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A Fast Wavelet-Based Reconstruction Method
for Magnetic Resonance Imaging

M. Guerquin-Kern*, M. Héberlin,

Abstract—In this work, we exploit the fact that wavelets can
represent magnetic resonance images well, with relatively few
coefficients. We use this property to improve magnetic resonance
imaging (MRI) reconstructions from undersampled data with
arbitrary k-space trajectories. Reconstruction is posed as an
optimization problem that could be solved with the iterative
shrinkage/thresholding algorithm (ISTA) which, unfortunately,
converges slowly. To make the approach more practical, we
propose a variant that combines recent improvements in convex
optimization and that can be tuned to a given specific k-space
trajectory. We present a mathematical analysis that explains the
performance of the algorithms. Using simulated and in vivo data,
we show that our nonlinear method is fast, as it accelerates ISTA
by almost two orders of magnitude. We also show that it remains
competitive with TV regularization in terms of image quality.

Index Terms—Compressed sensing, fast iterative shrinkage/
thresholding algorithm (FISTA), fast weighted iterative shrinkage/
thresholding algorithm (FWISTA), iterative shrinkage/thresh-
olding algorithm (ISTA), magnetic resonance imaging (MRI),
non-Cartesian, nonlinear reconstruction, sparsity, thresholded
Landweber, total variation, undersampled spiral, wavelets.

1. INTRODUCTION

AGNETIC RESONANCE IMAGING scanners provide

data that are samples of the spatial Fourier transform
(also know as k-space) of the object under investigation. The
Shannon—Nyquist sampling theory in both spatial and k-space
domains suggests that the sampling density should correspond
to the field-of-view (FOV) and that the highest sampled fre-
quency is related to the pixel width of the reconstructed images.
However, constraints in the implementation of the k-space tra-
jectory that controls the sampling pattern (e.g., acquisition du-
ration, scheme, smoothness of gradients) may impose locally
reduced sampling densities. Insufficient sampling results in re-
constructed images with increased noise and artifacts, particu-
larly when applying gridding methods.
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The common and generic approach to alleviate the recon-
struction problem is to treat the task as an inverse problem [1]. In
this framework, ill-posedness due to a reduced sampling density
is overcome by introducing proper regularization constraints.
They assume and exploit additional knowledge about the ob-
ject under investigation to robustify the reconstruction.

Earlier techniques used a quadratic regularization term,
leading to solutions that exhibit a linear dependence upon the
measurements. Unfortunately, in the case of severe undersam-
pling (i.e., locally low sampling density) and depending on the
strength of regularization, the reconstructed images still suffer
from noise propagation, blurring, ringing, or aliasing errors. It
is well known in signal processing that the blurring of edges
can be reduced via the use of nonquadratic regularization. In
particular, ¢;-wavelet regularization has been found to outper-
form classical linear algorithms such as Wiener filtering in the
deconvolution task [2].

Indicative of this trend as well is the recent advent of Com-
pressed Sensing (CS) techniques in MRI [3], [4]. These let us
draw two important conclusions.

* The introduction of randomness in the design of trajecto-
ries favors the attenuation of residual aliasing artifacts be-
cause they are spread incoherently over the entire image.

* Nonlinear reconstructions—more precisely, ¢ -regulariza-
tion—outperform linear ones because they impose con-
straints that are better matched to MRI images.

Many recent works in MRI have focused on nonlinear re-
construction via total variation (TV) regularization, choosing
finite differences as a sparsifying transform [3], [5]-[7]. Non-
quadratic wavelet regularization has also received some atten-
tion [3], [8]-[11], but we are not aware of a study that compares
the performance of TV against /;-wavelet regularization.

Various algorithms have been recently proposed for solving
general linear inverse problems subject to /;-regularization.
Some of them deal with an approximate reformulation of
the /; regularization term. This approximation facilitates re-
construction sacrificing some accuracy and introducing extra
degrees of freedom that make the tuning task laborious. Instead,
the iterative shrinkage/thresholding algorithm [2], [12], [13]
(ISTA) is an elegant and nonparametric method that is mathe-
matically proven to converge. A potential difficulty that needs
to be overcome is the slow convergence of the method when
the forward model is poorly conditioned (e.g., low sampling
density in MRI). This has prompted research in large-scale
convex optimization on ways to accelerate ISTA. The efforts so
far have followed two main directions.

* Generic multistep methods that exploit the result of past

iterations to speed up convergence, among them: two-step
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iterative shrinkage/thresholding [14] (TwIST), Nesterov
schemes [15]-[17], fast ISTA [18] (FISTA), and mono-
tonic FISTA [19] (MFISTA).

¢ Methods that optimize wavelet-subband-dependent param-

eters with respect to the reconstruction problem: multilevel
thresholded Landweber (MLTL) [20], [21] and subband
adaptive ISTA (SISTA) [22].

In this work, we exploit the possibility of combining and tai-
loring the two generic types of accelerating strategies to come
up with a new algorithm that can speedup the convergence of the
reconstruction and that can accomodate for every given k-space
trajectory. Here, we first consider single-coil reconstructions
that do not use sensitivity knowledge. In a second time, we con-
firm the results with SENSE reconstructions [1].

We propose a practical reconstruction method that turns out
to sensibly outperform linear reconstruction methods in terms
of reconstruction quality, without incurring the protracted re-
construction times associated with nonlinear methods. This is
a crucial step in the practical development of nonlinear algo-
rithms for undersampled MRI, as the problem of fixing the reg-
ularization parameter is still open. We also provide a mathemat-
ical analysis that justifies our algorithm and facilitates the tuning
of the underlying parameters.

