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Integrating regional perfusion CT
information to improve prediction
of infarction after stroke
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Abstract

Physiological evidence suggests that neighboring brain regions have similar perfusion characteristics (vascular supply,

collateral blood flow). It is largely unknown whether integrating perfusion CT (pCT) information from the area

surrounding a given voxel (i.e. the receptive field (RF)) improves the prediction of infarction of this voxel. Based on

general linear regression models (GLMs) and using acute pCT-derived maps, we compared the added value of cuboid RF

to predict the final infarct. To this aim, we included 144 stroke patients with acute pCT and follow-up MRI, used to

delineate the final infarct. Overall, the performance of GLMs to predict the final infarct improved when using RF for all

pCT maps (cerebral blood flow, cerebral blood volume, mean transit time and time-to-maximum of the tissue residual

function (Tmax)). The highest performance was obtained with Tmax (glm(Tmax); AUC¼ 0.89� 0.03 with RF vs.

0.78� 0.02 without RF; p< 0.001) and with a model combining all perfusion parameters (glm(multi); AUC

0.89� 0.02 with RF vs. 0.79� 0.02 without RF; p< 0.001). These results suggest that prediction of infarction improves

by integrating perfusion information from adjacent tissue. This approach may be applied in future studies to better

identify ischemic core and penumbra thresholds and improve patient selection for acute stroke treatment.
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Introduction

Early and accurate prediction of the final infarct is cru-

cial for the management of acute stroke patients. The

initial perfusion imaging performed in most emergency

wards is used to determine the salvageable brain tissue

and estimate the final infarct. Perfusion-based infarct

prediction is mostly performed for each voxel of inter-

est (VOI) independently. However, it is likely that the

fates of neighboring VOIs are closely interdependent,

as they share similar physiological characteristics such

as vascular supply and collateral blood flow. It remains

largely unknown whether including acute perfusion

imaging information from tissues adjacent to a given

VOI improves the prediction of the final infarct.

Magnetic resonance imaging (MRI) studies using

machine learning methods such as artificial neuronal

networks1 and convolutional neural networks2 that

implicitly take into account spatial information from
imaging data, suggest that adjacent perfusion informa-
tion improves the prediction of outcome for a given
VOI. However, these multi-parametric non-linear

1Stroke Research Group, Department of Clinical Neurosciences,

University Hospital and Faculty of Medicine, Geneva, Switzerland
2Medical Imaging Processing Laboratory, Institute of Bioengineering,

Ecole Polytechnique F�ed�erale de Lausanne (EPFL), Lausanne, Switzerland
3Division of Neuroradiology, University Hospital and Faculty of Medicine,

Geneva, Switzerland

*These authors contributed equally to this work.

Corresponding author:

Emmanuel Carrera, Head, Stroke Center, Hôpitaux Universitaires
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models remain difficult to implement in clinical practice
due to the high computational overhead and conclu-
sions from previous studies are limited by the low
number of subjects and the size of voxels. Moreover,
these models have been developed on perfusion and
diffusion MRI datasets, leaving the benefit of including
regional information in perfusion CT models largely
unknown.

In this study, we investigated, in a large cohort of
acute stroke patients, whether integrating acute perfu-
sion CT information from neighboring VOI improves
the performance of different models to predict the final
infarct. To this aim, we developed a general linear
model (GLM) integrating regional information based
on the concept of “receptive fields” (RF).3,4 We defined
receptive fields as concentric cubes of different volumes
around each voxel of CT perfusion maps. We system-
atically investigated RF of increasing sizes to determine
to which extent the surrounding perfusion status
impacts on the fate of a given VOI.

Material and methods

Patients

In this retrospective analysis of prospectively collected
data, we included all stroke patients with acute perfu-
sion CT (pCT) and follow-up MRI, treated by intrave-
nous thrombolysis and/or endovascular therapy in our
institution from 01 January 2016 to 31 December 2017.
Exclusion criteria included poor-quality scans due to
movement artifacts, contraindications to MRI,
follow-up-MRI performed> 10 days after onset as
well as cerebral edema or hemorrhage causing major
anatomical deformations. Recanalization was assessed
in patients with endovascular treatment using the stan-
dardized Thrombolysis in Cerebral Infarction score
(TICI).5 TICI scores 2 b and 3 were considered as ‘suc-
cessful recanalization’. The study was conducted in
accordance with the Helsinki declaration and was
approved by the local ethics committee (Commission
cantonale d’�ethique de la recherche de Gen�eve) which
waived the requirement to obtain informed consent for
this retrospective study.

