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A Signal Processing Approach to Generalized
1-D Total Variation
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Abstract—Total variation (TV) is a powerful method that brings
great benefit for edge-preserving regularization. Despite being
widely employed in image processing, it has restricted applicability
for 1-D signal processing since piecewise-constant signals form a
rather limited model for many applications. Here we generalize
conventional TV in 1-D by extending the derivative operator,
which is within the regularization term, to any linear differential
operator. This provides flexibility for tailoring the approach to
the presence of nontrivial linear systems and for different types
of driving signals such as spike-like, piecewise-constant, and so
on. Conventional TV remains a special case of this general frame-
work. We illustrate the feasibility of the method by considering a
nontrivial linear system and different types of driving signals.

Index Terms—Differential operators, linear systems, regulariza-
tion, sparsity, total variation.

I. INTRODUCTION

T IKHONOV regularization is one traditional way in en-
gineering and statistics to deal with ill-posed problems;

i.e., the solution should provide a balance between the data
term (consistency with the measurements) and the regulariza-
tion term (based on prior information). Generalizations of this
scheme employ the energy of the solution’s image under a linear
operator instead of the energy of the solution [1]. Such regular-
ization strategies typically lead to smooth solutions when em-
ploying -norm. Alternatively, -norm regularizations have
attracted a lot of attention for their sparsity-promoting property;
i.e., they favor sparse representations with many zeros or very
small coefficients. The -norm is the relaxed convex counter-
part of the ideal sparsity-promoting, but nonconvex, spar-
sity count (the number of nonzero components) [2]. A particular
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case of -norm based regularization, total variation (TV), has
been widely applied in image processing [3], including applica-
tions like image denoising, restoration and deconvolution [4],
[5]. In 2-D, TV is defined as the -norm of the magnitude of
the gradient. In this respect, TV regularization preserves edge
information and hence offers superior approximation quality for
most real-world data compared with (smooth) -based regular-
ization. In a typical denoising problem, the aim is to recover
an object , given its noisy measurements . If the object is
known to be sparse in a given representation, this information
can be used to come up with a regularization strategy. In this
regard, promoting “sparsity” of the analysis or synthesis coeffi-
cients leads to two different regularization strategies [6]. More
precisely, if denotes the synthesis operator of a frame, “syn-
thesis prior” denoising requires the solution to satisfy

(1)

where for -constrained fitting regression (see, for ex-
ample, [7]–[11]). On the other hand, the “analysis prior” formu-
lation looks for the solution of

(2)

where denotes the analysis operator of the frame. For or-
thonormal bases, the two approaches yield the same result; for
redundant frames, even tight ones, they do not. In this setting,
Tikhonov and TV regularized formulations of the denoising
problem can be regarded as generalizations (since the associ-
ated operators are not necessarily the analysis operators of a
frame anymore) of the analysis prior formulation, which rely
on the and the -norm, respectively.
TV exploits the combination of a derivative operator with the
-norm, which makes this regularization an ideal option when

dealing with piecewise-constant signals. However, in many
1-D applications much more complex signals are encountered.
Piecewise-polynomial signals can be dealt with by TV with
built-in higher order derivatives [12]–[16]. For example, TV
with the second-order derivative is optimal for piecewise-linear
signals. The benefit of adding higher order derivatives is that
they reduce the staircase effect of the first order derivative in
TV and bring flexibility to the reproduced signal. This exten-
sion has been used to retain smooth transitions while keeping
sharp edges [16], for texture extraction [17], and has recently
been reintroduced for MRI reconstruction [18]. The early appli-
cation of TV regularization has been hampered by rather high
computational complexity, but the recent advances in the field
have led to fast algorithms for the minimization problem.
Today, the algorithms at hand range from dual methods [19], it-
erative reweighted norm (IRN) [20], fixed point algorithm [21],
graph cuts [4] to (fast) iterative shrinkage-thresholding algo-
rithm ((F)ISTA), and so on [5], [22], [23]. It is important to
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note that basis-pursuit denoising [7] can offer a “synthesis”
counterpart of TV; i.e., inverting the derivative operator leads
to a dictionary with (shifted) Heaviside step-functions. There-
fore, analysis-prior and synthesis-prior methods seem to be
equivalent from a theoretical point-of-view, but the represen-
tation by the Heaviside dictionary is unstable. For example, in
[24], the analysis counterpart of the constructed dictionary is
preferred for its simplicity. In some cases, a specific dictionary
can be built for the synthesis operator [25], [26], including
generalizations of wavelet design [27], [28].
Here, we extend the conventional TV concept and adapt the