This paper is structured as follows. In Section II, we describe
the basic data-formation model for MRI and derive the dis-
crete forward model. The representation of the object by wavelet
bases is considered in Section II-C2; in particular, we legitimate
the use of a wavelet regularization term (which promotes spar-
sity) to distinguish the solution from other possible candidates.
In Section III, we propose a fast algorithm for solving the non-
linear reconstruction problem and present theoretical arguments
to explain its superior speed of convergence. Finally, we present
in Section IV an experimental protocol to validate and compare
our practical method with existing ones. We focus mainly on
reconstruction time and signal-to-error ratio (SER) with respect
to the reference image.

II. MRI AS AN INVERSE PROBLEM

In this section, we present the MR acquisition model and the
representation of the signal that is used to specify the reconstruc-
tion problem. The main acronyms and notations are summarized
in Table 1. We motivate the sparsity assumptions in the wavelet
domain and the variational approach with ¢; regularization that
is used to solve the inverse problem of imaging.

A. Model of Data Formation

1) Physics: We consider MRI in two dimensions, in which
case a 2D plane is excited. The time-varying magnetic gradient
fields that are imposed define a trajectory in the (spatial) Fourier
domain that is often referred to as k-space. We denote by k the
coordinates in that domain. The excited spins, which behave as
radio-frequency emitters, have their precessing frequency and
phase modified depending on their positions. The modulated
part of the signal received by a homogeneous coil is given by

m(k) = (k) = [ plrje 1<

R2

(D
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It corresponds to the Fourier transform of the spin density p that
we refer to as object. The N measurements, concatenated in the
vector m = (myq,...,my), correspond to sampled values of
this Fourier transform at the frequency locations kx along the
k-space trajectory.

2) Model for the Original Data:

a) Spatial discretization of the object: From here on, we
consider that the Fourier domain and, in particular, the sampling
points ky, are scaled to make the Nyquist sampling interval
unity. This can be done without any loss of generality if the
space domain is scaled accordingly. Therefore, we model the
object as a linear combination of pixel-domain basis functions
p that are shifted replicates of some generating function ¢, so
that

p=Y_ clplep )
pEZ?
with
op(r) = p(r — p). 3)

In MRI, the implicit choice for ¢ is often Dirac’s delta.
Different discretizations have been proposed, for example
by Sutton et al. [23] with ¢ as a boxcar function or later by
Delattre et al. [24] with B-splines. But it has not been worked
out in detail how to get back the image for general ¢ that are
noninterpolating, which is the case, for instance for B-splines
of order greater than 1. The image to be reconstructed [i.e., the
sampled version of the object p(p)] is obtained by filtering the
coefficients c[p] with the discrete filter

> é(w+ 2mh)

hecZ72

P(e) = @

where ¢ denotes the Fourier transform of ¢.

b) Wavelet discretization: In the wavelet formalism, some
constraints apply on . It must be a scaling function that sat-
isfies the properties for a multiresolution [25]. In that case, the
wavelets can be defined as linear combinations of the ¢, and
the object is equivalently characterized by its coefficients in
the orthonormal wavelet basis. We refer to Mallat’s book [26]
for a full review on wavelets. There exists a discrete wavelet
transform (DWT) that bijectively maps the coefficients ¢ to the
wavelet coefficients w that represent the same object p in a con-
tinuous wavelet basis. In the rest of the paper, we represent this
DWT by the synthesis matrix W. Note that the matrix multi-
plications ¢ = Ww and w = W ™'¢ have efficient filterbank
implementations.

B. Matrix Representation of the Model

Since a FOV determines a finite number M of coefficients
¢[p], we handle them as a vector ¢, keeping the discrete coordi-
nates p as implicit indexing. By simulating the imaging of the
object (2), and by evaluating (1) for k = k,,, we find that the
noise-free measurements are given by

my = Ec

(&)
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where E, the MRI system matrix, is decomposed as

E = diag (p(kn))[81...8n]" . (6)

There, 8, is a space-domain vector such that s,,[p] = e~ i(wn.p)
A more realistic data-formation model is

m=Ec+b (N

or

m=Mw-+b ®)
with M = EW and a residual vector b representing the effect on
measurements of noise and scanner imprecisions. The inverse
problem of MRI is then to recover the M coefficients w (or ¢)
from the N corrupted measurements m. Its degree of difficulty
depends on the magnitude of the noise b and the conditioning of
the matrix M (or F).

C. Variational Formulation

1) General Framework: The solution w* is defined as the
minimizer of a cost function that involves two terms: the data
fidelity F(b) and the regularization R (w) that penalizes unde-
sirable solutions. This is summarized as

w* = argmin F(m — Mw) + A\R(w) )

where the regularization parameter A > 0 balances the two
constraints. In MRI, b is usually assumed to be a realization of
a white Gaussian process, which justifies the choice F(b) =
|[]|7, as a proper log-likelihood term. The ill-conditioning in-
herent to undersampled trajectories imposes the use of the suit-
able regularization term R (w).

Standard Tikhonov regularization corresponds to the
quadratic term R(w) = ||Rwl|7, and leads to the closed-form

linear solution w* = (M"M + )\RHR)_lMHm that is
tractable both theoretically and numerically. When the recon-
struction problem is sufficiently overdetermined to make noise
propagation negligible, regularization is dispensable and the
least-squares solution, which corresponds to Tikhonov with
A = 0, is adequate. The approach is statistically optimal if the
object can also be considered as a realization of a Gaussian
process. Unfortunately, this assumption is hardly justified for
typical MR images. The quality of the solution obtained by this
means quickly breaks down when undersampling increases.

