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A Novel Sampling Theorem on the Sphere
Jason D. McEwen and Yves Wiaux

Abstract—We develop a novel sampling theorem on the sphere
and corresponding fast algorithms by associating the sphere with
the torus through a periodic extension. The fundamental property
of any sampling theorem is the number of samples required to
represent a band-limited signal. To represent exactly a signal
on the sphere band-limited at �, all sampling theorems on the
sphere require ����� samples. However, our sampling theorem
requires less than half the number of samples of other equiangular
sampling theorems on the sphere and an asymptotically identical,
but smaller, number of samples than the Gauss-Legendre sam-
pling theorem. The complexity of our algorithms scale as �����,
however, the continual use of fast Fourier transforms reduces
the constant prefactor associated with the asymptotic scaling
considerably, resulting in algorithms that are fast. Furthermore,
we do not require any precomputation and our algorithms apply
to both scalar and spin functions on the sphere without any
change in computational complexity or computation time. We
make our implementation of these algorithms available publicly
and perform numerical experiments demonstrating their speed
and accuracy up to very high band-limits. Finally, we highlight
the advantages of our sampling theorem in the context of potential
applications, notably in the field of compressive sampling.

Index Terms—Harmonic analysis, sampling methods, spheres.

I. INTRODUCTION

I N many fields of science and engineering data are measured
on a spherical manifold. Applications where data are de-

fined inherently on the sphere are found in computer graphics
(e.g., [1]), planetary science (e.g., [2]–[5]), geophysics (e.g.,
[6]–[8]), quantum chemistry (e.g., [9], [10]) and astrophysics
(e.g., [11], [12]), to quote only a few. In many of these applica-
tions a harmonic analysis of the data is insightful. For example,
spherical harmonic analyses have been remarkably successful in
cosmology over the past decade, leading to the emergence of a
standard cosmological model. Observations of the anisotropies
of the cosmic microwave background (CMB), which are made
on the celestial sphere, contain a wealth of information about the
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early Universe. Cosmologists extract this information from the
angular power spectrum of observations of the CMB, computed
through a harmonic transform on the sphere (e.g., [13]). Recent
and upcoming full-sky observations of the CMB are of consider-
able size, containing approximately three [12] and fifty [14] mil-
lion samples respectively. Furthermore, observations are made
of both the temperature and polarization of the CMB, which give
rise to scalar and spin functions on the sphere respectively.
Consequently, the ability to perform fast scalar and spin spher-
ical harmonic transforms on large data sets is of considerable
importance in cosmology and beyond.

Algorithms to perform spherical harmonic transforms have
received considerable attention already. Some correspond
to sampling theorems on the sphere, where the forward and
inverse transform are theoretically exact for a band-limited
signal on the sphere. Others adopt approximate quadrature rules
on the sphere, resulting in approximate harmonic transforms
that do not correspond to sampling theorems on the sphere.
However, these approximate algorithms typically arise from
particular pixelizations of the sphere which meet desirable
practical criteria, such as pixels of equal area, and are no less
important. We focus here on approaches that lead to sampling
theorems on the sphere with theoretically exact transforms for
signals on the sphere band-limited at (where the harmonic
band-limit is defined formally in Section III-B). Note that the
current [12] and forthcoming [14] CMB observations discussed
previously support band-limits of and ,
respectively. All sampling theorems require samples on the
sphere of order , however the exact number of samples
required varies for each sampling theorem. For many applica-
tions reducing the number of samples required to represent a
band-limited signal on the sphere is of fundamental importance.

Sampling theorems on the sphere and their associated numer-
ical algorithms are evaluated by four criteria: (i) the number of
samples required to represent a band-limited signal exactly; (ii)
their computational complexity; (iii) their speed; and (iv) issues
surrounding any precomputation. From an information theoretic
viewpoint, the fundamental property of any sampling theorem
is the number of samples required to represent a band-limited
signal exactly. In this paper, we review algorithms to compute
spherical harmonic transforms accurately and efficiently. We
also present a novel sampling theorem on the sphere and cor-
responding fast algorithms. Our approach compares favorably
to the state-of-the-art as evaluated by the four criteria listed pre-
viously. Furthermore, our algorithms apply to both scalar and
spin functions on the sphere without any change in asymptotic
complexity or computation time.

The remainder of this paper is structured as follows. In
Section II we review comprehensively the literature regarding
the computation of spherical harmonic transforms, placing our
novel sampling theorem and fast algorithms in the context of
preceding work. Harmonic analysis on the sphere is reviewed
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concisely in Section III, to present the mathematical prelim-
inaries required subsequently. Our sampling theorem on the
sphere and the corresponding fast algorithms to compute spher-
ical harmonic transforms are derived in Section IV. Section V
we evaluate our algorithms numerically and discuss the ad-
vantages of our sampling theorem in the context of potential
applications, notably in the field of compressive sampling.
Concluding remarks are made in Section VI.

II. REVIEW

The development of sampling theorems on the sphere and fast
algorithms to compute spherical harmonic transforms has been
driven largely by researchers in the fields of computational har-
monic analysis, geophysics and astrophysics. Due to the diverse
nature of these fields, the literature on this topic appears to be
somewhat disjoint. We attempt to unify these works here and to
present a comprehensive review of the historical development
of the field.

For isolatitude sampling schemes, where the samples are
gathered in isolatitude annuli, a separation of variables may be
performed to rewrite the scalar spherical harmonic transform
as a Fourier transform in longitude and an associated Legendre
transform in colatitude. The computation is then dominated by
the associated Legendre transform, reducing the complexity
from to . Isolatitude samplings are thus very
common and hence we restrict our attention to such schemes.
Spin lowering and raising operators can be used to relate
the harmonic transform of spin functions to the scalar case,
hence scalar transforms have received the majority of attention.
Approaches to improve the computational performance of
scalar spherical harmonic transforms attempt either to reduce
the asymptotic complexity further through fast associated Le-
gendre transforms or to reduce the constant prefactor associated
with the asymptotic scaling of the algorithm.