Imaging acquisition

CT is performed as a standard of care in acute stroke
patients admitted in our institution. Non-contrast head
CT (NCCT), pCT and angio-CT (CTA) of the head
and neck were acquired on the same Somatom Force
CT (Siemens, Erlangen, Germany). pCT images were
acquired after intravenous administration of 40ml
iodinated contrast at 5ml/s by a power injector
(Omnipaque, 350/40ml, GE Healthcare, Chicago,

USA). pCT imaging parameters were 80 kVp,
270mAs, and 1.2-mm section collimation. Slice thick-
ness was 5mm. Four perfusion maps (CBF, CBV,
MTT and Tmax) were calculated offline using standard
software (RAPID, Ischemaview Stanford University,
Stanford, USA).6

Follow-up MRI was performed on 1.5 T or 3.0T
machines (Siemens Prisma-fit 3T, Siemens Skyra 3T,
Siemens Aera 1.5 T, Erlangen, Germany; Philips
Ingenia 1.5T, Best, Netherlands) as part of standard
of care during hospitalization. The MRI protocol
included diffusion-weighted imaging (DWI),
T2-weighted and fluid-attenuated inversion recovery
(FLAIR) sequences.

Infarct delineation

The final infarct was drawn manually on T2 images,
with the help of DWI using MRIcron7 by consensus of
two board-certified stroke neurologists (ED, EC)
blinded to acute perfusion maps. Based on the final
infarct map, the outcome of each voxel was classified
as infarcted (value 1) or non-infarcted (value 0).

Preprocessing

To compare perfusion maps (native CT space) and
the final MRI-infarct mask (T2-MRI space) and allow
voxelwise inference, all images were coregistered and
normalized to a standardized MNI-CT space8 using an
in-house tool based on the normalized mutual informa-
tion cost function as implemented in SPM129 for
MATLAB (MathWorks, USA), as well as on tools
from the FMRIB Software Library (FSLv.5).10 In
order to enhance the specificity of the models trained,
a mask was applied to non-brain voxels in all data used
for training, following a method for coarse cerebrospinal
fluid segmentation described by Manniesing et al.11

As the collected dataset has a positive to negative
ratio of 2:100 (number of infarcted voxels: number of
non-infarcted voxels) after masking, all data used for
training were undersampled using an in-house devel-
oped tool in Python (Python Software Foundation,
v.3.6.5) to improve the learning process. This ensures
that the final training datasets contain the same
number of voxels originating from infarcted as from
non-infarcted regions of the brain.12 The distribution
of infarcted voxels was left untouched in data used for
testing.

General strategy

After coregistration of pCT maps and final infarct
masks, the prediction of final infarction was estimated
in a voxel-based approach using GLMs based on single
perfusion maps (glm(MTT), glm(Tmax), glm(CBF)
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and glm(CBV)) and on all four perfusion parameters
(glm(multi)). For each parameter-based model, recep-
tive fields ranging in size from 0 (rf¼ 0) to 4 (rf¼ 4:
9� 9�9 voxels, i.e. 18� 18�18mm3) were tested
(Figure 1). We chose the GLM as the model to perform
our analysis, as it remains one of the simplest models
capable of multivariate analysis ensuring maximal
reproducibility. We compared performance in patients
who recanalized after treatment and in those who did
not. In a post hoc analysis, because glm(Tmax) was the
more accurate model in the above analysis, its perfor-
mance to predict the final infarct was compared to the
standard “non GLM” Tmax model.

General linear regression models. Generalized linear
models are an extension of linear models that can be
used in the setting of binary prediction problems. The
classification of voxels can be seen as a binary variable
P where the probability of tissue infarction is repre-
sented by the logistic function

P ¼ 1

1þ e�f xð Þ

where f(x) is the linear combination of one or more
input parameters, grouped in an input vector x

f xð Þ ¼ bxþ a

where b is the model parametrization extracted from
the training data and a is the intercept term. General
linear models allow for multivariate analysis and can
thus be used for the combination of different imaging

modalities.13 In this study, univariate (using MTT,

Tmax, CBF and CBV independently) as well as multi-

parameter analysis (using all perfusion parameters
combined) was applied to the classification of infarcted

voxels. However, it can also be used to perform a

multi-voxel analysis, using the values of voxels within

the receptive field of the voxel to be predicted. In this

setting, a new predictor function f 0(xi,j,k) can be defined

such as

f0 xi;j;kð Þ ¼ aþ
Xiþrf

i�rf

Xjþrf

j�rf

Xkþrf

k�rf

bi;j;kxi;j;k

where the log-odds of each voxel xi, j, k can be defined

for each input parameter as the linear combination of
all the voxels within a receptive field defined by the

distance rf from the center voxel (see Figure 1). This

can be used for models based on only one perfusion

parameter, as well as on models relying on multiple

modalities.