regularization for any linear differential operator . The choice
of the operator can be tuned to the presence of a linear system
and can be adapted to the type of the driving signal that is ex-
pected. We propose generalized TV regularization for the typ-
ical setting in signal processing dealing with uniformly sampled
data. We also provide two practical algorithms to solve the op-
timization problem at hand.
The paper is organized as follows. We elaborate conventional

TV as a mathematical principle and then introduce our gener-
alized TV scheme in Section II. Section III is devoted to the
algorithms and how to modify these general-purpose solvers
for generalized TV regularization. In Section IV we simulate
a system of third-order linear differentials and compare the per-
formance of proposed generalized TV and conventional TV.
Finally, we comment on the numerical results and draw some
conclusions.

II. GENERALIZED TOTAL VARIATION

A. Beyond Conventional TV

We introduce a new regularization term that is inspired from
the combination of TV with linear differential operators. We
first revisit conventional TV, which forms the fundamental
mathematical concept behind our methodology.
Definition 1 (Total Variation): TV of a continuous-do-

main function on interval , is defined as the
supremum of absolute differences for any finite partition

:

(3)

If the first derivative of is well defined, then TV can be
shown to be equivalent to

(4)

where is regular (continuous-domain) derivative [4].
For many applications in signal processing, the data is ac-

quired and available on a uniform grid. Specifically, we consider
the series of samples . In such a case, TV can
be computed as the -norm of the finite-difference operator

where . This point of view clearly
reveals the link between the formulations (3) and (4); i.e., the
finite difference is the discrete counterpart of the continuous-

domain derivative . In fact, in the case of uniform discrete
data as will be considered further on, the concept of TV can
seamlessly be extended for discrete filters that are associated to
general linear differential operators.
Definition 2 (Generalized Total Variation): For a discrete

signal , we define the generalized TV as

(5)

where 1 is the discrete version of the th-order differential
operator

(6)

with is the identity operator, , , and
, , the zeros and poles of the operator,

respectively, and . We conveniently characterize the
operator by and . This
operator can also be used to build exponential B-splines [29],
[30] and wavelets [27].
Clearly, the definition in (5) includes conventional TV; i.e.,

the case with and reverts to that case. It
should also be noted that for the discrete operator
has finite length . For , the support of the discrete
operator becomes infinite in general and the operator can be
constructed by a proper combination of causal and anti-causal
filtering depending on the poles of the system. The following
proposition summarizes how to obtain the discrete counterpart

of . The proof can be found in the Appendix.
Proposition 1 (Discrete Implementation of ): Consider the

continuous-domain linear differential operator ,
where and constitute the operators of ; the operator
is inverted as before. Therefore,

We separate in its causal ( , characterized by
, ) and anti-causal ( ,
, ) parts to assure stability. Then,

the discrete operator associated to can be obtained by a
cascade of filtering operations corresponding to

(7)

where is the input, is the output of the first recursive fil-
tering step (causal), is the output of the second recursive

1For the remaining of the paper, we use either as a convolution operator
or as a discrete filter. The sense will be clear from the context.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on July 28,2020 at 14:22:25 UTC from IEEE Xplore.  Restrictions apply. 



KARAHANOĞLU et al.: A SIGNAL PROCESSING APPROACH TO GENERALIZED 1-D TOTAL VARIATION 5267

Fig. 1. Illustration showing the observation model and the use of generalized TV. First, the driving signal serves as input to the linear system. Next, the (ideal)
system response gets corrupted by noise. Generalized TV regularization aims at minimizing the -norm of the differential operator—which is tuned to the linear
system and driving signal—applied to the reconstruction.

filtering step (anti-causal) and is the final output. The con-
stituting filters are given in the time domain by

where we use the multi-index notation ,
with and the conventions

and . The initial condi-
tions for the recursive implementations (the last two rows of
(7)) can be determined with respect to the input ; i.e., and
are nonzero within the support of .