First attempts to compute a scalar spherical harmonic trans-
form through a fast Legendre transform were performed by
Orszag [15] and were based on a Wentzel-Kramers-Brillouin
(WKB) approximation. Alternative approaches using the fast
multipole method (FMM) [16] have been considered by Alpert
and Rokhin [17] and by Suda and Takani [18]. The complexity
of these algorithms scale linearly with the desired accuracy.
An alternative approximate algorithm using WKB frequency
estimates has been developed by Mohlenkamp [19], [20] for
functions with band-limits that are a power of two, however this
approximation can be controlled independently of complexity,
which scales as . In any case, these types of
approach are necessarily approximate and do not yield exact
sampling theorems on the sphere.

Other approximate approaches based solely on the separation
of variables have been developed more recently for pixeliza-
tions of the sphere that satisfy certain practical requirements,
such as 1 [21] and 2 [22], resulting in algorithms
of complexity . For these pixelizations only approximate
quadrature rules exist, hence the spherical harmonic transform

1http://healpix.jpl.nasa.gov/
2http://www.mrao.cam.ac.uk/projects/cpac/igloo/

algorithms of and are not theoretically exact.
Nevertheless, these pixelization schemes satisfy a number of de-
sirable practical criteria, such as pixels of equal area, and their
associated harmonic transform algorithms are of sufficient ac-
curacy for many practical purposes. These schemes have found
considerable application in the analysis of CMB data.

Exact transforms with associated sampling theorems have
been constructed for particular pixelization schemes. It is well
known that Gauss-Legendre quadrature may be used to con-
struct exact spherical harmonic transforms. To our knowledge,
this result was first highlighted in published work by Shukowsky
[23], which in turn refers to unpublished (and inaccessible) work
by Payne from 1971 [24]. An exact sampling theorem can be
constructed from samples on the
sphere, where the sample locations in colatitude are chosen as
the roots of the Legendre polynomials of order , as dictated by
Gauss-Legendre quadrature. Through a separation of variables,
the resulting algorithm is . The 3 [25] pixelization
scheme has been constructed using Gauss-Legendre quadrature,
however this scheme uses twice as many samples in colatitude
as required, i.e., approximately samples are used.

has also found considerable application in the analysis
of CMB data.

The first theoretically exact sampling theorem on an equian-
gular pixelization was developed by Shukowsky [23], requiring

samples on the sphere; however,
the exactness of this approach was not studied numerically. Al-
though this algorithm remains , a separation of variables
may be used to reduce the computational complexity to .
An alternative sampling theorem on the sphere for an equian-
gular pixelization was developed by Driscoll and Healy [26].
Moreover, a divide-and-conquer approach to computing a fast
associated Legendre transform in the cosine basis was derived
[26]. The resulting algorithm is exact in exact precision arith-
metic, and has computational complexity , but is
known to suffer from stability problems [27], [28]. Healy et al.
[27] readdressed the work of Driscoll and Healy [26], refor-
mulating the sampling theorem on the sphere and developing
some variants of the original algorithm,4 which are available for
download.5 However, the only variant that is universally stable
is the so-called seminaive algorithm, which remains . Al-
gorithms to compute spin transforms are derived by Wiaux

3http://www.glesp.nbi.dk/
4Healy et al. [27] derive a number of variants of the original Driscoll and

Healy algorithm [26], including the so-called seminaive, simple-split, and hy-
brid algorithms. The seminaive algorithm avoids dividing (and conquering) the
problem, resulting in��� � complexity. The simple-split algorithm is a simpler
and more stable divide-and-conquer approach than the original algorithm but

with an increased complexity of��� ��� �� and is less stable than the sem-
inaive approach. The splitting required by the simple-split algorithm is costly (in
terms of execution time rather than asymptotic complexity), thus for a band-limit
of � � ��	
 the seminaive algorithm is greater than two times faster than the
simple-split algorithm [27]. The hybrid algorithm attempts to mitigate the slow
execution of the simple-spit algorithm and the higher complexity of the semi-
naive algorithm by splitting the problem between them. The hybrid algorithm
appears to achieve a good compromise between stability and efficiency. How-
ever, the overall complexity of this algorithm is not clear since it depends on the
split between the seminaive and simple-split algorithms and on user specified
parameters.

5http://www.cs.dartmouth.edu/ geelong/sphere/
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et al. [29] and Kostelec et al. [30] using spin raising and low-
ering operators to relate spin transforms to the scalar case, be-
fore applying the scalar algorithms developed by Healy et al.
[27]. In general, this type of approach may be used to com-
pute spin transforms for arbitrary spin [31], however the com-
plexity of the resulting algorithm then also scales linearly with
spin number. All of these algorithms [26], [27], [29], [31], [32]
require samples on the sphere
and, moreover, the divide-and-conquer based approaches are all
restricted to harmonic band-limits that are a power of two. Fur-
thermore, all of the methods with complexity below re-
quire a precomputation that requires computations and
storage. At band-limit , for example, the precompu-
tation requires 1.2 GB of storage [29], scaling to approximately
77 GB for the band-limit of forthcoming CMB ob-
servations. Precomputation quickly becomes infeasible for high
band-limits, thus the seminaive algorithm is the most
universally applicable fast algorithm implementing the Driscoll
and Healy sampling theorem.

