEPS with λ = −0.9 and
σ = 10 to the Rock image, with subsequent black-and-
white thresholding. The result is a dithered version of the

2Available at http://bigwww.epfl.ch/thevenaz/beeps/.
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Fig. 12. Our algorithm can fulfill creative drives—here, a silver lining.

original where detailed elements, such as tree branches, are
well preserved. The BEEPS can also accommodate range
filters that the bilateral filter cannot. For instance, we have
created a silver-lining effect by combining λ = −0.5 with
a range filter r in the shape of a signed sigmoid curve, as
realized by a hyperbolic tangent. We give the outcome in
Fig. 12.

VI. CONCLUSION

We have proposed an edge-preserving smoother that is
essentially a version of the bi-exponential filter with adap-
tive weights. We have designed the mechanism of weight
adaptation to ensure that our algorithm falls back to standard
smoothing in limit cases. We were able to show that, with the
appropriate hypotheses, it has formal links with the bilateral
filter. Contrarily to several methods already available to accel-
erate the bilateral filter, ours never quantizes data, neither in
terms of grayscale intensity nor in terms of range filter. In our
case, the choice of the range filter enjoys complete freedom,
at no penalty whatsoever. Making use of separability, we
have extended our proposed filter beyond a single dimension
and suggested ways to weaken the resulting lack of isotropy.
We have implemented our algorithm in Java and discussed its
performance on a general-purpose processor. The simplicity of
our algorithm makes it effortless to code. No pre-computations
were involved, and its memory footprint is negligible. We have
conducted numerous experiments, qualitative and quantitative,
and performed an extensive comparison of the results of our
method with those of the bilateral filter. We concluded that
ours offers an inexpensive way to perform edge-preserving
smoothing, while producing results that closely mimic those
of the bilateral filter.

APPENDIX

We have built the whirl image w : R
2 �→ [0, 255] as

w(A, θ) = 255

2
+255

2

(

1 − sin
θ

2

)
1

π
arcsin(− cos(2πA2−θ)).

(36)
We have rasterized w so as to build an (N × N) Cartesian
array indexed by n ∈ [0 . . . N − 1]2, with x1,2 =

(2 W (n1,2)/(N − 1) − W ) and A cos θ = x1, A sin θ = x2.
In practice, we have set N = 512 and W = 5. We show the
original w at the top of Fig. 1.
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