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Abstract—B-splines are attractive basis functions for the contin-
uous-domain representation of biomedical images and volumes.
In this paper, we prove that the extended family of box splines are
closed under the Radon transform and derive explicit formulae
for their transforms. Our results are general; they cover all known
brands of compactly-supported box splines (tensor-product
B-splines, separable or not) in any number of dimensions. The
proposed box spline approach extends to non-Cartesian lattices
used for discretizing the image space. In particular, we prove
that the 2-D Radon transform of an -direction box spline is
generally a (nonuniform) polynomial spline of degree .
The proposed framework allows for a proper discretization of a
variety of tomographic reconstruction problems in a box spline
basis. It is of relevance for imaging modalities such as X-ray
computed tomography and cryo-electron microscopy. We provide
experimental results that demonstrate the practical advantages of
the box spline formulation for improving the quality and efficiency
of tomographic reconstruction algorithms.

Index Terms—B-splines, box splines, computed tomography,
Radon transform.

I. INTRODUCTION

B IOMEDICAL imaging heavily relies on tomographic
algorithms for the reconstruction of 2-D and 3-D im-

ages from projection data [19]. Prominent medical imaging
examples are X-ray computed tomography, emission tomog-
raphy [positron emission tomography (PET) and single-photon
emission computed tomography (SPECT)], and portal imaging
for radio therapy. Tomographic reconstruction is also relevant
for biology, for instance, for small animal imaging using
microscanners, optical projection tomography, and molecular
structure determination from 3-D cryo-electron tomography.
When the projection angles are evenly distributed, the tomo-

gram is usually reconstructed by filtered back-projection (FBP)
[20], [19]. When the acquisition conditions are less ideal (e.g.,
noisy and/or missing data, noneven angular distribution of the
projections), it is better to apply iterative techniques such as al-
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gebraic reconstruction (ART) or the statistical OSEM method,
which offer greater flexibility.
A crucial step in the design of iterative reconstruction algo-

rithms is the discretization of the forward model. This is usu-
ally achieved by selecting image-domain basis functions and
by mathematically simulating the acquisition process on them.
For a parallel projection geometry, the suitable model is the
Radon transform (or the X-ray transform in 3-D). Current re-
construction algorithms typically use the natural (square) pixel
basis or some blob (or Kaiser–Bessel) functions which have the
advantage of being circularly symmetric. While these particular
choices simplify the derivation of the forward model, they are
not as favorable from an approximation theoretic point of view.
Both bases have—at best—a first order of approximation which
implies that the rate of decay of the discretization error as the re-
construction grid gets finer is relatively slow [17], [23]. In prin-
ciple, choosing higher order B-spline basis functions would be
more advantageous since these are optimal in the sense of their
support being minimal for a given order of approximation [23].
Splines have been found to be useful for improving the perfor-
mance of FBP reconstruction [14], [12], [22] but have hardly
been deployed in the context of iterative algorithms, probably
due to the increased complexity of the corresponding forward
model.
Recently, splines have been used for determining the Hilbert

transform of the sinogram signal, instead of the traditional
Fourier-based method [6], [7] which is widely used for FBP.
The problem of reconstructing a multivariate polynomial

from its Radon projections is studied in [1]. This problem
offers an approximation-theoretic view for the analysis of
X-ray tomography algorithms. Moreover, using the orthogonal
expansion of multivariate polynomials (e.g., Chebyshev expan-
sions), it is possible to provide partial sum approximations to
the tomography problem along with closed-form error analysis
[26]. Multivariate polynomials can be expanded in box spline
basis (via Marsden’s identity), as spline spaces spanned by the
compactly supported box splines contain multivariate poly-
nomials of certain degrees (up to their approximation order).
Hence, our box spline approach offers a direct method for local
reconstruction of multivariate polynomials from their Radon or
X-ray projections.
The contribution of this paper is to provide a general char-

acterization of the Radon (or X-ray) transform for the extended
family of box splines.1 While bringing in this level of gener-
ality may look like overkill at first sight, we find that it actu-
ally simplifies the analysis because the family happens to be

1A preliminary version of this approach with 2-D B-splines was presented at
the ISBI conference. [4]
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Fig. 1. X-ray projection geometry for . On the right: projection of a pixel
(tensor-product first-order B-spline) on various angles.

closed under the Radon/X-ray transform. Since all commonly
used brands of B-splines are special instances of box splines [2],
it therefore makes sense to investigate these functions in detail
to obtain a complete analytical picture.