Other approaches to reduce the cost of computing spherical
harmonic transforms focus on reducing the constant prefactor
associated with the asymptotic complexity of algorithms. These
approaches have typically exploited fast Fourier transforms
(FFTs) on equiangular pixelizations to reduce computation
time through an association between the sphere and the torus,
while their complexity remains . To our knowledge,
the first algorithm based on this technique was developed by
Dilts [33], where the North and South poles of the sphere
were identified to map the sphere to the torus. However, this
algorithm is approximate and does not result in a sampling
theorem on the sphere. One of the authors of this paper de-
veloped a sampling theorem on the sphere [34] by making
periodic extensions of the sphere in colatitude in order to make
an association with the torus. This sampling theorem requires

samples on the sphere and,
moreover, applies to any spin number without the application of
spin lowering and raising operators. However, the forward al-
gorithm associated with this sampling theorem proved unstable
(the inverse algorithm did not suffer from stability issues).
Recently, Huffenberger and Wandelt [35] adopted the inverse
transform of this approach and resolved the instability in the
forward algorithm, although in doing so increased the number
of points required to sample a band-limited function on the
sphere to . In this paper we read-
dress sampling theorems derived by associating the sphere with
the torus through periodic extensions and develop a sampling
theorem requiring
samples on an equiangular pixelization, with corresponding
fast algorithms that do not suffer from any stability issues.

III. HARMONIC ANALYSIS ON THE SPHERE

In this section we review harmonic analysis on the two-sphere
. We first review the scalar spherical harmonic transform, be-

fore generalizing to the spin case. Associations are then made
between the spin spherical harmonics and the Wigner functions,
where the latter provide an orthogonal basis for the decomposi-
tion of square integrable functions on the rotation group .

A. Scalar Spherical Harmonics

We consider the space of square integrable functions on the
sphere , with the inner product of defined
by

where is the usual invariant measure on
the sphere and define spherical coordinates with colati-
tude and longitude . Complex conjugation
is denoted by the superscript .

The scalar spherical harmonic functions form the canonical
orthogonal basis for the space of scalar functions on the
sphere and are defined by

for natural and integer , , where
are the associated Legendre functions. We adopt the

Condon-Shortley phase convention, with the phase
factor included in the definition of the associated Legendre
functions, to ensure that the conjugate symmetry relation

holds. The orthogonality
and completeness relations for the spherical harmonics read

and

respectively, where is the Kronecker delta symbol and
is the Dirac delta function.

Due to the orthogonality and completeness of the scalar
spherical harmonics, any square integrable scalar function on
the sphere may be represented by its spherical
harmonic expansion

where the spherical harmonic coefficients are given by the usual
projection onto each basis function: . The con-
jugate symmetry relation of the spherical harmonic coefficients
of a real function is given by , which fol-
lows directly from the conjugate symmetry of the scalar spher-
ical harmonic functions.

B. Spin Spherical Harmonics

Square integrable spin functions on the sphere ,
with integer spin , are defined by their behavior under
local rotations. By definition, a spin function transforms as

(1)

under a local rotation by , where the prime denotes the rotated
function. It is important to note that the rotation considered here
is not a global rotation on the sphere, such as that represented
by an element of the rotation group , but rather a rotation
by in the tangent plane at . The sign convention that
we adopt here for the argument of the complex exponential in
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(1) differs to the original definition [36] but is identical to the
convention used recently in the context of the polarization of
the CMB [37].

The spin spherical harmonics form an orthogonal
basis for spin functions on the sphere for .
Spin spherical harmonics were first developed by Newman
and Penrose [36] and were soon realized by Goldberg [38]
to be closely related to the Wigner functions. We therefore
defer the explicit definition of the spin spherical harmonic
functions until Section III-C. The conjugate symmetry re-
lation given for the spin spherical harmonics is given by

. The spin spherical
harmonics satisfy identical orthogonality and completeness
relations as the scalar spherical harmonics.

Due to the orthogonality and completeness of the spin
spherical harmonics, any square integrable spin function on
the sphere may be represented by its spherical
harmonic expansion

where the spin spherical harmonic coefficients are given by the
usual projection onto each basis function: .
Note that the spin spherical harmonics and transforms simply
generalize the scalar equivalents to spin signals, reducing to the
standard scalar case for . When deriving our novel sam-
pling theorem we consider signals on the sphere band-limited at

, that is signals such that . The conjugate
symmetry relation of the spin spherical harmonic coefficients is
given by for a function satisfying

(which for a spin function equates to the
usual reality condition) and follows directly from the conjugate
symmetry of the spin spherical harmonics.

Spin raising and lowering operators, and , respectively,
exist so that spin functions may be obtained from spin

functions [36], [38]. Spin raising and lowering operators are
often used repeatedly to relate spin functions to scalar func-
tions on the sphere.

C. Wigner Functions

The Wigner functions , for natural
and integer , form an orthogonal basis for the space

of square integrable functions on the rotation group,
and are parameterized by the Euler angles , where

, and .6 The Wigner functions
may be decomposed as [39]

(2)

where the real polar -functions are defined by [39]

(3)

6We adopt the ��� Euler convention corresponding to the rotation of a phys-
ical body in a fixed coordinate system about the �, �, and � axes by � , �, and
�, respectively.

where are the Jacobi polynomials. Note that recursion
formulae are available to compute rapidly the Wigner -func-
tions (e.g., [40] and [41]). The -functions satisfy a number of
symmetry relations; in this paper we make use of the symmetry
relations [39]

(4)

(5)

and

(6)

We are not concerned with decompositions of functions on
the rotation group in this paper but rather representations of the
spherical harmonics by Wigner functions. The spin spherical
harmonics may be defined by the Wigner functions through [38]

(7)

Defining the spherical harmonics in this manner allows us to
apply standard Wigner function decompositions to the spher-
ical harmonic functions. We subsequently make considerable
use of the Fourier series decomposition of the -functions given
by [42]:

(8)

where . This expression follows from a fac-
toring of rotations as highlighted by Risbo [40]. The Fourier se-
ries representation of given by (8) allows one to write
the spherical harmonic expansion of in terms of a Fourier se-
ries expansion of extended appropriately to the two-torus
(as discussed in more detail in Section IV). Consequently, (8) is
fundamental to the derivation of our sampling theorem on the
sphere and fast algorithms.