TV reconstruction is related to the sum of the Euclidean
norms of the gradient of the object. In practice, it is defined as
R(w) = ||Vel|¢,, where the operator V returns pixelwise the
£o-norm of finite differences. The use of TV regularization is
particularly appropriate for piecewise-constant objects such as
the Shepp-Logan (SL) phantom.

2) Sparsity-Promoting Regularization: The main idea in this
work is to exploit the fact that the object can be well repre-
sented by few nonzero coefficients (sparse representation) in an
orthonormal basis of M functions ¢,. Formally, we write that

« 35 C R?,|S| < M (sparse support)

and

* Ja:|lp =3 ,esalplopll < ol (small error).

It is well documented that typical MRI images admit sparse
representation in bases such as wavelets or block DCT [3].
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The ¢1-norm is a good measure of sparsity with interesting
mathematical properties (e.g., convexity). Thus, among the can-
didates that are consistent with the measurements, we favor a so-
lution whose wavelet coefficients have a small /1 -norm. Specif-
ically, the solution is formulated as

w* = arg min C(w) (10)
with
C(w) = [lm — Mw|]7, + l[wl|, (11)

This is the general solution for wavelet-regularized inverse
problems considered by [13] as well as many other authors.

III. WAVELET REGULARIZATION ALGORITHMS

In this section, we present reconstruction algorithms that
handle constraints expressed in the wavelet domain while
solving the minimization problem (10). By introducing
weighted norms instead of simple Lipschitz constants, we re-
visit the principle of the standard ISTA algorithm and simplify
the derivation and analysis of this class of algorithms. We end
up with a novel algorithm that combines different acceleration
strategies and we provide a convergence analysis. Finally, we
propose an adaptation of the fast algorithm to implement the
random-shifting technique that is commonly used to improve
results in image restoration.

A. Weighted Norms

Let us first define the weighted norm corresponding to a pos-
itive-definite symmetric weight matrix X as ||w||% = w' Xw.
The requirement that the eigenvalues of X-—denoted
A(X)—must be positive leads to the norm property

0 < Awin (X)[[0]3 < flwll% < Anax(X) w13, VJaw]| # 0.

B. Principle of ISTA Revisited

An important observation to understand ISTA is to see that
the nonlinear shrinkage operation, sometimes called soft-thresh-
olding, solves a minimization problem [27], with

T(u) = (Jul = min (A/2, [u])) - sgn(u)

= argmin |u — w|* 4+ A|w]|.
weC

(12)

By separability of norms, this applies component-wise to vec-
tors of CV : 7\(u) = argminy, |[u — w||7, + A[Jwl|,,. This
means that the /1 -regularized denoising problem (i.e., when M
in (11) is the identity matrix) is precisely solved by a shrinkage
operation.

The iterative shrinkage/thresholding algorithm (ISTA) [2],
[13], also known as thresholded Landweber (TL), generates a
sequence of estimates w,, that converges to the minimizer w*
of (11) when it is unique. The idea is to define at each step a
new functional C’(w, w,,) whose minimizer w1 will be the
next estimate

w, 1 = arg min C'(w, w,,). (13)
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Two constraints must be considered for the definition of C’.

1) Itis sufficient for the convergence of the algorithm that
C'(w, w,,) is an upper bound of C(w) and matches it at
w = w,; this guarantees that the sequence {C(w,)} is
monotonically decreasing.

2) The inner minimization (13) should be performed by a
simple shrinkage operation to ensure the rapidity and
accuracy of the algorithm.

In accordance with Constraint (1), C’ can take the generic
quadratically augmented form

C'(w,wn) = C(w) + w —wal{_ppung  (14)
with the constraint that (A — M M) is positive definite, where
the weighting matrix A plays the role of a tuning parameter.

Then, ISTA corresponds to the trivial choice A = (L/2)I,
with the value of L chosen to be greater or equal to the
Lipschitz constant of the gradient of ||[Mwl|7 , so that
L > 2\ nax(MPM).

Let us define a = M¥m, A = M™M, and

2 (a— Aw,).

Zn=Wnt 7 (15)
Then, using standard linear algebra, we can write
. 2
W,41 = argmin |[|w — zn||[2 + f”ﬂ)”ﬂ (16)
= T% (). a7

This shows that Constraint (2) is automatically satisfied.
Note that both the intermediate variable z,, in (15) and the
threshold values will vary depending on L.

Algorithm 1: ISTA

Repeat w,, 1 — Toy/p(w, + (2/L)(a — Aw,));

Beck and Teboulle [18, Thm. 3.1] showed that this algorithm
decreases the cost function in direct proportion to the number
of iterations n, so that C(w,,) — C(w*) = O(1/n). Here, we
present a slightly extended version of their original result which
is valid for any reference point during iterations.

Proposition 1: Let {w,} be the sequence generated by Al-
gorithm 1 with L > 2A,.x(A). Then, for any n > ng € N,

o < L/2
C(w,) — C(w*) < p—
Proof: [18, Thm. 3.1] gives the result for ng = 0. Con-
sider a sequence w;, such that w;, = wy. As the iteration
does not depend on n, we get w), = w,_,,. The result fol-
lows immediately. [ |

Selecting L as small as possible will clearly favor the speed of
convergence. It also raises the importance of a “warm” starting
point.