II. PROJECTION GEOMETRY

The X-ray transform relates a function to its projections along
some directions . The projections (or shadows) are obtained by
integrating the function along a set of parallel rays. In two di-
mensions, this is equivalent to performing the Radon transform.
To specify the geometry in the general -dimensional setting,

we introduce the unit vector that points along the direc-
tion of integration. The spatial coordinates of the input function
are denoted by . Let be a
matrix specifying an orthogonal basis of the hyperplane perpen-
dicular to the direction of integration . The corresponding hy-
perplane coordinates are ; they are
obtained by projecting onto the basis vectors perpendicular to
. These are also expressed in a rotated coordinate system as

(1)

The ( -dimensional) X-ray transform maps a function
into the set of its line integrals [19]. Specifically,

if (e.g., with ), then

(2)

with . In the sequel, we will also use the shorthand
notation for the previous map. The projection geometry
for the 2-D case is illustrated in Fig. 1; the direction of inte-
gration is and the projection matrix onto
the Radon coordinate system is so that

.
The X-ray transform is a bounded linear operator that has the

convenient property of pseudo-commuting with the convolution
and translation operations

(3)

(4)

These properties are essential to the present work where we
are aiming at obtaining a closed-form expression for the X-ray

transform of any spline or box spline function defined on a reg-
ular grid.

III. DISCRETIZATION OF RADON TRANSFORM

To formulate a spline-based forward model for computed to-
mography, we consider an input function that is expressed in an
integer-shift invariant basis

(5)

where the generator is a tensor-product B-spline or, more gen-
erally, a box spline. This is not a restriction because there is usu-
ally a one-to-one linear correspondence between the samples of
a function (or pixels) and the B-spline coefficients [23]. The
direct application of (4) then yields

(6)

This means that we can discretize the X-ray reconstruction
problem exactly, provided that we have an explicit formula
for , the X-ray (or Radon) transform of the B-spline
generator. It is then possible to use (6) to form the system
matrix that relates the line integrals to
the B-spline coefficients of the signal . The corresponding
adjoint operator (back-projection process) is represented by

, the transpose of the system matrix.
We also note that the approach is applicable to nonparallel ge-

ometries (e.g., fan beam or cone beam), as long as the measure-
ments corresponds to pure line integrals. For example, one can
define a geometric transformation where each ray in a fan-beam
setup is transformed to a single ray in a parallel geometry. This
transformation allows us to compute the ray contribution using

in the corresponding parallel geometry.
In practice, one may rely on the analytical forms derived in

this paper to precompute the B-spline projections with
an adequate sampling along the angular and spatial dimensions.
An effective way to reduce the algorithmic cost of (6) is by
storing an oversampled version of these functions in a table. It is
then possible to implement an efficient version of a spline-based
forward model (as well as its adjoint backprojection) using
the fact that the influence of a basis function is very local (sparse
system matrix). Specifically, one should simply scan through
the projection lines hitting the detector, while forming an ap-
propriate linear combination of the B-spline coefficients in (5)
with nonzero contributions, that is, the ones for which the sup-
port of the B-spline intersects the projection line . The
required weights (nonzero system matrix entries)
are retrieved by simple table lookup (nearest neighbor interpo-
lation). The discretization error can be made arbitrarily small by
using a sufficient margin of oversampling along the dimension
with no computational penalty.

IV. BOX SPLINES REVIEW

Box splines are smooth piecewise polynomial functions de-
fined in that are (nonseparable) generalization of univariate
B-splines to the multivariate setting. The definitive reference
on the subject is the monograph by de Boor et al. [2], which is
rather mathematically oriented. Here, we briefly summarize the
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results of box spline theory that are pertinent to the derivations
in this paper. In particular, we emphasize the convolutional in-
terpretation of these functions.