IV. FAST SPHERICAL HARMONIC TRANSFORM

We derive fast algorithms for performing forward and in-
verse spin spherical harmonic transforms and discuss the cor-
responding sampling theorem on the sphere. Our approach in-
volves an extension of the sphere to the torus so that FFTs may
be exploited to reduce the cost of computation. It is related
closely to the algorithms derived by one of the authors in a pre-
vious work [34] and to the algorithms derived by Huffenberger
and Wandelt [35], however it does not suffer from the instabili-
ties of the former approach and requires only half as many sam-
ples on the sphere as the latter approach. We first present the
general harmonic formulation of our algorithms, followed by a
discussion of periodization and discretization, before deriving
algorithms to perform exact forward and inverse transforms.
Our sampling theorem also leads to a new quadrature rule on
the sphere, which we then present, followed by a discussion of
symmetries that may be exploited to improve the efficiency of
computation for real signals.

A. Harmonic Formulation

We consider the harmonic transform of spin functions on the
sphere , band-limited at ; consequently, all sum-
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mations over or up to are truncated to . Furthermore,
harmonic coefficients are not defined for , hence we
define them to be zero to enforce the constraint when
summations are interchanged.

By noting the definition of the spin spherical harmonics in
terms of Wigner functions (7), the Wigner decomposition (2)
and the Fourier expansion of the Wigner -functions (8), the
forward transform of may be written

(9)

where

(10)

and

(11)

In Section IV-D we consider implicit quadrature rules to eval-
uate (10) and (11) exactly. By noting the same substitutions and
interchanging the order of summation, the inverse transform of

may be written

(12)

where

(13)

and

(14)
Although recasting the forward and inverse spherical harmonic
transforms in this manner is no more efficient than the original
formulation, (10)–(13) highlight similarities with Fourier series
representations. However, the Fourier series expansion is only
defined for periodic functions; thus, to recast these expressions
in a form amenable to the application of Fourier transforms we
must make a periodic extension in colatitude .

B. Periodic Extension

We make a periodic extension of to the domain
so that FFTs may be used to compute the forward and inverse
spherical harmonic transform rapidly. When making this peri-
odic extension we must be careful to ensure that the symmetry
of our current representation is respected on the new domain;
we must apply the symmetries dictated by the inverse transform
when imposing periodization in the forward transform. By sub-
stituting (12) into (11) and noting the continuous orthogonality

of the complex exponentials, we find the forward and inverse
expressions in are related by

(15)

Consequently, the symmetry we impose in when ex-
tended periodically must match the symmetry of . By
reflecting , we obtain the following symmetry for :

where we have noted the symmetry

(16)

following from (14) and (5). Thus, we extend to the
domain by constructing7

Note that we adopt a different periodic extension to other ap-
proaches framed on the torus [34], [35] by applying the exten-
sion to the Fourier transform of in , i.e., to . Two
periodic extensions, one even and one odd, were required in the
approach taken previously by one of the authors [34]. Huffen-
berger and Wandelt [35] apply the factor as a shift in

by , removing the need for two periodic extensions but re-
quiring a even number of samples in , precluding an associa-
tion with the odd number of points in unless oversampling is
performed. We avoid these restrictions by applying the periodic
extension to the Fourier transform in of , rather than to
directly.

C. Discretization

We adopt an equiangular sampling of the sphere with sample
positions given by

(17)

and

(18)

In order to extend the domain to we simply extend the
domain of the index to include .

An odd number of sample points are required in both and
in the extended domain so that a direct association may be made

7We check that this periodic extension does not impose discontinu-
ities at the poles � � ��� �� . To avoid discontinuities we require
� �� � � ���� � �� � , which follows trivially for � � � even.

From (6) we find � �� � � ���� � �� �, which, due to the
continuity of the Wigner �-functions, implies � �� � � � for �� � odd.
Combined with the representation, for � � � odd,

� ��� � ����
��� �

��
� ��� 	

this implies � �� � � � for � � � odd; hence our periodic extension does
not impose any discontinuity.
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with the harmonic indices and , resulting in
samples on the sphere. We also require

a symmetric sampling in about the South pole so that samples
on the extended domain can be obtained by reflecting samples
defined on the original domain. The node positions specified by
(17) and (18) eliminate repeated samples at the poles and

since these points are excluded from the pixelization.
However, it is not possible to eliminate repeated samples at

, since we require a discretization that is symmetric about
but which contains an odd number of sample points.

D. Forward Transform

The algorithm we derive in this section to compute a forward
spin spherical harmonic transform essentially follows the har-
monic formulation presented in Section IV-A, however we dis-
cuss implicit quadrature rules for the exact evaluation of (10)
and (11).

Since (11) is simply a Fourier transform we may appeal to the
discrete and continuous orthogonality of the complex exponen-
tial to express this integral exactly by

for . An FFT may be used to compute
for all and with computational complexity

. We extend to the domain
through the construction

noting .
We now consider an implicit quadrature rule for the exact

evaluation of through (10). First, however, we com-
pute from by noting (15) and by appealing to
the discrete orthogonality of the complex exponentials to invert
(13), giving

An FFT may be used to compute for all and with
computational complexity . Now that we have

to hand, we substitute (13) into (10), noting (15), to
yield

(19)

where the weights are given by

.

Note that the definition of these weights is identical to that de-
rived by Huffenberger and Wandelt [35], however we correct
some (typographical) errors in their explicit evaluation. Since
we are concerned with the values of for , the
computation of through (19) explicitly requires weights
with argument up to . If the range of is extended to

, (19) may be seen as a (reflected) convolution,
which may be computed more efficiently following a Fourier
transform. However, since only the range is of
interest, aliasing may be tolerated provided that it is outside of
this range. To ensure that this is the case we zero-pad
in the domain prior to computing an
inverse Fourier transform. We then compute an inverse Fourier
transform of the weights on the same extended domain and take
the product of these terms, the Fourier transform of which gives

. Using FFTs to compute in this manner reduces
the computational complexity from for the direct calcu-
lation of (19) to .