Receptive fields. We then examined whether perfor-

mance of the same models was enhanced by integrating

perfusion information from “receptive fields” that were

implemented as concentric cubes of increasing volumes

around an each VOI. The size of the receptive field
(denoted rf) was defined as the number of voxels

(1 voxel¼ 2� 2�2mm3) between the VOI and the

limits of the receptive field (Figure 1). To allow the

use of a receptive field near the border of an image,

all images were padded with null-value voxels accord-

ingly. We evaluated models using cuboid RF ranging in

Figure 1. Schematic representation of a VOI and its receptive field. (a) A voxel-based model without receptive field evaluates the
information contained in the VOI only (2� 2�2 mm3) (rf¼ 0). (b) A model using a 3D patch receptive field (light blue) includes
information from neighboring voxels to the outcome of a given VOI. The size of the receptive field is defined as the number of voxels
between the VOI and the outside boundary of the receptive field (c). For instance, a receptive field of size rf¼ 1 corresponds to a
three-dimensional patch of size 3� 3�3 voxels (6� 6�6 mm3).
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size from rf¼ 0 (equivalent to voxelwise prediction) to

rf¼ 4 (9� 9�9 voxels¼ 18� 18�18mm3). The upper

bound was dictated by the technical limit of our hard-

ware, as all training data have to fit in random-access

memory of the server the models are trained on.

Standard Tmax model (post hoc analysis). Tmax is

commonly used to define regions at risk of infarc-

tion.6,14–16 For comparison and validation, the perfor-

mance of a non-GLM “standard model” Tmax without

RF was estimated in a voxelwise approach. This model

can be generalized as a function g(Tmax) that is a nor-

malized representation of the raw Tmax values which

are mapped between 0 and 1 to represent probability of

infarction.

g Tmaxð Þ ¼ Tmax�minðTmaxÞ
max Tmaxð Þ �minðTmaxÞ

Smoothing kernels (post hoc analysis). Prior studies have

shown that smoothing pCT images with a Gaussian

blur can increase the signal-to-noise ratio and can

thus improve the prediction of the infarct in acute

stroke.17 A spherically symmetric Gaussian kernel can

be defined on RN as the function GNð~x; rÞ of fixed

width x, where ~x 2 RN and r 2 R

GN ~x; rð Þ ¼ 1
ffiffiffiffiffiffi
2p

p
r

� �N e�
j~x j2
2r2

Two- and three-dimensional kernels were evaluated

with an increasing kernel width x and r ¼ x
3. For fur-

ther comparison, the performance of non-GLM normal-

ized perfusion parameters after Gaussian smoothing was

evaluated in a voxelwise approach. The normalized rep-

resentation of each perfusion parameter was estimated

according to the formula described above.

Model evaluation. Cross-validation (CV) is an efficient

way of assessing the performance as well as the gener-

alizability of a model, while avoiding the bias that

would occur if the model was validated on the data it

was trained on. In repeated 5-fold patient-wise CV,

20% of patients are randomly chosen and held out

from the training process for model evaluation for

every fold. This process is repeated several times, and

the median of all iterations is taken as the final perfor-

mance. By iterating through the different possible

patient combinations for training and testing, this tech-

nique ensures that the model is trained on, as well as

tested on all the data without introducing bias. In this

study, 5-fold patient-wise CV was repeated 10 times

and the mean was taken as the final performance.

Model comparison. The area under the receiver operating
characteristic (ROC) curve (AUC) was used to deter-
mine the efficiency of the different perfusion models to
predict the final infarct.18 The Dice coefficient19 served
as an additional metric to allow for better external
comparability. This score measures the ratio between
true positives (TP) and the sum of the volume of the
prediction (true positiveþ false positive, TPþFP) and
the volume of the ground truth (true positiveþ false
negative, TPþFN). When all terms are null, the Dice
coefficient is defined as 1.

Dice ¼ 2�TP
TPþ FPð Þ þ ðTPþ FNÞ

Model performance was then compared with
the nonparametric Wilcoxon signed-rank test.
Significance was defined at a standard level of p< 0.05.