A. Basic Geometric Definition

Geometrically, a box spline is the shadow (i.e., X-ray image)
of a hypercube, in , when projected to a lower dimensional
space, . A box spline is defined for a set of vectors

in . Each of these vectors is the shadow of
an edge of the -hypercube adjacent to its origin. The matrix
of directions completely specifies the box
spline in . Note that the vectors in this (multi-) set need not
be distinct as they can appear with some multiplicity. When

, the box spline is simply the (normalized) indicator
function of the parallelepiped formed by vectors in

for some
otherwise

For , box splines are defined recursively by a “direc-
tional” convolution which makes them particularly suitable for
the Radon transform

(7)

When the lower dimensional space is (i.e., ), the box
splines coincide with univariate B-splines (basic splines).When
the distinct column vectors of are orthogonal to each other,
box splines amount to tensor-product B-splines.
The shifts of on form the spline space

span (8)

If is the minimal number of directions whose removal from
makes the remaining directions not span , then all poly-

nomials up to degree are contained in [2]; also, the
approximation order of is . Furthermore, the continuity
of the box spline is at least

(9)

B. Elementary Box Spline Constituents

Another way of constructing box splines, which is probably
more transparent to engineers, is by repeated convolution of el-
ementary line-segment-like distributions. Specifically, we have

(10)

where the elementary box splines, , are Dirac-like line dis-
tributions supported over with with a unit
integral. These elementary box splines are in direct geometric
correspondence (via a rotation and a proper scaling) with the
primary box spline

where is the -dimensional Dirac distribu-
tion and

otherwise

Moreover, they integrate to 1 which is a property that is shared
by all box splines (and also preserved through convolution).
Based on (10), one directly infers that the box splines are pos-

itive, compactly supported functions. Their support is a zono-
tope, which is theMinkowski sum of vectors in . The center
of the support of is given by .
The Fourier transform of the box spline is therefore given by

(11)

where is the multivariate frequency vector.
Alternatively, a centered box spline, denoted by which is
shifted to the origin, has the simple Fourier transform

(12)

V. X-RAY PROJECTION OF BOX SPLINES

We now turn to our main objective, which is the derivation
of an explicit formula for where is a given
box spline generator specified by direction vectors .
In the following discussion, denotes the

-variate frequency vector corresponding to the projec-
tion-domain spatial coordinate vector , while the pro-
jection geometry is the specified in Section II.
Theorem 1 (Sinogram-Domain Parameterization): The

X-ray transform of a -variate box spline specified by the
direction set, , is a -variate box spline whose direction
set, , is the geometric projection of the
former. Specifically

where is the transformation matrix that geometrically
projects the -coordinate system onto the -coordinate system
perpendicular to .

Proof: We start with the derivation of the X-ray transform
of the elementary (Dirac-type) box spline whose distri-
butional Fourier transform is

We can proceed geometrically by determining the “shadow” of
the direction vector since the latter specifies the support of the
elementary box spline as a line segment in . The alternative
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Fig. 2. X-ray transform of a box spline is a box spline whose directions are
projections of directions of the original box spline onto the projected plane. On
the right: trivariate box spline (tensor-product B-spline) projected to 2-D.

is to apply the central slice theorem which states that the Fourier
transform of corresponds to the restriction of to
the hyperplane perpendicular to . Specifically, we have that

Since , we can define the projected di-
rections by . This allows us to deduce that

(13)

This proves the theorem for . By defining

(14)

we are then able to transfer the result to the general case using
convolution properties (3) and (10).
The theorem is illustrated in Fig. 2. The box spline on the right

is a trivariate tensor-product B-spline (first order) whose direc-
tion vectors are (1, 0, 0), (0, 1, 0) and (0, 0, 1). When projected
to the plane orthogonal to , it yields a bivariate, three-direc-
tion, box spline that is a hat function with hexagonal support.
Likewise, the X-ray transform of the trilinear B-spline (second
order) is again a three-direction box spline, but with multiplicity
of 2. The concept carries over to higher order tensor-product
B-splines which are transformed into three-direction box splines
with repeated directions, the main point being that these can be
evaluated efficiently.
Corollary 2 (Image-Domain Parameterization): The X-ray

transform of an -variate box spline specified by the direction
set along a direction is an -variate box spline. The
directions of the latter -variate box spline are obtained
by geometric projection of the directions into the (hyper)
plane orthogonal to the projection direction

(15)