B. TV Regularization

As usual for TV regularization, we cast our problem of
finding the approximation from the noisy measurements
into a variation formulation where we use the generalized TV
regularizer from (5). Then, the minimization problem becomes

(8)

where is the regularization tuning parameter and is the
discretized form of a differential operator of the form (6). The
solution depends on , which controls the trade off between the
data and regularization terms.
The optimal solution to (8) should find a compromise be-

tween data fidelity and regularization cost. In the continuous
domain, any homogeneous solution of the differential op-
erator has no cost since . This property also
holds for the sampled version and the discrete filter ; i.e.,

. Therefore, null-space components of the differ-
ential operator can be used at no cost to minimize the residual

error. Moreover, signals with a sparse representation after ap-
plying have a low cost for the -norm and will be preferred.
For the case , we retrieve the conventional TV regular-
ization where the constant signal is the (only) null-space com-
ponent and the lowest global cost is attained for piecewise-con-
stant signals.

C. On the Choice of Differential Operator

The main working principle of TV is to impose sparsity
through the -norm of the derivative of the signal, which is
typically satisfied for piecewise-constant signals when com-
bined with the data term. The additional flexibility that we
propose by generalizing for any differential operator allows
incorporating additional or different prior information.
When dealing with a linear system in Fig. 1, the differential

operator can be tuned to the inverse of the system response. In
this case, the differential operator will undo the effect of the
linear system, and regularization will be guided by the driving
signal. The -norm leads to the optimal performance when the
signal is spike-like. More complex driving signals can be dealt
with by further refining the operator; e.g., for a step-like driving
signal a regular derivative can be added to the regularizing op-
erator. We will discuss this point in more detail in Section IV.

III. OPTIMIZATION ALGORITHMS

In what follows, we briefly review two practical algorithms
to obtain the minimizer of the cost functional in (8). For
now, we assume that all vectors and matrices involved are fi-
nite-dimensional. This minimization problem can be regarded
as a generalized form of the analysis-prior denoising problem
(see [6] and [26] and the references therein). The first algorithm
is essentially an adaptation of the one provided by Chambolle
for TV denoising [5], [31] (also see [19] for a slightly different
algorithm). In [5], the (fast) gradient projection ((F)GP) algo-
rithm is derived for TV denoising problems whereas
we adapted the algorithm for the discrete operator .
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Algorithm 1: Let us consider the regularization operator ;
its -transform is given by and

reverts to the discrete time Fourier transform of . Fur-
ther more, we choose subject to

The algorithm then iterates the following steps until conver-
gence:

I) Update ,
where the adjoint of is .

II) Update where denotes the
element-wise clipping function,

After convergence, set .
With a small variation only, the fast version of the algorithm

can be obtained [5].
Algorithm 2: Repeat the following steps until the conver-

gence criterion is met for each iteration with :

I) Update .
II) Update .

III) Update .
IV) Update

After convergence, set .
These algorithms make use of the dual-problem [19] and em-

ploys the “fast gradient-projection” (FGP) method [5]. Equiv-
alent algorithms can be derived employing the “majorization-
minimization” scheme (see [32]–[34]). Again initiating from
the dual form, Chambolle [19] proposes a slightly different gra-
dient-based model; finally, similar algorithms [23], [31] suggest
“graph-cut” technique to solve the same problem. We refer to
[35] for an extensive overview of recent algorithms.
It is important to note that generalized TV can be combined

with the more general deconvolution problem: the data term
may include a matrix/operator ; e.g., that corresponds to a
blurring filter. Then the optimization problem turns into

The solution of this problem is not very practical to achieve
directly with Algorithms 1 and 2 since the inverse of may
be ill-conditioned. The trick is to apply a two step optimiza-
tion. The first (outer) loop tackles the deblurring problem while
the second (inner) loop solves the denoising problem as pro-
posed here. For more details, we refer to [5 Sec. 5] for com-
bining (F)ISTA/FGP algorithms, and to [36] for the “majoriza-
tion—minimization” algorithm.

IV. EXPERIMENTAL RESULTS

In this section, we present several examples to illustrate the
usefulness and performance of the proposed method. First, we
demonstrate signal reconstruction of a simulated linear system
response with different driving signals and show how it outper-
forms conventional TV. Finally, we show waveform analysis of
audio signals by tuning the zeros of the operator to the central
tone.