Among the variants of ISTA, FISTA, proposed by Beck and
Teboulle [18], ensures state-of-the-art convergence properties
while preserving a comparable computational cost. Thanks to
a controlled over-relaxation at each step, FISTA quadratically
decreases the cost function, with C(w,,) — C(w*) = O(1/n?).

1w, — w7, (18)
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C. Subband Adaptive ISTA (SISTA)

SISTA is an extension of the ISTA that was introduced by
Bayram and Selesnick [22]. Here, we propose an interpretation
of SISTA as a particular case of (14) with a weighting matrix
that replaces advantageously the step size 2/L in (15). The idea
is to use a diagonal weighting matrix A~" = diag(T)—if it is
not diagonal, Constraint (2) would not be fulfilled—with coef-
ficients that are constant within a wavelet subband.

1) SISTA: In the same fashion as for ISTA, (15) and (17) can
be adapted to subband-dependent steps and thresholds.Accord-
ingly, SISTA is described in Algorithm 2.

Algorithm 2: SISTA

Repeat w,, 1 — Ty (w, + Afl(a — Aw,));

2) Convergence Analysis: By considering the weighted
scalar product 1Ay instead of (L/2)z™y, we can adapt the
convergence proof of ISTA by Beck and Teboulle (see Propo-
sition 1). This result is new, to the best of our knowledge.

Proposition 2: Let {w, } be the sequence generated by Al-
gorithm 2 with (A — A) > 0. Then, for any n > ng € N,

Clw,) — C(w") < —w} -

||w,, (19)

n—"ng

Proof: We rewrite the cost function (11) with the change of
variable w’ = AY*w. We then apply ISTA to solve that problem
witha' = A"/2a, A’ = A"Y?AA"/? and I, = 2 (Note that
A — A is positive-definite if I — A’ is positive-definite). The
iteration w), , ; = Ty (w,, + A~ '(a' — A'w)))) can be rewritten,
in terms of the original variable, as w,,+; = T (w, + (& —
Aw,,)). The latter is an iteration of SISTA (see Algorithm 2).

According to Proposition 1, we have C(A_I/Z'w’n) —C(w*) <
2

||lw),, — AY?w*||” /(n = no), which translates directly into the

proposed result. |

Therefore, by comparing Propositions 1 and 2, an improved
convergence is expected. The main point is that, for a “warm”
starting point wq or after few iterations (ng), the weighted
norm in (19) can yield significantly smaller values than the one
weighted by L/2 in (18).

3) Selection of Weights: Bayram and Selesnick [22] provide
a method to select the values of T for SISTA. To present
this result, let us introduce some notations. We denote by
s an index that scans all the S wavelet subbands, coarse
scale included, by 75 the corresponding weight constant,
and by M, the corresponding block of M. We also define

V1,80 = /\max(MiMslMgM52). The authors of [22]
show that, for each subband, the condition

1 S
— s,s’ 20
TS > Z ’y ’ ( )

s'=1

is sufficient to impose the positive definiteness of (A — M M)
that is required in (14). In the present context, we propose to
compute the values ~y, ,» by using the power iteration method,
once for a given wavelet family and k-space sampling strategy.
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Fig. 1. Reference images from left to right: in vivo brain, SL reference, and wrist.

D. Best of Two Worlds: Fast Weighted ISTA (FWISTA)

Taking advantage of the ideas developed previously, we de-
rive an algorithm that corresponds to the subband adaptive ver-
sion of FISTA. In the light of the minimization problem (11),
FWISTA generalizes the FISTA algorithm using a parametric
weighted norm. We give its detailed description in Algorithm
3, where the modifications with respect to FISTA is the SISTA
step in the loop.

Algorithm 3: FWISTA

input: A, a, wg, and Al = diag(T);

Initialization: n = 0, vy = wo, tp = 1;

repeat
W1 — Dar(vn + A_l(a — Av,,)) (SISTA step);
tnt1 — (14 /1+4t2)/2;
Vg1 = Wyt + (tn = 1)/ (Wnp1 — Wa)tnias
n<«—n+1;

until desired tolerance is reached;

return w,, 4 1;

In the same fashion as for SISTA, we revisit the convergence
results of FISTA [18, Thm. 4.4] for FWISTA.

Proposition 3: Let {w, } be the sequence generated by Al-
gorithm 3. Then, for any n > 1

2
n+1

p
C(w,) — C(w*) < ( ) |lwo — w*||5. 21)

Proof: In the spirit of the proof of Proposition 2, we
consider the change of variable w’ = AY?w and apply
FISTA to solve the new reconstruction problem. The step

w,,, = T\(v), + (@’ — A'v),)) is equivalent to w,41 =
Tor(v, + A~ (a — Av,,)). The convergence results of FISTA

[18, Thm. 4.4] applies on the sequence {w!,}, which leads to
C(A™ 2w, — C(w*) < 4w — A Pw*|| /(n+1)2. =

This result shows the clear advantage of FWISTA compared
to ISTA (Proposition 1) and SISTA (Proposition 2). Moreover,
we note that FWISTA can be simply adapted in order to impose
a monotonic decrease of the cost functional value, in the same
fashion as MFISTA. The same convergence properties apply
[19, Thm. 5.1].