Corollary 3 (Radon Transform of Box Splines): The Radon
transform of an -variate box spline specified by the direction set
along a direction is a univariate box spline (i.e., a B-spline

along ). The directions (i.e., knots) of the latter univariate box

Fig. 3. Natural multiscale relationship for box splines by projection.

spline are obtained by geometric projection of the directions
onto the projection direction

(16)

Since any box spline is (geometrically) constructed by the
shadow (X-ray) transform of a hypercube, these results estab-
lish that the space of box splines are closed under X-ray trans-
form. These results suggest that box splines are suitable basis
functions for problems involving tomographic reconstruction.
Another feature of box splines that is particularly useful in the

context of tomography is their multiscale property. Since box
splines are obtained by projecting a hypercube down to a lower
dimensional space, the subdivision of the hypercube leads to a
natural formula for a box spline that is written as a sum of scaled
versions of itself where the scaled versions are projections of
subdivided hypercubes—see Fig. 3.

Since this is based on the subdivision of the -hypercube, this
multiscale relationship exists in any dimension and can be
used to develop nonseparable wavelets that use box splines as
the scaling functions [16], [9].

VI. EXPLICIT FORMULAE IN TWO DIMENSIONS

For , we will now show that the X-ray transforms of
box splines are polynomial splines of degree . The geo-
metric configuration is the one shown in Fig. 1 with the -to-
projection matrix given by . The applica-
tion of Theorem 1 together with the convolution formula (10)
yields

(17)

with , and

which is a rectangular box of width when . Note that
the convolution factors with may be eliminated from
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(17) since . To evaluate the convolution product,
we write as

(18)

where is the finite-differ-
ence operator with step , and where is the unit-step (or
Heaviside) function. By substituting (18) in (17), we find that

(19)

where we have used the fact that the -fold convolution of
a step function is with . Finally, we
may expand the finite-difference operators which yield a linear
expansion of in terms of some shifted versions of

. The result therefore implies that is a nonuni-
form polynomial spline of degree , or less if some .
We can also infer that this box spline function is bell-shaped and
that its support is .
A case of special interest is when the 2-D basis function (or

generator) is a tensor-product B-spline of degree :
[24]. In the present formalism, this corresponds

to a box spline with direction vectors and
, each having a multiplicity so that .

The specialization of (19) for these particular values yields an
explicit formula for the Radon transform of a separable B-spline
of degree

(20)

which corresponds to the spline bikernel identified by Horbelt
et al. in [12]. A Matlab routine for computing the centered ver-
sions of these functions is provided in Appendix B.
The more general result (19), which is valid for any 2-D box

spline, is new to the best of our knowledge. For instance, the
Zwart–Powell element [22] is represented by the box spline di-
rections

(21)

According to Theorem 1, its projection along the angle pro-
vides the univariate box spline that is specified by the directions

This integration process is illustrated in Fig. 4. By applying
(19), we find that the Radon transform of the Zwart–Powell box
spline has the explicit closed-form representation

(22)

VII. EXPERIMENTAL RESULTS

The main interest of the proposed B-spline formalism is to
provide an effective and consistent way to discretize the forward

Fig. 4. (Nonseparable) Zwart–Powell element which is a box spline associated
with the directions in (21). Radon transform of Zwart–Powell box spline can be
derived, exactly, using our approach.

model of a computed-tomography reconstruction problem. The
basis for such an approach is to characterize the image (5) by its
B-spline coefficients where denotes the domain
of the image and to apply (6) to obtain the simulated line-in-
tegral measurements (Radon transform). The image reconstruc-
tion is then formulated as a regularized least square optimization
problem that is solved iteratively. Specifically, the reconstructed
image is given by (5) with the B-spline coefficients being deter-
mined as