Model performance in treatment option subgroups. To deter-
mine the influence of treatment options on model and
perfusion marker performance, two subgroups were
analyzed separately: patients benefitting from intrave-
nous treatment (IVT) alone and patients benefitting
from endovascular treatment (EVT) alone or in com-
bination with IVT. The cross-validation protocol
described previously was used in each subgroup. To
compare the results between the two independent
patient populations, a Mann–Whitney U test was used.

Results

Patients

One hundred forty-four patients (70� 16 years; 70
(49%) women) met the inclusion/exclusion criteria
(see Supplementary Materials). Eighty patients
received IVT alone, 24 EVT alone and 40 both.
Median time from onset to CT was 130min (IQR 81–
220) and from onset to follow-up MRI 48 h (IQR 26–
112). Patient characteristics are summarized in Table 1.

Contribution of cuboid receptive fields for final
infarct prediction

Three representative patients are presented in Figure 2.
This example shows that voxelwise predictions (Figure
2(b), rf¼ 0) tend to produce scattered risk maps when
compared to models using RF (Figure 2(c) to (f)). The
RF-based models generally outperformed voxelwise
models in producing spatially coherent lesions and pro-
duced more accurate delineations of the lesion. Using
RF as input, all five tested models demonstrated signif-
icantly higher performance for infarct prediction than
single-voxel prediction based on AUC analysis, as
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shown in Figure 3. Receptive fields of size rf¼ 3 per-
formed best. For greater values of rf, performance did
not statistically improve nor decrease. A RF of size
rf¼ 3 was thus chosen as reference for all further

comparisons. In terms of area under the ROC curve,
applying receptive fields translated into a gain of 0.08
on average (p< 0.01, see Table 2 and Supplementary
Materials). Compared to the standard (non-GLM)

Figure 2. Examples of infarct prediction with receptive fields of increasing size. (I to III) Illustration of infarct prediction for three
representative patients from a cross-validation test set. (I) A right moderate size middle cerebral circulation infarct treated by IVT
alone. (II) A right small size posterior cortical middle cerebral artery infarct treated by IVT alone. (III) A bilateral posterior cerebral
artery stroke treated by EVT. For every patient: (a) Lesion mask delineated on follow-up MRI. (b to f) Probability of infarction maps
as predicted by the multi-modal GLM model (glm(multi)) with a receptive field varying in size from rf ¼ 0 (voxelwise prediction) to
rf¼ 4. No mask was applied to this data.

Table 1. Patient characteristics (n¼ 144).

Age (years) 70�16

Sex (F) 70 (49)

NIHSS at admission 9 [4–15]

Time from onset to CT (minutes) 130 [81–220]

Time from onset to MRI (hours) 48 [26–112]

IVT only/EVT only/IVTþ EVT 80 (55)/24 (17)/40 (28)

Successful recanalizationa (TICI 2b-3) 58 (90)

Final infarct volume (cm3)

EVTa 32.8 [8.9–64.7]

IVT only 4.6 [0.7–19.9]

Ischemic core volumeb (cm3)

EVTa 10.0 [0.0–32.0]

IVT only 0.0 [0.0–5.8]

Ischemic penumbra volumec (cm3)

EVTa 135.0 [86.0–182.5]

IVT only 23.0 [4.0–55.0]

Note: Data are presented as median [25–75 IQR], mean� SD and N (%).
aAssessed in patients with EVT (n¼ 64).
bDefined as CBF< 30%, as assessed by the RAPID software.
cDefined as Tmax> 6 s, as assessed by the RAPID software.

Figure 3. Performance of the models with receptive fields of
increasing size. Performance expressed as mean AUC for: rf¼ 0
(no receptive field); rf¼ 1 6� 6�6 mm3; rf¼ 2 10� 10�10 mm3

rf¼ 3 14� 14�14 mm3 rf¼ 4 18� 18�18 mm3.
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Tmax model (AUC 0.78� 0.03), glm(Tmax) performed
statistically better only when using RF (glm(Tmax)
AUC 0.89� 0.03 with RF; p< 0.01; glm(Tmax) AUC
0.78� 0.02 without RF; p> 0.05). After iterating over
2D and 3D smoothing kernels with increasing width,
the optimal smoothing kernel was determined for every
parameter (see Supplementary Materials). When com-
paring optimized Gaussian smoothing to the use of
RF, RF models performed significantly better for all
perfusion parameters (p< 0.05; Table 3). Duration of
data processing of our RF-based models did not exceed
a few seconds and would not therefore delay acute ther-
apy (see Supplementary Materials, Table 3).