E. Random Shifting

Wavelet bases perform well the compression of signals but
can introduce artifacts that can be attributed to their relative
lack of shift-invariance. In the case of regularization, this can be
avoided by switching to a redundant dictionary. The downside,
however, is a significant increase in computational cost. Alter-
natively, the practical technique referred to as random shifting
(RS) [2] can be used. Applying random shifting is much simpler
and computationally more efficient than considering redundant
transforms and leads to sensibly improved reconstruction.

Here, we propose a variational interpretation that motivates
our implementation of FWISTA with RS (see Algorithm 4). We
consider the DWT [W, --- Wy |¥, with W; = S;W, where
S, represent the different shifting operations required to get a
translation-invariant DWT. The desired reconstruction would be
defined as the minimizer of

A
C(e) = |lm — Eel?, + H[W1-~~WNS]Hc 22)

£y

In 1D, this formulation includes TV regularization, in
other words a single-level undecimated Haar WT without
coarse-scale thresholding.

Rewriting (22) in terms of wavelet coefficients, we get

N.C(e) = C (W;lc) (23)

with

2
Clw) = |m—MS7 | Al @
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For a current estimate, we select a transform W, and perform
a step in the minimization of the cost with respect to w; while
keeping w;, for j # i fixed. A SISTA step is used, as the mini-
mization subproblem (24) takes the form (11). The minimizers
of the functionals C; are expected to correspond to images close
to each other and to the minimizer of (22). In the first iterations
of the algorithm, the minimization steps with respect to any w;
are functionally equivalent (i.e., the modification is mostly ex-
plained by the gradient step). This motivates the use of FWISTA
iterations at first and the switch to ISTA steps afterwards.

As the scheme is intrinsically greedy, we do not have a theo-
retical guarantee of convergence. Yet, in practice, we have ob-
served that the SER stabilizes at a much higher value than it does
when using ISTA schemes with no RS (cf Fig. 4).

Algorithm 4: FWISTA with RS

input: A = E"E, a = E"m, ¢y, A™" = diag(7), K
Consider the sequence of DWT with RS: W,,;
Initialization: n = 0, k = 0,y = 1, ¢, = 1, Cy = C(ep),
Yo = Co;
repeat
Wy, — Wﬁlyn;
Cot — WaTae(w, + AW, (a - Ay,);
Cpnt1 < C(e,) (cost-function evaluation);
if C,41 > C, then
k—k+1;
if £ = K then
v < 05
At~ max{T}I;
T — max{7}1;
toy1 — (14 /14 482)/2;
Ynt1 < Cnt1 +Y(tn — D(€ny1 — €n)/tnyas
n«—n+1;

until sropping condition is met;

IV. EXPERIMENTS

A. Implementation Details

Our implementation uses Matlab 7.9 (Mathworks, Natick,
MA). The reconstructions run on a 64-bit 8-core computer,
clock rate 2.8 GHz, 8 GB RAM (DDR2 at 800 MHz), Mac
OS X 10.6.5. For all iterative algorithms, a key point is that
matrices are not stored in memory. They only represent op-
erations that are performed on vectors (images). In particular,
a = M"m is computed once per dataset. Matrix-to-vector
multiplication with A = M Uy , specifically, EHE, have an
efficient implementation thanks to the convolution structure of
the problem [28], [29]. For these Fourier precomputations, we
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used the NUFFT algorithm [30] that is made available online.
For wavelet transforms, we used the code provided online?
[21]. This Fourier-domain implementation proved to be faster
than Matlab’s when considering reconstructed images smaller
than 256 x 256 and the Haar wavelet. It must also be noted that
the 2D-DFT were performed using the FFTW library which
efficiently parallelizes computations.

For Tikhonov regularizations, we implemented the classical
conjugate gradient (CG) algorithm, with the identity as the reg-
ularization matrix. For TV regularizations, we considered the it-
eratively reweighted least-squares algorithm (IRLS), which cor-
responds to the additive form of half-quadratic minimization
[31], [32]. We used 15 iterations of CG to solve the linear inner
problems, always starting from the current estimate, which is
crucial for efficiency. For the weights that permit the quadratic
approximation of the TV term, we stabilized the inversion of
very small values.

We implemented ISTA, SISTA, and FWISTA as described in
Section III, with the additional possibility to use random shifting
(see Section IV-C2). For the considered reconstructions using
our method, described in Algorithm 4, K = 30 was a reason-
able choice. The Haar wavelet transform was used, with three
decomposition levels when no other values are mentioned. As is

Thttp://www.eecs.umich.edu/~fessler/code/

2http://bigwww.epfl.ch/algorithms/mltldeconvolution
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TABLE I
GLOSSARY
Acronyms
MRI Magnetic resonance imaging
ISTA Iterative shrinkage/thresholding algorithm
(F)Y(W)(S)ISTA (fast) (weighted) (subband adaptive) ISTA
TV Total variation
FOV Field of view
CS Compressed sensing
DWT Discrete wavelet transform
DCT Discrete cosine transform
DFT Discrete Fourier transform