(23)

where is the input measurement vector and the matrix-rep-
resentation of the forwardmodel. The quantity is a regular-
ization functional (e.g., the energy of the gradient of the image
or its total variation) that penalizes nondesirable solutions; it is a
way of introducing prior information on the solution to make the
problem well-posed. The scalar parameter is a tradeoff
factor that balances the fitting accuracy versus the amount of
regularization.
The success of such a reconstruction algorithm is dependent

upon two factors: 1) the quality and accuracy of the forward
model, and 2) the constraints that are imposed by the regular-
ization. The latter is very much application-dependent and be-
comes especially relevant when the reconstruction problem is
ill-posed (e.g., limited angle tomography). Since the appropriate
choice of the regularization is a whole field of investigation in
itself, we focus here on the assessment of the quality of the for-
ward model.
To that end, we consider a well-conditioned scenario where

the measurement noise is negligible and the number of projec-
tion angles is sufficient to reconstruct the image by numerical
inversion of the forward model. Our series of experiments is set
up such that the number of degrees of freedom of the B-spline
image model (square grid of size ) matches the number
ofmeasurements ( properly sampled projections in an equian-
gular configuration). The reconstruction is performed by solving
(23) with iteratively (least squares solution) using the
conjugate Gradient (CG) method. We study the accuracy of the
family of separable B-spline models as well as the nonsepa-
rable Zwart–Powell box spline and compare our method with
the traditional implementation of the Radon transform. Because
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Fig. 5. Comparison of different methods with respect to processing time.

of space limitations, we concentrate on the piecewise linear and
cubic B-spline solutions with in (20), respectively.
Our reference algorithm is the function radon in Matlab,

which proceeds in a hierarchical fashion. It first subdivides each
pixel into four subpixels of equal intensity and then projects
each of the subcomponents using a triangle profile function

(splatting). This implies that the Matlab function is at
least four times more demanding than the first-order version
(linear B-spline) of our method.

A. Algorithm Speed

The present family of forward models (B-spline Radon trans-
form) was coded in C and linked to Matlab as a mex file. The
adjoint operator is implemented similar to the forward model
by changing the direction of the flow graph. The Radon trans-
form of the B-splines was precomputed once and stored in a
2-D lookup table for best efficiency. To measure the speed, we
computed the Radon transforms of a series of images of in-
creasing size . The expected computational cost is
with a proportionality factor that depends upon the choice of
algorithm and the size of the underlying basis function. The
results are documented in Fig. 5 and are consistent with the
prediction. The Matlab implementation is the slowest, while
the cubic B-spline version of our algorithm is approximately
eight times more costly than the piecewise-linear version. The
Zwart–Powell box spline is notably faster than cubic B-spline
and is very close to linear B-spline’s performance.

B. Consistency of Forward Model

In order to examine the ability of the proposed discretization
method to capture sharp image details, we considered an ana-
lytical phantom whose Radon transform is known analytically.
Proposition 4: The Radon transform of the function

otherwise
(24)

where , is

otherwise
(25)

Fig. 6. (a) Analytical phantom includes 30 circles with different quadratic in-
tensity distributions. (b) Lung image used for evaluation of forward model and
reconstruction. These datasets at the resolution of 1024 1024 serve as ground
truth for our experiments.

This can be readily verified by evaluating the integral

Using the linearity and the projected shift-invariance property
(4) of the Radon transform, we use this result to determine the
Radon transform of an object

where and are some prescribed parame-
ters. For our experiments, we considered the analytical phantom
shown in Fig. 6(a). Starting from a 1024 1024 representation,
we calculated its Radon transform along 1024 directions with
the help of the different algorithms and compared the output
with the analytical one. Examples of projections are shown in
Fig. 7. The higher order versions of our spline models produce
the sinograms that are the most faithful to the analytical ones.
The Matlab results in 7(c) are not quite as favorable as the cubic
B-spline 7(e) and Zwart-Powell box spline 7(d), although they
oscillate less than the linear spline version 7(b). This ranking is
confirmed by the global signal-to-noise ratio (SNR) presented
in Table I.

C. Reconstruction Error as a Function of Grid Size

In a well-conditioned scenario with a sufficient number of
measurements, we can expect the quality of the reconstruction to
be dependent upon the grid size (number of degrees of freedom
of the reconstruction model). Yet, we also know from approx-
imation theory that not all basis functions are equally good at
representing arbitrary signals at a fixed resolution. From a sam-
pling point of view, B-splines are optimal in the sense that they
have the maximal order of approximation for a given support.
To investigate the dependence upon the sampling rate, we

conducted a series of experiments where the grid size is pro-
gressively reduced. The reference object and signal-to-noise
computations are defined with respect to the fine grid (e.g.,
1024 1024). The coarse grid measurements are obtained by
suitable angular and spatial resampling of the fine-grid Radon
transform of the object. An ideal lowpass filter is applied in the
spatial domain prior to downsampling to avoid aliasing. The
object is reconstructed on the coarse grid using the different
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Fig. 7. Radon transform of phantom along . Both Zwart–Powell box spline and cubic B-spline outperform Matlab’s radon operator. (a) Analytical
Radon transform, (b) linear B-spline, (c) Matlab radon operator, (d) Zwart–Powell box spline, and (e) cubic B-spline.