Once we have computed through the implicit quadra-
ture rule discussed previously, we simply compute the spin
spherical harmonic coefficients through (9). The com-
plexity of this computation is , which dominates the
overall complexity of the forward algorithm.

The forward algorithm may be summarized conceptually
as follows, where we view the upsampling and application of
weights in the spatial domain:

1.Procedure FORWARD TRANSFORM ( )

2. compute the Fourier transform of in

3. extend the resultant function to in

4. upsample the resultant function in

5. multiply by the inverse Fourier transform of the reflected
weights and take the Fourier transform in to give the
coefficients

6. compute the spherical harmonic coefficients from

7.return

8.end procedure

Although the complexity of this approach remains identical
to a standard separation of variables, the continual use of FFTs
reduces the constant prefactor associated with the asymptotic
scaling considerably, resulting in an algorithm that may be used
to compute harmonic coefficients rapidly. Furthermore, a pre-
computation is not required, which can otherwise necessitate
very large storage requirements for high band-limits. Finally,
note that this algorithm applies to both scalar and spin functions
without any change in computational complexity or computa-
tion time.

E. Inverse Transform

The inverse algorithm follows the harmonic formulation pre-
sented in Section IV-A closely. Firstly, is computed di-
rectly through (14), where we also exploit the symmetry (16)
to reduce the number of computations by a factor of two. The
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complexity of this computation is , which dominates the
overall complexity of the inverse algorithm. FFTs are then used
to evaluate (13) and (12) rapidly over the extended domain, with
complexities for both computations. To facilitate
the efficient calculation of (12) through the use of an FFT, we
compute function values on the extended domain , how-
ever we discard those values computed in the domain .
The algorithm presented here to compute the inverse transform
is identical to that first proposed by one of the authors [34] and
subsequently adopted by Huffenberger and Wandelt [35]. The
inverse algorithm may be summarized as follows:

1.Procedure INVERSE TRANSFORM

2. compute the Fourier coefficients from

3. compute the function samples on the extended domain by
an inverse Fourier transform

4. construct by discarding samples computed in the
domain

4.return

2.end Procedure

Since we construct algorithms to perform forward and in-
verse spherical harmonic transforms that are theoretically exact,
our construction corresponds to a novel sampling theorem on
the sphere. Moreover, to represent a band-limited signal on the
sphere our sampling theorem requires less than half the number
of number of samples required by other equiangular sampling
theorems on the sphere [23], [26], [35] and an asymptotically
identical, but smaller, number of samples that the Gauss-Le-
gendre sampling theorem.

F. Quadrature

The construction of our sampling theorem on the sphere can
be used to define an explicit quadrature rule for the integration
of a function band-limited at . This integration, which corre-
sponds to computing the spherical harmonic coefficient ,
requires approximately half as many samples as needed to com-
pute all spherical harmonic coefficients. We define the explicit
quadrature weights to evaluate the following integral ex-
actly by the finite sum:

(20)

where . As seen from (9), the computation of re-
quires for only. Consequently, aliasing in

in all Fourier coefficients except may be toler-
ated, hence the number of samples required in is reduced from

to . From the (reflected) convolution (19), it is apparent
that the coefficients are required for all (for
only). Consequently, the sampling in remains unchanged, with

samples. However, only weights with argument up to
are required. The (reflected) convolution thus spans the range

. However, since only is of interest

Fig. 1. Exact quadrature weights corresponding to our sampling theorem. In the
left column of panels the weights ��� � (red squares) defined on ��� ��� and the
quadrature weights ��� � (yellow diamonds) defined on ��� �� are plotted. These
values are compared to samples of the function defined by ��	��� on ��� �� and
zero on ��� ��� (solid black line). In the right column of panels the difference
between the quadrature weights ��� � and ��	��� are plotted. (a) Weights for
� 
 �. (b) Difference for � 
 �. (c) Weights for � 
 ��. (d) Difference for
� 
 ��.

aliasing may be tolerated in in all Fourier coefficients
except , so that zero-padding is not required before com-
puting the (reflected) convolution as a product in the spatial do-
main. The absence of upsampling leads to the explicit quadra-
ture (20), with samples on the sphere, where the
weights are defined by

and where is the inverse discrete Fourier transform of the
reflected weights :

The weights defined on are exactly the samples
of the function defined by on and zero on ,
band-limited at . The quadrature weights defined on

are constructed simply by folding the contributions of
on back onto the domain. Both of these

weights are plotted and compared to in Fig. 1.

G. Real Signals

In many practical applications signals observed on the sphere
satisfy a reality condition. For spin signals, the reality condition
is given by , which implies the conjugate symmetry
condition on the spherical harmonic
coefficients of the signal. When this reality condition is satisfied
(for example, when considering the polarization of the CMB),
we may exploit this symmetry to recover the harmonic coef-
ficients of a spin signal for free from the coefficients of a
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spin signal. For the spin case, the reality condition re-
duces to the standard reality condition of a scalar signal, im-
plying . In this case, noting (14) and (4),
we obtain the symmetry

We exploit these symmetries to reduce the computational cost of
both the forward and inverse algorithms by an additional factor
of approximately two for real spin signals.

V. EVALUATION

We have implemented our fast algorithms to compute
spherical harmonic transforms in double precision arithmetic,
exploiting all of the symmetries discussed in Section IV to
optimize the implementation.8 The core implementation used
for the numerical experiments presented in this section is
written in , using the 9 package to compute Fourier
transforms, however we also provide a interface.
We make our Spin Spherical Harmonic Transform
package containing this implementation available publicly.10

For comparison purposes, we also implemented in the SSHT
package an optimized algorithm to compute spherical harmonic
transforms for the Gauss-Legendre sampling theorem on the
sphere.11 This algorithm is based on a separation of variables
and a direct application of the Gauss-Legendre quadrature rule,
resulting in complexity .