Comparison between perfusion parameters for
final infarct prediction

As shown in Figure 4 and Table 2, Tmax is the best
single parameter to predict the final infarct with and
without RF (p< 0.01). No significant difference could
be found between Tmax and multiparameter models
(p> 0.05). glm(Tmax) also led to the highest gain of
AUC with a mean increase of 0.11 (p< 0.01), followed
by glm(MTT), glm(multi), glm(CBF) and glm(CBV)
when applying a RF of size rf¼ 3. At a voxelwise
level, the analysis of the mean weights applied by the
glm(multi) model showed that Tmax and CBF were
attributed significantly more importance than MTT
and CBV (p< 0.05). There were no glm(Tmax) AUC
differences between patients who recanalized and those
who did not (0.89 vs. 0.86; p> 0.05).

Comparison between EVT and IVT subgroups

A treatment subgroup analysis was performed on 64
patients that had received EVT either alone or in com-
bination with IVT and on 80 patients that had benefit-
ted from IVT alone (see Table 4 in Supplementary
Materials). In terms of AUC, no significant difference

Table 2. Performance of the different models to predict the final infarct.

Model

No receptive field (rf¼ 0 2� 2�2 mm3 VOI) Receptive field (rf¼ 3 14� 14�14 mm3) p-values

AUC Dice AUC Dice AUC Dice

GLM models

glm(CBV) 0.63 0.046 0.66 0.050 <10e-4 > 0.05

glm(CBF) 0.68 0.053 0.72 0.061 <10e-6 <0.05

glm(MTT) 0.61 0.051 0.72 0.076 <10e-9 <10e-9

glm(Tmax) 0.78 0.115 0.89 0.157 <10e-9 <10e-10

glm(multi) 0.79 0.115 0.89 0.155 <10e-9 <10e-10

Tmax Models

g(Tmax) 0.78 0.030 / / / /

Table 3. Performance of voxelwise models after 3D Gaussian smoothing and models with a receptive field to predict the final infarct.

3D Gaussian smoothing (rf¼ 0 2� 2�2 mm3 VOI) Receptive field (rf¼ 3 14� 14�14 mm3)

Model Best kernel width (mm) AUC Model AUC p-values

g(CBF) 10 0.70 glm(CBF) 0.72 <0.01

g(CBV) 14 0.64 glm(CBV) 0.66 0.03

g(MTT) 38 0.65 glm(MTT) 0.72 <10e-6

g(Tmax) 22 0.85 glm(Tmax) 0.89 <10e-6

Figure 4. Comparison of the performance of the different
models to predict the final infarct. Boxplots for the predictive
models ordered by AUC value. Receptive fields of size rf¼ 0
(shown in green) and rf¼ 3 (shown in orange) were used. g
(Tmax) represents the standard (non-glm) model. Each box
extends from the 25th percentile to the 75th percentile with a
line indicating the median. Upper and lower whiskers show the
range up to the upper and lower extreme (�1.5*inter-quartile
range). Outliers are represented by grey diamond shapes.
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could be found for the glm(CBV), glm(CBF) and glm
(multi) models (p> 0.05). For MTT and Tmax, the glm
model performed better on the IVT subgroup (p< 10e-
5 and p¼ 0.04 respectively). Interestingly, the standard
non-GLM Tmax model performed significantly better
in the IVT subgroup (p< 10e-5). Intra-group analysis is
reported in the Supplementary Materials.

Discussion

Our results suggest that, in acute stroke patients, the
fate of a predefined hypoperfused region is more accu-
rately predicted when taking into account the perfusion
pattern of the surrounding tissue (i.e. in the receptive
field). When tested on cross-validation data, model per-
formance with receptive fields was higher than that of
simple voxelwise models for all perfusion parameters.
The glm(Tmax) and the glm(multi), which combines all
four perfusion parameters (CBF, CBV, MTT and
Tmax), showed the highest performance in predicting
the final infarct.