TABLE I
COMPARISON OF DIFFERENT DISCRETE MODELS OF RADON TRANSFORM

flavors of the forward model. The reconstruction is calculated
iteratively and corresponds to the least-squares solution. Fi-
nally, the result is interpolated back to the finer grid (resampling
of the spline model) for quality assessment. For the Matlab
version, we used a linear interpolation which was found to give
better results than a cubic interpolation (for upsampling).
1) Analytical Phantom for Analysis of Accuracy: In the

case of the phantom in Fig. 6(a), we used the analytical
calculation of the Radon transform as initial fine-grid measure-
ments. We then performed the various signal reconstructions
for , and using the corresponding
downsampled versions of the input data. The evolution of the
signal-to-noise ratio as a function of the downsampling factor
is shown in Fig. 8. Fig. 9 compares the reconstruction results
for a central region of the phantom that is reconstructed from
256 projections (downsampling by (4, 4)). The specific region
of the phantom is depicted in Fig. 9(a). Note that the best
results are obtained with the cubic B-spline [Fig. 9(e)] and
Zwart–Powell box spline [Fig. 9(d)] models. In particular, we
can distinguish some of the fainter circles (e.g., at the bottom
left) that are barely visible in the other reconstructions. The
differences between the Matlab model and the linear B-spline
reconstruction are less significant, although there may be a
slight preference towards the former because of its smoother
appearance.
2) Biomedical Data: Next, we considered the cross section

of the lung image shown in Fig. 6(b) as representative example
of a medical image. Its Radon transform was calculated using
the different forward models and the results averaged to specify
a fine-scale set of measurements that is not biased towards one
of the methods. We then performed the same experiments as in
the previous case. The corresponding evolution of the SNR is
shown in Fig. 10. Fig. 11 presents a region of interest that was
reconstructed from 256 projections. The conclusions that can be
drawn are essentially the same as in the previous experiment,
namely, that the cubic B-spline [Fig. 11(e)] and Zwart–Powell
box spline [Fig. 11(d)] basis functions outperforms the others.
This is significantly and of practical interest, given the compu-
tational efficiency of these two algorithms (see Fig. 5).
In addition, we did also reconstruct images using the quintic

B-spline version of the method which is computationally more

Fig. 8. Evolution of the signal-to-noise ratio for least squares reconstruction of
analytical phantom as both grid size and number of measurements are reduced.

expensive, but did not observe any significant improvement
over the cubic spline reconstruction which appears to offer an
excellent compromise in terms of cost/quality tradeoff. We
believe that the present cubic B-spline and Zwart-Powell box
spline versions of the Radon transform are to be preferred over
the standard Matlab implementation because they consistently
yield better quality results while being computationally quite
competitive.
We also performed experiments with real biomedical data

(i.e., human bicuspid calcific heart valve derived nodule) ac-
quired from a CT scanner. The computational advantages of our
spline model as well as improvements in the accuracy of recon-
struction, afforded by higher order basis functions, were similar
to the lung data experiments reported in Fig. 11. Moreover, we
have performed an experiment with a phantom containing sharp
edges to assess the impact of higher-order basis functions on the
sharpness of reconstruction. This experiment illustrates, numer-
ically, that the higher-order basis functions do provide a more
accurate reconstruction with a better preservation of edges. The
results and discussions of these experiments are documented in
the supplementary material for this manuscript.2

VIII. DISCUSSION

The choice of the box spline generator in (5) should be de-
termined by computational and approximation theoretic con-
siderations. Basis functions with larger support and smooth-
ness usually offer better approximation quality, but they also

2Available at http://www.cise.ufl.edu/~entezari/research/radon-transform/
supp.pdf.
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Fig. 9. Reconstructed phantom from 256 projections using different discrete forward models. Both Zwart–Powell box spline and cubic B-spline outperform
Matlab’s reconstruction. Besides having smaller artifacts in the reconstruction, the faint circle in the bottom left is better reconstructed in (d) and (e).