TABLE I
THE DIFFERENTIAL OPERATOR FOR GENERALIZED TV NEEDS TO BE
CHOSEN ACCORDING TO THE LINEAR SYSTEM AND THE TYPE OF DRIVING
SIGNAL. IS THE IDENTITY OPERATOR. THE INVERSE IS DEFINED AS

EXPLAINED IN SECTION IV-A

A. Proof of Concept

We present synthetic examples according to the model shown
in Fig. 1 to demonstrate the usefulness of generalized TV regu-
larization. To focus the attention, we consider a linear system

(9)

where and are the input and output signals, respectively, and
denotes the convolution operator.We introduce the continuous

Fourier transform of as .
We can define a pseudoinverse , where is

defined by

if

if .

Then, matching the regularization operator with will
cancel the effect of the linear system:

where is a null-space component of the system , in other
words, . Notice that a null-space component of
cannot be recovered.
Depending on the assumptions on the driving signal , we

have the additional freedom to include derivative operators in
in order to further sparsify the signal and make the -norm

effective. Specifically, in Table I, we give an overview of how
the operator should be chosen for various types of driving
signals; e.g., spikes, piecewise-constant, and piecewise-linear.
We now illustrate these concepts by considering a third-order

system driven by a spike-like signal. In this case, the Fourier
domain of the impulse response of the system has the form

with three poles and one zero. Consequently, the differential
operator can be characterized in its turn in the Fourier domain
as the inverse of :

where the system’s poles take the role of the operator’s zeros
(and vice versa). The time-domain operator then corresponds to

For a practical example, we take
and .
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Fig. 2. Generalized TV and conventional TV for a third-order linear system (with three poles and one zero) driven by spike-like signal (first two rows) and
piecewise-constant signal (last two rows). (a) Original signal (inset: driving signal); (b) noisy signal; (c) reconstruction using generalized TV regularization;
(d) reconstruction using conventional TV regularization; (e) original signal (inset: driving signal); (f) noisy signal; (g) reconstruction using generalized TV regu-
larization; (h) reconstruction using conventional TV regularization.

Since we assume the driving signal to be spike-like, we
select , for which the discrete version of the

forward operator corresponds to an FIR filter with four taps:
and the discrete version of the inverse op-
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TABLE II
OVERVIEW OF THE PERFORMANCE MEASURED AS SNR (dB). THE OPTIMAL TUNING PARAMETER WAS DETERMINED USING AN ORACLE. AVERAGE SNR AND

ITS STANDARD DEVIATION ARE REPORTED FOR 100 REALIZATIONS OF THE NOISE

erator corresponds to a causal IIRfilteringwith .
In Fig. 2(a), we show the noiseless original signal, the spike-like
driving signal in the inset. We also added a random null-space
component of the operator (i.e., )
as a “background” to which the regularization term is insensi-
tive. Next, the signal is corrupted by i.i.d. Gaussian noise 15
dB [see Fig. 2(b)] and approximated using two regularization
methods: generalized TV and conventional TV as shown in
Fig. 2(c) and (d), respectively. For each method the oracle se-
lected the optimal regularization parameter since it has access
to theground truth.Wealsocompute thefilteredversion of the
regularized solution in order to explore how well we reconstruct
the underlying driving signal, see the insets in Fig. 2(c) and (d).
The choice of the regularization parameter is important since
the oracle is not available in practice. Different strategies can
be adapted for selecting (see [37] for classical references to
methods such as generalized cross-validation and theL-curve, or
[38] for a recent Monte Carlo adaptation of Stein’s unbiased risk
estimate thatworkswell for TV, and [19], [39]–[42]).
As an additional experiment, we change the driving signal

into piecewise-constant, as shown in Fig. 2. Accordingly, we
adapt the regularizing operator into , which only leads
to an alteration of the FIR filter,