In this section we evaluate our sampling theorem and fast al-
gorithms in terms of the number of samples required to repre-
sent a band-limited function, numerical precomputation (or lack
thereof), the recursions used to compute Wigner -functions,
and numerical accuracy and computation time. Finally, we eval-
uate our sampling theorem in the context of potential applica-
tions.

A. Sampling

The number of samples required to represent a band-lim-
ited function on the sphere exactly is the fundamental prop-
erty of any sampling theorem, with fewer samples desired. Both

8The structure of our algorithms suggest multiple transforms of different spin
may in theory be computed simultaneously at lower cost than consecutive com-
putation (since Wigner �-functions do not need to be recomputed and some
computations are independent of spin). However, for simplicity we do not in-
corporate this optimization in our current implementation.

9http://www.fftw.org/
10http://www.jasonmcewen.org/
11It is well know that Gauss-Legendre quadrature may be used to construct

an exact sampling theorem on the sphere. Gauss-Legendre quadrature with �
points is exact only for a polynomial integrand of order less than or equal to
����. Since neither the associated Legendre functions nor the Wigner �-func-
tions are polynomials in ��� �, it does not follow immediately that Gauss-Le-
gendre quadrature results in an exact harmonic transform for scalar and spin
signals on the sphere band-limited at�; nevertheless, this is indeed the case. We
prove the result for spin � signals on the sphere, thus the scalar case will follow
simply by setting � � �. For� samples in �, we must simply prove that the inte-
grand � ��	 � ��	 is polynomial in ��� � of maximum degree less than or
equal ����. From inspection of (3), we may write the Wigner �-functions as a

polynomial of degree ���, multiplied by �������	 ��
����	 .
Similarly, we may write � ��	 as a polynomial of degree �� �� �, mul-
tiplied by the same factor. The integrand is therefore polynomial with overall
degree���
�, which reaches a maximum of ����. Gauss-Legendre quadra-
ture with� samples in � may thus be used to compute exact spherical harmonic
transforms of scalar and spin functions band-limited at �.

Fig. 2. Number of samples � required to represent exactly a signal on the
sphere of band-limit � for the following sampling theorems: Gauss-Legendre
sampling theorem (blue/dot-dashed line); Driscoll and Healy sampling theorem
(green/dashed line); and the sampling theorem developed in this paper (red/
solid line). The inset shows very low band-limits, where the difference between
Gauss-Legendre sampling and our sampling can have a large impact.

the Gauss-Legendre and our sampling theorems require in gen-
eral samples, while the Driscoll and
Healy sampling theorem requires samples. We
therefore provide a reduction in number of samples by a factor
of two compared to the canonical equiangular sampling the-
orem on the sphere. Furthermore, we require

fewer samples that the Gauss-Legendre sampling the-
orem, which for small band-limits can be significant (as dis-
cussed in Section V-E). The optimal number of samples attain-
able by a sampling theorem on the sphere is given by the
degrees of freedom in harmonic space. No sampling theorem
on the sphere reaches this bound in general. However, both the
Gauss-Legendre and our sampling theorem reach the bound
in the limiting case of small (we reach the bound for the cases

, the Gauss-Legendre sampling theorem reaches the
bound for only, while the Driscoll and Healy sampling
theorem never reaches the bound). In Fig. 2 we plot the number
of samples against band-limit for various sampling theorems.
We also plot the position of samples for each of these sampling
theorems in Fig. 3.

B. Precomputation

It is possible to reduce the computational burden of our fast
algorithms by precomputing the Wigner -functions for argu-
ment and for all required harmonic indices. Such a precom-
putation would require storage, similar to the storage re-
quirements of the precomputation for Driscoll and Healy based
algorithms [26], [27], [29]. For these latter approaches precom-
putation is essential to recover the fast algorithms with com-
plexity below . However, for high band-limits the storage
requirements become impractical at present (recall that the pre-
computation at is expected to require approximately
77 GB of storage). The Wigner -functions may be evaluated ac-
curately and rapidly using recursion formulae; therefore to avoid
storage problems we do not perform any precomputation and in-
stead compute Wigner -functions on-the-fly using the method
of Risbo [40].
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Fig. 3. Sampling schemes for the exact representation of a signal band-limited
at � � ��. Sample positions are shown for the following sampling theorems:
Gauss-Legendre sampling theorem (blue dots); Driscoll and Healy sampling
theorem (green dots); and the sampling theorem developed in this paper (red
dots). Notice that the Driscoll and Healy sampling theorem requires approxi-
mately twice as many samples on the sphere as the alternative samplings. (a)
View of North pole. (b) View of South pole.

C. Computing Wigner Functions

Since our algorithms require Wigner -functions evaluated
on the entire plane for argument only, they are flex-
ible with regard to the choice of recursion used to compute
the Wigner plane for a given . For example, for the on-the-fly
computation of Wigner -functions we may use the recursion
of Risbo [40] (which requires the entire plane) or Trapani and
Navaza [41] (which is restricted to argument ), which are both
of complexity , without altering the overall com-
plexity of our algorithms. However, this is not the case for alter-
native algorithms.

To compute spherical harmonic transforms for the Gauss-Le-
gendre and Driscoll and Healy sampling theorems using the

algorithms described previously, it is necessary to com-
pute Wigner -function values for a single row of the Wigner
plane only, but for all and all values of . For the overall algo-
rithms to remain , the on-the-fly computation of the row
of the Wigner plane must be performed in computations.
This precludes the use of the recursions devised by Risbo [40]
and by Trapani and Navaza [41], for example, both of which
would result in an overall algorithm with complexity . In-
stead, alternative recursions must be used, such as the three-term
recursion in that goes pointwise through the Wigner plane

(see, e.g., [28, (4.5)]; this recursion is used in our implemen-
tation of the Gauss-Legendre sampling theorem). The inflexi-
bility of these algorithms with regard to the choice of recursion
used to compute Wigner -functions becomes important when
we study the stability of these recursions in the following sec-
tion. Of course, this issue may be resolved by precomputing
Wigner -functions using any recursion, but as we have seen
this becomes problematic at large band-limits.