CG Conjugate gradient

IRLS Iteratively reweighted least squares
ROI Region of interest

MSE Mean-squared error

S(E)(N)R Signal-to-(error) (noise) ratio

RS Random shifting

Continuous Domain and Functions

r € R2 spatial coordinates (XY plane)

k € R2 k-space coordinates (XY plane)
p(r) € RT  object (proton density) in space
m(k) eC observation of the object in k-space
p(r) eR generating function

f(k) ecC function f in the k-space domain
C cost function

Tr shrinkage operator with thresholds 7
Discrete Data and Linear Algebra

P €7? discrete spatial coordinates

M eN number of pixels in the ROI

N eN number of k-space samples

kn € R? nth k-space sampling position

mMn eC nth k-space observation

m € CN  measurement vector

b € CN  noise vector

E Fourier encoding matrix

M system matrix (wavelet domain to k-space)
w DWT matrix

clp] eR reconstructed spatial coefficient

c € RM  vector of spatial coefficients

w € CM  vector of wavelet coefficients

Amax (X)) largest eigenvalue of X

xXH Hermitian transpose of the matrix X
(z, y) eR regular inner product

(e, y)p €R weighted inner product (2™ Ay)
(]l € Rt regular quadratic norm

||| o € Rt weighted quadratic norm (zH Ax)
[lll,, eRT 41 norm (3 |z;))

usual for wavelet-based reconstructions, the regularization was
not applied to the coarse-level coefficients.

Reconstructions were limited to the pixels of the ROI for all
algorithms. The regularization parameter A was systematically
adjusted such that the reconstruction mean-squared error (MSE)
inside the ROI was minimal. For practical situations where the
ground-truth reference is not available, it is possible to adjust A
by considering well-established techniques such as the discrep-
ancy principle, generalized cross validation, or L-curve method
[33].

B. Spiral MRI Reconstruction

In this section, we focused on the problem of reconstructing
images of objects weighted by the receiving channel sensitivity,
given undersampled measurements. This problem, which in-
volves single-channel data and hence differs from SENSE, is
challenging for classical linear reconstructions as it generates
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Fig. 4. Time evolution of the SER for several algorithms for the SL simulation
using Haar wavelets.

artifacts and propagates noise. We considered spiral trajectories
with 50 interleaves, with an interleave sampling density reduced
by a factor R = 1.8 compared to Nyquist for the highest fre-
quencies and an oversampling factor 3.5 along the trajectory.
Spiral acquisition schemes are attractive because of their ver-
satility and the fact that they can be implemented with smooth
gradient switching [34], [35].

We validate the results with the three sets of data that we
present below. The corresponding reference images are shown
in Fig. 1.

1) MR Scanner Acquisitions: The data were collected on a
3T Achieva system (Philips Medical Systems, Best, The Nether-
lands). A field camera with 12 probes was used to monitor the
actual k-space trajectory [36]. An array of eight head coils pro-
vided the measurements. We acquired in vivo brain data from a
healthy volunteer with parameters TR, = 1000 ms and TE =
30 ms. The excitation slice thickness was 3 mm with a flip angle
of 30°. The trajectory was designed for a FOV of 25 cm with a
pixel size 1.5 mm. It was composed of 100 spiral interleaves.
The interleaf distance for the highest sampled frequencies de-
fined a fraction of the Nyquist sampling density (R = 0.9).

The subset used for reconstruction corresponds to half of the
100 interleaves. The corresponding reduction factor, defined as
the ratio of the distance of neighboring interleaves with the
Nyquist distance, is R = 1.8.

2) Analytical Simulation: We used analytical simulations of
the SL brain phantom with a similar coil sensitivity, following
the method described in [37]. The values of these simulated data
were scaled to have the same mean spatial value (i.e., the same
central k-space peak) as the brain reference image. A realization
of complex Gaussian noise was added to this synthetic k-space
data, with a variance corresponding to 40 dB SNR. The 176
x 176 rasterization of the analytical object provided a reliable
reference for comparisons.

3) Simulation of a Textured Object: A second simulation
was considered with an object that is more realistic than the
SL phantom. We chose a 512 x 512 MR image of a wrist
that showed little noise and interesting textures. We simulated
acquisitions with the same coil profile and spiral trajectory
(176 x 176 reconstruction matrix), in presence of a 40 dB SNR
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TABLE 1I
VALUES OF THE OPTIMAL SER AND CORRESPONDING REGULARIZATION PARAMETERS ARE SHOWN FOR THE DIFFERENT WAVELET BASES
Experiment SL simulation Wrist simulation
Wavelet basis Haar  Spline 2 Spline 4  Spline 6 | Haar Spline 2 Spline 4  Spline 6

Without RS~ SER (dB) | 12.65 12.16 10.75 9.70 1593 17.33 17.32 17.07

A 1870 2510 830 1460 1600 946 1070 1350

With RS SER (dB) | 13.38 1253 11.58 10.38 18.70  18.24 18.05 17.87

A 5650 3900 7770 1370 1490 850 1190 1260
TABLE III

RESULTS OF THE PROPOSED WAVELET METHOD FOR DIFFERENT WAVELET DECOMPOSITION DEPTHS. VALUES OF THE REGULARIZATION
PARAMETER, THE FINAL SER, THE RELATIVE MAXIMAL SPATIAL DOMAIN ERROR, AND THE TIME TO REACH —0.5 dB OF THE FINAL SER

Experiment SL simulation Wrist simulation Brain data
Decomposition depth | 1 2 3 4 1 2 3 4 1 2 3 4
A opt. 5330 5680 5110 5200 | 1500 1520 1570 1700 | 9650 10800 11400 11400
SER (dB) opt. 1325 1334 1339 1335 | 1854 18.66 1871 18.70 | 18.78 19.00 18.99 18.96
Loo error (%) 50 51 54 53 15.5 16.0 16.0 16.5 17.3 17.5 17.49 17.0
t_g.54B (8) 6.56 6.19 6.93 7.59 5.88 5.23 5.33 4.25 8.99 7.03 6.33 7.97
TABLE IV