Fig. 10. Evolution of the signal-to-noise ratio for least squares reconstruction
of the lung as both grid size and number of measurements are reduced.

require more computations. This suggests the possibility of a
tradeoff between approximation order and the density of the
reconstruction grid. In particular, it has been demonstrated that
it is computationally advantageous asymptotically to switch to
a higher order basis function than to increase the sampling rate
[12].
Tensor-product B-splines constitute a preferred set of basis

functions because they are made up from univariate B-splines
building blocks which are widely studied and efficient to
evaluate. We should note, however, that the present box spline
framework includes other nonseparable basis functions with
increased isotropy (e.g., Zwart–Powell box spline) and same
approximation order, but lower polynomial degree and smaller

support than their tensor-product counterparts. This directly
relates to the efficiency issue (Fig. 5), which deserves further
investigation.
The approach is applicable with minor adjustment to nonpar-

allel geometries as long as the projections are line integrals or
obtained by taking “point” measurements (i.e., ideal samples)
of the Radon transform, or, with a very slight extension, that all
the rays hitting one detector (pixel) are parallel. Since the Radon
transform of the B-spline/box spline is available to us in closed
form, the handling of a nonparallel geometry then essentially
amounts to a proper bookkeeping of the angles. For every ray
angle in the nonparallel geometry, the proper ray direction in the
parallel geometry can be looked up. The hypothesis of pure line
integrals is implicit to all the discretization methods that we are
aware of.
Another concept for consideration is the geometry of the

reconstruction lattice. While the common solution is to use a
Cartesian grid, the 2-D hexagonal lattice and the 3-D body cen-
tered cubic (BCC) and face centered cubic (FCC) lattices have
been demonstrated to outperform the sampling efficiency of
the Cartesian lattice due to their densest spectral packing prop-
erties. Advantages of hexagonal, BCC, and FCC lattices for
tomography have been advocated for discretizing image space
[11], [8], [15], [21], [10]. The present box spline formalism can
perfectly handle these lattices as well as the separable Cartesian
lattice. Equation (5) can model lattice shifts of a box spline
that is geometrically tailored for such nonseparable lattices.
The BCC/FCC box splines investigated in [5], [3], and [13]
can be readily applied since these are quite favorable from
the computational aspects. Moreover, the Voronoi splines [18]
and hex-splines [25] are composed of box splines; hence, the
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Fig. 11. Central region of reconstructed lung from 256 projections using different discrete forward models. Linear B-spline (c) is comparable to Matlab’s approach
(b), while both Zwart–Powell box spline (d) and Cubic B-spline (e) provide the most accurate reconstructions. Difference in the reconstructions are mostly visible
in areas close to edges as well as the white structures within gray areas.

Fig. 12. Matlab code for Radon transform of the tensor-product B-splines.

framework discussed in this paper can be extended to the class
of Voronoi splines for reconstruction on arbitrary lattices.

IX. CONCLUSION

We presented a box spline calculus for computed tomog-
raphy. The proposed framework translates the X-ray and Radon
transforms to geometric projections applied on the direction
sets of box splines. While the framework is general for sepa-
rable and nonseparable box splines in any dimension, the 2-D
cases are studied specifically for the Zwart–Powell box spline
and the commonly used tensor-product B-splines. The X-ray
transforms of tensor-product B-splines of any order lead to
nonseparable box splines whose closed-form representations
are provided along with efficient Matlab routines for their
implementation.

Fig. 13. Matlab code for Radon transform of the Zwart-Powell box spline.

APPENDIX A
MATLAB IMPLEMENTATION

The 2-D to 1-D X-ray transform of a B-spline can be com-
puted by (20) which can be efficiently implemented in Matlab,
as shown in Fig. 12.
Similarly, the 2-D to 1-D X-ray transform of the nonseparable

Zwart–Powell box spline can be computed by (22) which can be
efficiently implemented in Matlab, as shown in Fig. 13.
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