D. Numerical Accuracy and Computation Time

We evaluate the numerical accuracy and computation time of
our algorithms that implement our new sampling theorem, com-
paring them to our optimized implementation of the Gauss-Le-
gendre sampling theorem and to the seminaive algorithm [27] in

12 implementing the Driscoll and Healy sam-
pling theorem. For all cases we do not perform any precompu-
tation since this is infeasible for high band-limits (recall that the
seminaive algorithm is the fastest algorithm implementing the
Driscoll and Healy sampling theorem that does not require pre-
computation). In order to assess numerical accuracy and com-
putation time we perform the following numerical experiment.
We generate band-limited test signals on the sphere defined by
uniformly random spherical harmonic coefficients with real and
imaginary parts distributed in the interval . An inverse
transform is performed to synthesize the test signal on the sphere
from its spherical harmonic coefficients, followed by a forward
transform to recompute harmonic coefficients. Numerical accu-
racy is measured by the maximum absolute error between the
original spherical harmonic coefficients and the recom-
puted values , i.e., . Computa-
tion time is measured by the round-trip computation time taken
to perform the inverse and forward transform. All numerical ex-
periments are performed on a 2.5 GHz Intel Pentium dual core
processor with 4 GB of RAM and are averaged over five random
test signals.

The maximum absolute error is plotted against band-limit
in Fig. 4 for different sampling theorems. High numerical
accuracy is achieved for all sampling theorems at moderate
band-limits, with errors on the order of the machine precision
and increasing approximately linearly with band-limit. For
the Gauss-Legendre sampling theorem we use the
routine of Numerical Recipes [43] to compute Gauss-Le-
gendre node positions and weights. This method is based on
an initial approximation for each node position, followed by
an iterative refinement based on Newton’s method, which is
likely to explain the slightly inferior error performance of
the corresponding algorithms. Furthermore, the algorithms
implementing both the Gauss-Legendre and Driscoll and
Healy sampling theorems suffer from their lack of flexibility
regarding the recursion used to compute Wigner -functions (or
associated Legendre functions for the spin case), which
necessitates the use of the less accurate pointwise three-term
recursion in , rather than more accurate alternatives. Conse-
quently, the numerical accuracy of our algorithms is superior to
the optimized implementations of the alternative sampling the-
orems. More importantly, however, both the Gauss-Legendre
sampling theorem and the seminaive implementation of the

12http://www.cs.dartmouth.edu/ geelong/sphere/
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Fig. 4. Numerical accuracy of the algorithms implementing the following sam-
pling theorems: our optimized implementation of the Gauss-Legendre sampling
theorem (blue/dot-dashed line); the seminaive algorithm in ��������	
�	�

implementing the Driscoll and Healy sampling theorem (green/dashed line);
and our algorithms implementing the sampling theorem developed in this paper
(red/solid line). ���� scaling is shown by the heavy black/solid line. The al-
gorithms implementing the Gauss-Legendre and Driscoll and Healy sampling
theorems go unstable between � � ���� and � � ����, due to the enforced
use of the pointwise three-term Wigner recursion. For the Gauss-Legendre and
our sampling theorems, which both support spin transforms, the maximum ab-
solute error � is averaged over complex signals of spin � � ��� �� ��� and a
real spin � � � signal, with one standard deviation error bars shown (in most
cases differences are very small and error bars cannot be seen easily). Note that
for these cases the maximum absolute error is identical (to statistical noise) for
transforms of real and complex signals of different spin.

Driscoll and Healy sampling theorem go unstable between
and , due to the instability of the pointwise

three-term Wigner recursion. As discussed in Section V-C,
these algorithms require a recursion with complexity , in
order to remain for on-the-fly computation. To resolve
the instability of these algorithms it would be necessary to use
the alternative recursion of Risbo [40], making them ,
or to perform a precomputation of Wigner -functions. Neither
of these solutions are feasible for high band-limits, hence
these algorithms are restricted to moderate band-limits (unless
an alternative pointwise recursion can be found that is stable
to high band-limits). Due to the flexibility of our sampling
theorem with regard to Wigner recursion, we are able to use
Risbo’s recursion [40], which is stable to at least ,
without altering the complexity of our algorithms. Finally,
note that for the implementations that support spin transforms
(the Gauss-Legendre and our sampling theorems), the error is
identical (to statistical noise) for transforms of real and complex
signals of different spin.

The computation time for complex signals is plotted against
band-limit in Fig. 5 for different sampling theorems. For all
sampling theorems, computation time evolves as as pre-
dicted. The seminaive algorithm is slightly faster than our algo-
rithm, which is in turn slightly faster than our optimized imple-
mentation of the Gauss-Legendre sampling theorem. Although
we plot performance results for our algorithms using the recur-
sion of Risbo [40], we also implemented the recursion of Tra-
pani and Navaza [41], which we found to be approximately 20%
faster than Risbo’s approach but which goes unstable between

and . Nevertheless, the Trapani and Navaza

Fig. 5. Computation time of the algorithms implementing the following sam-
pling theorems: our optimized implementation of the Gauss-Legendre sampling
theorem (blue/dot-dashed line); the seminaive algorithm in ��������	
�	�

implementing the Driscoll and Healy sampling theorem (green/dashed line);
and our algorithms implementing the sampling theorem developed in this paper
(red/solid line). ��� � scaling is shown by the heavy black/solid line. The al-
gorithms implementing the Gauss-Legendre and Driscoll and Healy sampling
theorems go unstable between � � ���� and � � ����, due to the enforced
use of the pointwise three-term Wigner recursion. For the Gauss-Legendre and
our sampling theorems, which both support spin transforms, the computation
time � (seconds) is averaged over complex signals of spin � � ����� ���, with
one standard deviation error bars shown (in most cases differences are very small
and error bars cannot be seen easily). Note that for these cases the computation
time is identical (to statistical noise) for transforms of signals of different spin.