. The results for the generalized TV and
conventional TV are shown in Fig. 2(g) and (h), respectively.
The regularization in (8) is performed using the algorithm de-

scribed in Section III. We deploy three different noise settings:
additive Gaussian noise corresponding to SNR level of 5, 10,
and 20 dB. We report average SNR levels with standard devia-
tion (over 100 realizations), with the optimal regularization pa-
rameter and maximum SNR, in Table II. We compare the recon-
struction quality obtained by oracle-Wiener filtering (optimal
for a Gaussian-process driving signal corrupted with additive
Gaussian noise), conventional TV, and generalized TV. As ex-
pected, the results reveal that generalized TV is superior to con-
ventional TV and the Wiener filter when tuning the operator
different from is appropriate. Moreover, as it can be appreci-
ated from the corresponding Figures, also the reconstruction of
the underlying driving signal has high quality and can be useful
for further processing in applications.
An important concern is the robustness of the choice of the

regularization operator with respect to the underlying “true”
linear system. To that aim, we generate signals for a spike-like
input of a third-order linear system
with in the range [ 2, 2]. We create 10 different realiza-
tions corrupted by additive Gaussian noise resulting into 10 dB
SNR. Next, we apply several regularization strategies: 1) gen-
eralized TV with tuned exactly to the system; 2) generalized

Fig. 3. Performance measured as SNR (dB) for generalized TV and conven-
tional TV regularization of a third-order linear system with equivalent differ-
ential operator , with , for varying
values. The reported SNR measures are averaged over 10 realizations of addi-
tive Gaussian noise (noisy signal 10 dB).

TV with ; 3) generalized TV with to illustrate
second-order TV; and 4) conventional TV. We kept con-
stant to eliminate pole-zero cancellation. In Fig. 3, we plot the
average SNR (10 regularizations) for different values of the
linear system. As expected, we observe that second-order TV
and matched generalized TV have equal performance at .
Similarly, generalized TV with fixed meets matched
generalized TV at . Moreover, we notice that SNR
levels for matched generalized TV tend to increase further for
larger values of . The Green’s function of the differential op-
erator increases which generates high correlation between the
samples. Conventional TV underperforms as the derivative op-
erator is not well tuned to the linear system.

B. Sound Waveform Processing

We show that it is possible to tune the operator of general-
ized TV to include information about modulation, which can
be useful for audio signals; e.g., processing tonal and transients
layers [43].
Specifically, let us assume the simplified signal model as a

sum of shifted decaying exponentials, each one modulated by a
high-frequency sinusoidal function:

(10)

where is the decay rate. (10) can be considered as the
sum of responses of linear systems with impulse responses

for spikes , respectively. Here we
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Fig. 4. Zoom of the denoised audio signal, Für Elise (first two rows) and Glockenspiel signal (last two rows) corrupted with i.i.d.\ Gaussian noise 15 dB with
generalized TV and conventional TV. We employ differential operator and

for Für Elise and Glockenspiel signal, respectively, where is the average frequency and . (a) Original signal; (b) noisy signal;
(c) reconstruction using generalized TV regularization; (d) reconstruction using conventional TV regularization; (e) original glockenspiel signal; (f) noisy signal;
(g) reconstruction using generalized TV regularization; and (h) reconstruction using conventional TV regularization.

pick one (central) frequency , for which the corresponding
transfer function is

(11)

and the associated second-order differential operator becomes
.

We generated a synthetic signal [Fig. 4(a)] according to (10)
with the first 9 notes of Für Elise whose frequencies range from
329–1318 Hz and at sampling frequency 44 100 Hz. The
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decay rate was . We used the average frequency
of the notes and . The effect of tuning is neg-
ligible on the output since the decay is very slow compared
to the sampling frequency. We created a noisy realization of
the audio signal by corrupting it with i.i.d. Gaussian noise at
SNR 15 dB, see Fig. 4(b). We show the output of general-
ized (25.3 dB) and conventional TV (18.3 dB) in 4(c) and (d),
respectively. The regularization parameter was chosen using
an oracle.
In the supplementary material, we have provided audio files

of the example given above; i.e., original, noisy, denoised using
conventional and generalized TV, and the spike driving signal
can be listened. We also include another example using the
real-world test signal “Glockenspiel” [43], where we increase
the multiplicity of the zeros to make the frequency response of
increasingly flat around , and thus cancel also tones with