RESULTS OF THE ALGORITHMS CG (LINEAR), IRLS (TV), AND OUR METHOD (WAVELETS) FOR DIFFERENT DEPTHS. VALUES OF THE REGULARIZATION
PARAMETER, THE FINAL SER, THE RELATIVE MAXIMAL SPATIAL DOMAIN ERROR, AND THE TIME TO REACH —0.5 dB OF THE FINAL SER

Experiment SL simulation Wrist simulation Brain data
Method linear TV wavelets | linear TV wavelets | linear TV wavelets
A opt. 0.0247 4090 6380 0.436 760 1620 0.471 6050 16800
SER (dB) opt. | 8.46 13.82  13.17 16.14 1841 18.64 15.81 18.88 18.93
loo error (%) | 48 49 51 21 16 16 29 12 11
t_o.54B () 0.286 18.1 5.40 0.209 105 4.64 0.205 152 6.13

10.8 dB

260 it.

IRLS (TV)

30.0 s §12.3 dB

1390 it.

1335 it.

Our method (wavelets)

30.0 s

Fig. 5. Result of different reconstruction algorithms for the three experiments. For each reconstruction, the performance in SER with respect to the reference
(top-left), the reconstruction time (top-right), and the number of iterations (bottom-right) are shown.

Gaussian complex noise. The height of the central peak was
also adjusted to correspond to that of the brain data. The refer-

C. Results

In this section, we present the different experiments we con-

ence image was obtained by sinc-interpolation, by extracting  gycted. The two main reconstruction performance measures that

we considered are as follows.

the lowest frequencies in the DFT.
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e Reconstruction duration, which excludes all aforemen-
tioned precomputations and the superfluous monitoring
operations.

* Signal to error ratio with respect to a reference, de-
fined as SER(57 pmf) = ||pref||£2/||pref - ﬁ||£2 and
SERAB(p, pret) = 20log;o(SER(p, prer)). Practically,
the references are either the ground-truth images or the
minimizer of the cost functional. It is known that SER is
not a foolproof measure of visual improvement but large
SER values are encouraging and generally correlate with
good image quality.

1) Convergence Performance of IST-Algorithms: In this first
experiment, we compared the convergence properties of the dif-
ferent ISTA-type algorithms, as presented in Section III, with
the Haar wavelet transform. The data we considered are those
of the MR wrist image. The regularization parameter was ad-
justed to maximize the reconstruction SER with respect to the
ground-truth data. The actual minimizer of the cost functional,
which is the common fixed-point of this family of algorithms,
was estimated by iterating FWISTA 100 000 times.

The convergence results are shown in Figs. 2 and 3 for the
simulation of the MR wrist image. Similar graphs are obtained
using the other sets of data.

For a fixed number of iterations, FISTA schemes (FISTA
and FWISTA) require roughly 10% additional time compared
to ISTA and SISTA. In spite of this fact, their asymptotic
superiority appears clearly in both figures. The slope of the
decrease of the cost functional in the log-log plot of Fig. 3
reflects the convergence properties in Propositions 1, 2, and
3. When considering the first iterations, which are of greatest
practical interest, the algorithms with optimized parameters
(SISTA and FWISTA) perform better than ISTA and FISTA
(see Fig. 3). The times required by each algorithm to reach
a 30 dB SER (considered as a threshold value to perceived
changes) are 415 s (ISTA), 53 s (SISTA), 12.7 s (FISTA), and
4.4 s (FWISTA). With respect to this criterion, SISTA presents
an eight-fold speedup over ISTA, while FWISTA presents a
12-fold speedup over SISTA and nearly a three-fold speedup
over FISTA. It follows that FWISTA is practically close to two
orders of magnitude faster than ISTA.

2) Choice of the Wavelet Transform and Use of Random
Shifting: The algorithms presented in Section III apply for any
orthogonal wavelet basis. For the considered application, we
want to study the influence of the basis on performance. In this
experiment we considered the Battle-Lemarié spline wavelets
[26] with increasing degrees, taking into account the necessary
postfilter mentioned in (4).

We compared the best results for several bases. They were
obtained with FWISTA after practical convergence and are re-
ported in Table II. Fig. 4 illustrates the time evolution of the SER
using ISTA and FWISTA in the case of the SL reconstruction.
Similar graphs are obtained with the other experiments.

It is known that the Haar wavelet basis efficiently approxi-
mates piecewise-constant objects like the SL. phantom, which
is consistent with our results. On the other hand, splines of
higher degree, which have additional vanishing moments, per-
form better on the textured images (upper part of Table II).
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Fig. 6. Evolution of the performance of the algorithms. From top to bottom: SL
simulation, wrist simulation, and brain data. Times required to reach —0.5 dB
of the asymptotic value are indicated.

We present in the lower part of Table II the performances
observed when using ISTA with RS. We conclude that, in the
case of realistic data, it is crucial to use RS as it improves
results by at least 0.7 dB, whatever the wavelet basis is. The
remarkable aspect there is that the Haar wavelet transform
with RS consistently performs best. Two important things can
be seen in Fig. 4: FWISTA is particularly efficient during
the very first iterations, while SISTA with RS yields the best
asymptotic results in terms of SER and stability. Our method
combines both advantages.

In Table III, we present the results obtained using different
depths of the wavelet decompositions. Our reconstruction
method is used together with the Haar wavelet transform and
RS. The performances are similar but there seems to be an ad-
vantage in using several decomposition levels both in terms of
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Fig. 7. Reconstructions and error maps of different IST-algorithms with RS for the wrist experiment. For each reconstruction, the performance in SER with respect
to the reference (top-left), the reconstruction time (top-right), and the number of iterations (bottom-right) are shown.