[41] recursion can be used at band-limits at or below
to provide a considerable speed enhancement. In this case, at
band-limit we are approximately 25% slower than
the seminaive algorithm, but twice as fast as the Gauss-Legendre
algorithm. However, the seminaive algorithm applies for scalar
functions only (and requires approximately twice as many sam-
ples on the sphere), while the alternative sampling theorems also
apply directly for spin functions on the sphere. Finally, note
that for the implementations that support spin transforms (the
Gauss-Legendre and our sampling theorems), computation time
is identical (to statistical noise) for transforms of signals of dif-
ferent spin, as predicted.

E. Applications

We discuss three potential applications of our sampling the-
orem in the fields of cosmology, neuroscience and compressive
sampling (CS). For each case we highlight the enhancements
that our sampling theorem will afford.

For the analysis of CMB observations, our sampling theorem
and associated algorithms provide the ability to perform fast
spherical harmonic transforms that are exact at the very high
resolution of current and forthcoming CMB observations. Fur-
thermore, we can compute harmonic transforms of both the tem-
perature and polarization of the CMB for identical cost.

The number of samples required to represent a band-limited
signal is not only of theoretical interest but also has important
practical application. A sampling theorem requiring fewer sam-
ples means a band-limited function can be measured exactly for
lower cost. This is particularly important in applications where
the cost of acquiring a single sample is large. In neuroscience,
for example, diffusion magnetic resonance imaging (MRI) [44]
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is one such application, where cost is measured in terms of ac-
quisition time. Diffusion MRI has received considerable atten-
tion recently as a non-invasive technique to image structural
neuronal connectivity in the brain. In this setting, most recent
acquisition strategies consider sampling on multiple spherical
shells for each voxel of the brain, from which an orientation dis-
tribution function (ODF) describing the probability density of
neuronal fibre directions is recovered [45], [46]. The ODFs of
each voxel are then combined to recover neuronal connectivity.
Given the millions of voxels generally considered, at present
this imaging modality remains too time consuming for clinical
use. Typically, very low band-limits of order are con-
sidered for each spherical shell. Consequently, when adopting
an exact sampling theorem even the small reduction in number
of samples between our sampling theorem and the Gauss-Le-
gendre approach of can have a large
impact on the total cost of acquisition. For a typical example
with acquisitions made on three concentric spherical shells of
increasing radius, it has been shown that band-limits of three,
five and nine, respectively, are required to limit aliasing to ac-
ceptable levels [47]. For such an acquisition, the total number
of samples, and thus total acquisition time, would be reduced by
a factor of 13% when replacing Gauss-Legendre sampling with
our sampling theorem. This type of enhancement is of consider-
able importance in order to make diffusion MRI accessible for
clinical use.

The recently developed theory of CS states that it is possible
to acquire sparse or compressible signals with fewer samples
than standard sampling theorems would suggest [48], [49]. In
these settings, the ratio of the number of required measurements
to the dimensionality of the signal scales linearly with its spar-
sity [48]. By reducing the dimensionality of the signal in the
spatial domain, our sampling theorem will enhance the perfor-
mance of CS reconstruction on the sphere when compared to
alternative sampling theorems. Furthermore, for sparsity priors
defined in the spatial domain, such as signals sparse in the mag-
nitude of their gradient, sparsity is also directly related to the
sampling of the signal. For this class of signals, we therefore
expect to see an additional enhancement in CS reconstruction
performance when adopting our sampling theorem. The use of
CS techniques on the sphere is likely to have widespread appli-
cation for a wide range of problems, including more efficient
acquisition, denoising and deconvolution on the sphere. In par-
ticular, all of these problems are faced in diffusion MRI and in
analyzing the CMB, which we are studying currently to evaluate
in detail the enhancements provided by our sampling theorem.

VI. CONCLUSION

We have developed a novel sampling theorem on the sphere,
with corresponding fast algorithms, by associating the sphere
with the torus through a periodic extension. To represent a band-
limited signal on the sphere exactly our sampling theorem re-
quires less than half the number of samples required by other
equiangular sampling theorems on the sphere and an asymptot-
ically identical, but smaller, number of samples than the Gauss-
Legendre sampling theorem on the sphere. The complexity of
our algorithms to compute both forward and inverse transforms
is , with identical scaling to a standard separation of vari-
ables. However, the continual use of FFTs reduces the constant

prefactor associated with the asymptotic scaling considerably,
resulting in algorithms that may be used to compute harmonic
transforms rapidly. Numerical experiments have shown our al-
gorithms to be approximately twice as fast as optimized algo-
rithms implementing the Gauss-Legendre sampling theorem but
approximately 25% slower than the seminaive algorithm, the
most universally applicable algorithm implementing the equian-
gular Driscoll and Healy sampling theorem. However, the semi-
naive algorithm applies for scalar functions only, while our sam-
pling theorem also applies directly for spin functions on the
sphere (whereas the computation time for a spin transform
using the seminaive algorithm would scale by ). Numer-
ical experiments have also shown our algorithms to be numer-
ically stable to band-limits of . Conversely, the al-
gorithms that implement the Gauss-Legendre and Driscoll and
Healy sampling theorems on the sphere are restricted in their
use of Wigner recursions and, due to the enforced use of the
pointwise three-term Wigner recursion, go unstable between
band-limits and .

Our novel sampling theorem and fast algorithms will be of
practical benefit both at very high and low band-limits. For the
analysis of CMB data at very high band-limits , our
sampling theorem yields exact spherical harmonic transforms
with algorithms that are stable and very accurate. For the recon-
struction of diffusion MRI images at low band-limits ,
the reduction in the number of samples required by our sampling
theorem to represent a band-limited signal may be exploited to
reduce the cost of acquisition significantly. For CS applications
in both of these fields and beyond, the reduction in dimension-
ality and sparsity afforded by our sampling theorem will en-
hance the performance of CS reconstruction on the sphere.
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