nearby frequencies.2 Finally, in Fig. 4(e), we show the “Glock-
enspiel” signal, which is directly adopted from [43]. We de-
graded the signal with additive i.i.d. Gaussian noise at SNR
15 dB; see Fig. 4(f). The output for generalized TV (18.3 dB)
and conventional TV (16.67 dB) is shown in 4(g) and (h), re-
spectively. Note that the SNR values are computed against the
real “Glockenspiel” signal, which contains some noise itself
and consequently the comparison with the original signal is not
ideal. First, the (noiseless) ground truth is not known. Second,
the signal contains different frequency components from per-
turbed harmonics in the tonal layer and sharp transitions in the
transient layer, neither of which are modeled by the operator in
generalized TV—nevertheless, the result is still better than for
conventional TV. More advanced applications of generalized
TV for sound wave processing can be devised in future, such as
the inclusion of multiple regularization terms with different op-
erators each (e.g., for different frequencies and harmonics) and
an additional model to deal with the transient layer.

V. CONCLUSION

TV regularization has become a widely applied scheme with
edge-preserving properties. Extensions have mainly focused on
the use of higher order derivatives [12]–[17] and recently also
on nonlocal generalizations [44]. In this paper, we extended
the basic TV concept further by introducing a general differen-
tial operator instead of the derivative . This allows a great
deal of flexibility since we can take into account the presence
of a linear system and different types of driving signals. From
digital signal processing view, we build the simplest discrete
approximation of the differential operator and we define
them explicitly as FIR/IIR filters. Generalized TV scheme is
appealing for many signal processing applications, in partic-
ular, when the system can be expressed or approximated in
terms of differential operators. We illustrated our framework
by considering a third-order linear system. In order to solve the
regularization problem, we proposed an alternative algorithm
based on the dual form of TV. This work can be considered
as the analysis prior counterpart of exponential spline wavelets
[27] or generalized Daubechies wavelets [28]; indeed, these
wavelets are generalizations that can be tuned to a given dif-
ferential operator and their use in regularized reconstruction

2Increasing the multiplicity of the zeros increases the size of the nullspace. It
is also equivalent to the number of vanishing moments of a wavelet transform.

concurs with a synthesis prior. Despite the fact that our ap-
proach is heavily inspired on the continuous domain, future re-
search is needed to tighten the mathematical link between the
proposed signal processing approach (in the discrete domain)
and proper generalization of TV in the continuous domain. We
believe that our approach is promising in this respect because
in recent work [45] it was shown that the signal-processing
approach for conventional TV (that is, -norm of finite differ-
ences) can be linked to proper continuous-domain modeling of
stochastic processes.
Finally, we mention that another application of generalized

TV could be to perform system identification; i.e., when strong
assumptions on the (sparsity of the) driving signal can be made,
one can attempt to retrieve the form of and, for model se-
lection, evaluate the performance of the estimated operator by
statistical methods such as Akaike’s information criterion and
its extension for the state-space representation of linear sys-
tems [46].

APPENDIX
PROOF OF PROPOSITION 1

Proof: We make the proof by construction. For the first-
order differential operator for which
and , the corresponding discrete operator, , becomes

; see [47].
For the differential operator of order

and , we can obtain the filter by successive
convolutions (leading to support of ); the -transform of

is then

(12)

where is a polynomial with 2 coefficients
with . Note that we can express (12) benefiting the
polynomial multiplication which leads to the convolution as

(13)

where and is the convolution operator.
Therefore, we can express the filter as

with a change of variables , ,
we have

(14)

Similarly, for the general differential operator, , with
we have in -domain

(15)

where is represented explicitly in (14). Note that the
filter in (15) has infinite support in time, therefore stability
should be assured. Depending on the poles of the operator, we
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find a combination of causal and anti-causal filters that
guarantee stability; e.g., for and , we have either

or , where
is the unit step function. In practice, the filter with input and
output can be reformulated and implemented as in a recursive
way by providing the realization of causal and anti-causal parts
separately. To this aim, we represent the inverse filter

(16)

by the causal and anti-causal filters

(17)

where is a vector of length . Then the cor-
responding recursive algorithm can be easily derived from the
-domain representation. Here we will concentrate on the anti-
causal part (the derivation for the causal part is similar). To ob-
tain , we consider

from which we find

From (14), we can derive the explicit time domain expression
for the anti-causal filter as

(18)

Therefore, we obtain

where we used .
Let us give an example for the third-order differential oper-

ator . The FIR filter then becomes
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