SER and reconstruction speed. The FWISTA scheme seems to
recoup the cost of the wavelet transform operations associated
to an increase in the depth of decomposition.

3) Practical Performance: We report in Table IV the re-
sults obtained for different reconstruction experiments using
state-of-the-art linear reconstruction, TV regularization, and our
method. The images obtained when running the different algo-
rithms after approximately 5 s, and after practical convergence
as well, are shown in Fig. 5. We display in Fig. 6 the time evolu-
tion of the SER for the different experiments. In each case, we
emphasize the time required to reach —0.5 dB of the asymptotic
value of SER. Finally, we present in Fig. 7 the reconstruction
and error maps of the different IST-algorithms at different mo-
ments of reconstruction. This was done with the wrist simulated
experiment using the Haar wavelet basis and RS.

Firstly, we observe that TV and our method achieve similar
SER (Table IV) and image quality (Fig. 5). They both clearly
outperform linear reconstruction, with a SER improvement
from 1.5 to 3 dB, depending on the degree of texture in the orig-
inal data. Moreover, the pointwise maximal reconstruction error
appears to always be smaller with nonlinear reconstructions.
Due to the challenging reconstruction task, which significantly
undersamples of the k-space, residual artifacts remain in the
linear reconstructions and at early stages of the nonlinear ones.
Although the k-space trajectory is exacly the same in the three
cases, artifacts are less perceived in the in vivo reconstructions,
while they stand out for the synthetic experiments.

Secondly, it clearly appears that the linear reconstruction,
implemented with CG, leads to the fastest convergence, un-
fortunately with suboptimal quality. For a reconstruction time
one order of magnitude longer, our accelerated method provides
better reconstructions. This is illustrated in Fig. 5 for reconstruc-
tion times of the order of five seconds (columns 1, 2, and 4).

Finally, we observe in Fig. 7 the superiority of the proposed
FWISTA over the other types of algorithms. For the given re-
construction times, it consistently exhibits better image quality
as can be seen in both reconstructions and error maps.

D. SENSE MRI Reconstruction

Our reconstruction method is applicable to linear MR
imaging modalities. In this section, we report results obtained
on a SENSE reconstruction problem. The data were acquired
with the same scanner setup as in Section IV-B1. This time,
the data from the eight receiving channels were used for recon-
struction, as well as an estimation of the sensitivity maps. An
in vivo gradient echo EPI sequence of a brain was performed
with T2* contrast. The data was acquired with the following
parameters: excitation slice thickness of 4 mm, TF = 35 ms,
TR = 900 ms, flip angle of 80°, and trajectory composed of
13 interleaves, supporting a 200 x 200 reconstruction matrix
with pixel resolution 1.18 mm x 1.18 mm. The oversampling
ratio along the readout direction was 1.62.

The reference image was obtained using the complete set of
data and performing an unregularized CG-SENSE reconstruc-
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15.49 dB

Fig. 8. Reconstructions (left column) and error maps (right column) for the
SENSE EPI experiment using CG (first row), IRLS-TV (second row), and our
method (third row). For each reconstruction, the performance in SER with
respect to the reference (top-left corner), the reconstruction time (top-right
corner), the number of iterations (bottom-right corner), and a magnification of
the central part (bottom-left) are shown.
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Fig.9. Evolution of the performance of the algorithms. Times required to reach
—0.5 dB of the asymptotic value are indicated.

tion. The reconstruction involved 3 of the 13 interleaves, repre-
senting a significant undersampling ratio R = 4.33.

The images obtained using regularized linear reconstruction
(CG), TV (IRLS), and our method are presented in Fig. 8. In
Fig. 9, the SER evolution with respect to time is shown for
the three methods. The times to reach —0.5 dB of the asymp-
totic SER value are 5.9 s (CG), 49.1 s (IRLS), and 22.8 s (our
method).
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With this high undersampling, the errors maps show that re-
constructions suffer from noise propagation mostly in the center
of the image. It appears that TV and our method improve quali-
tatively and quantitatively image quality over linear reconstruc-
tion (cf. Fig. 8). As it was observed in Section IV-B with the
spiral MRI reconstructions, this in vivo SENSE experiment con-
firms that our method is competitive with TV. In terms of recon-
struction duration, our method proves to converge in a time that
is of the same order of magnitude as CG (cf. Fig. 9).

V. CONCLUSION

We proposed an accelerated algorithm for nonlinear wavelet-
regularized reconstruction that is based on two complementary
acceleration strategies: use of adaptive subband thresholds plus
multistep update rule. We provided theoretical evidence that this
algorithm leads to faster convergence than when using the ac-
celerating techniques independently. In the context of MRI, the
proposed strategy can accelerate the reference algorithm up to
two orders of magnitude. Moreover, we demonstrated that, by
using the Haar wavelet transform with random shifting, we are
able to boost the performance of wavelet methods to make them
competitive with TV regularization. Using different simulations
and in vivo data, we compared the practical performance of our
reconstruction method with other linear and nonlinear ones.

The proposed method is proved to be competitive with TV
regularization in terms of image quality. It typically converges
within five seconds for the single channel problems considered.
This brings nonlinear reconstruction forward to an order of mag-
nitude of the time required by the state-of-the-art linear recon-
structions, while providing much better quality.
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