Model performance of the different GLMs increased
significantly with the use of receptive fields, highlight-
ing the importance of spatially resolved information
contained in CT-based perfusion imaging data. These
findings held true in both the IVT and the EVT sub-
group. In other words, fate prediction for one VOI was
improved by taking into account perfusion data of
neighboring voxels. For glm(Tmax), the use of recep-
tive fields increased the performance from fair (AUC¼
0.78) to good-excellent (AUC¼ 0.89). These results are
consistent with biological concepts of brain ischemia,
which suggests that neighboring regions that share the
same vascular supply and collateral flow display a com-
parable risk of infarction. Model performance
increased significantly with receptive fields including
the nearest neighbors but plateaued with receptive
fields of larger volumes. It can even be expected that
information from distant voxels would provide diver-
gent information that may decrease model performance
in predicting the fate of the VOI. Our results based on
perfusion CT are consistent with preliminary MRI
studies using regional information from perfusion and
diffusion imaging in human and mice.1,20

In the current study, we used a RF of cuboid shape.
Individually shaped receptive fields may increase the
performance of the model.21 The use of receptive
fields improved the prediction of infarcted tissue, but
it also seemed to enhance resistance to noise of a
model, as confirmed by visual inspection. The concept
of integrating information from spatially related voxels
to decrease noise is also present in Gaussian kernel
smoothing, as used in earlier models.17 Gaussian
smoothing can be seen as a special case of receptive
fields where the weights are arranged following a

Gaussian function along every dimension.
However, the receptive field models trained on the
dataset outperforms models relying on optimized
Gaussian smoothing alone. As the trained weights of
the receptive fields can hold a representation of the
directionality of the signal within a kernel, they offer
an advantage over smoothing relying on a Gaussian
function. Moreover, as receptive fields do not presup-
pose a constant weight distribution, they can be region-
ally finetuned to integrate the spatial infarct probability
distribution in future imagewise models. Receptive
fields are an inherent feature of convolutional neural
networks and may explain the encouraging results
reported by recent studies using this method.2,22,23

Although our findings emphasize the need for further
development in the field, receptive fields can already be
applied to enhance the performance of currently
employed models.

Comparison of the different models showed that glm
(Tmax) as well as a linear combination of all perfusion
parameters glm(multi) performed best to predict the
final infarct with a good to excellent accuracy
(AUC¼ 0.89). This performance, based on imaging
data only relying on the regional information provided
by RF, was similar to the accuracy reported in a pre-
vious GLM study, which included clinical data in addi-
tion to imaging data, without RF.24 It was also
comparable to earlier studies using non-linear models
that included diffusion (DWI) in addition to perfusion
MRI.20 Interestingly, our model for infarct prediction
reached a similar AUC as more sophisticated gradient-
boosted tree models such as XGBoost.25

Among all perfusion parameters, we found Tmax to
be the most valuable to predict the final infarct. This is
reflected in the performance of the glm(Tmax) model
but also in the weight of the Tmax variable in the
multi-parametric glm(multi). CBF also significantly
contributed to the performance of the glm(multi)
model. Interestingly, in the IVT subgroup, both g
(Tmax) and glm(MTT) performed slightly better than
in the EVT subgroup. In a previous multi-modal study,
Tmax and MTT but not CBF were the most informa-
tive perfusion parameters.26 The differences in perfor-
mance of the individual perfusion parameters between
centers suggest that the analysis of perfusion imaging
remains difficult and may be the result of variations in
the generation of perfusion maps. Nevertheless, our
results suggest that Tmax may be the most reliable
parameter to predict the final infarct with pCT. As
the multimodal model glm(multi) performs just as
well, it may also be considered and could prove
better at palliating the variations stemming from the
generation of perfusion maps.

Limitations of this study include the analysis of
imaging data of patients from a single center.
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However, the standardized perfusion output obtained

from the RAPID software package ensures a better

reproducibility and limit differences in the model anal-
ysis before validation. The influence of reperfusion

status on the prediction of infarction could not be eval-

uated in our study as only a small fraction of patients

had a documented unsuccessful recanalization. We

were therefore unable to determine which perfusion
parameter performed better depending on the recana-

lization status.27,28 No clinical outcome was considered

in our study, as the goal of this study was to develop

new tools to enhance current infarct prediction meth-

ods for patient stratification at the acute stage. Further
studies are nevertheless needed to investigate the added

value of clinical data to these models.
Our findings support a multidimensional approach,

integrating both perfusion and spatial parameters.
Receptive fields inform a given model about the state

of adjacent tissue, allowing it to outperform purely

voxelwise generalized linear models. Our model of spa-

tial receptive fields does not require any manual input
nor thresholding and can be easily applied to predictive

models already used in a clinical setting. Receptive

fields are easy to implement and effective tools to

improve the prediction of the final infarct and guide

patient’s selection for acute stroke treatment.
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