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Abstract—Validation of image registration algorithms is a diffi-
cult task and open-ended problem, usually application-dependent.
In this paper, we focus on deep brain stimulation (DBS) targeting
for the treatment of movement disorders like Parkinson’s disease
and essential tremor. DBS involves implantation of an electrode
deep inside the brain to electrically stimulate specific areas shut-
ting down the disease’s symptoms. The subthalamic nucleus (STN)
has turned out to be the optimal target for this kind of surgery.
Unfortunately, the STN is in general not clearly distinguishable in
common medical imaging modalities. Usual techniques to infer its
location are the use of anatomical atlases and visible surrounding
landmarks. Surgeons have to adjust the electrode intraoperatively
using electrophysiological recordings and macrostimulation tests.
We constructed a ground truth derived from specific patients
whose STNs are clearly visible on magnetic resonance (MR)
T2-weighted images. A patient is chosen as atlas both for the right
and left sides. Then, by registering each patient with the atlas
using different methods, several estimations of the STN location
are obtained. Two studies are driven using our proposed validation
scheme. First, a comparison between different atlas-based and
nonrigid registration algorithms with a evaluation of their perfor-
mance and usability to locate the STN automatically. Second, a
study of which visible surrounding structures influence the STN
location. The two studies are cross validated between them and
against expert’s variability. Using this scheme, we evaluated the
expert’s ability against the estimation error provided by the tested
algorithms and we demonstrated that automatic STN targeting is
possible and as accurate as the expert-driven techniques currently
used. We also show which structures have to be taken into account
to accurately estimate the STN location.
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I. INTRODUCTION

MAGE registration has become a common and useful tool
I in the medical environment. It can be defined as the problem
of finding an optimal geometric transformation between corre-
sponding image data. Its aim is to compute the spatial trans-
formation which maps each point of one image onto its cor-
responding point of another image. Registration methods are
widely used for helping clinicians because of the difficulty of
fusing images mentally, even more so when they come from dif-
ferent patients and/or different modalities. Typical clinical and
surgical applications include preprocedural planning and simu-
lation, interventional radiology, diagnostic radiology, minimally
invasive procedures, radiation therapy, intraoperative naviga-
tion, robot-assisted interventions, etc. Nowadays, rigid registra-
tion is a well-covered domain [1] with efficient solutions for the
most common applications. Current research mostly focuses on
nonrigid registration methods. Many different approaches can
be found in the literature [2]—[4]. Nevertheless, there is not a
universal solution due to the complex framework of nonrigid
registration. This framework can be divided and classified fol-
lowing different criteria [2]: the dimensionality of the data in-
volved, the feature space to base the registration on, the kind and
domain of the transformation model, the modalities of the data
and the subjects involved, the user interaction, the similarity
metric to assess the matching quantitatively, the search space
in which the optimal solution has to be found, and the search
strategy including optimization of the objective function and
implementation details. Together with this extremely complex
framework, the validation of the results provided by different
techniques and for different applications is a crucial issue but
remains an unsolved problem. The lack of gold standards and
the usual unavailability of a ground truth makes this problem
difficult to solve. Some valuable contributions have neverthe-
less been made in this area. In [5], a reference is estimated from
a collection of segmentations for atlas-based segmentation pur-
poses. In [6], an evaluation of different nonrigid registration
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methods is performed using global and local measures focusing
on the matching of cortical areas. In [7], nonrigid registration is
applied over a labeled brain atlas to segment gross anatomical
structures. However, validation assessments cannot be general-
ized to all the applications because of their different and specific
requirements. Validation of medical image registration is closer
to an application-dependent problem.

In this work, we focus on deep brain stimulation (DBS) tar-
geting, which is a critical step in the surgical treatment of a
number of neurological diseases like Parkinson’s disease (PD)
and essential tremor. Accurate preoperative targeting influences
directly and critically the operating time and, most importantly,
the outcome of the surgery. Before DBS was proposed for the
treatment of PD [8], medications dominated with the introduc-
tion of levodopa. Unfortunately, this medical treatment has im-
portant shortcomings (drug-induced effects) and benefits de-
crease with time. These problems, together with the increase
of basal ganglia circuitry knowledge, have led to the develop-
ment of surgical-based techniques. Two kinds of approaches can
be distinguished: lesion-based (thalamotomy and pallidotomy)
techniques and DBS. The first one has shown a good perfor-
mance in treating tremor in one side of the body and reducing
dyskinesias (involuntary twisting and writhing movements) but
cannot be applied bilaterally because this may produce severe
undesirable and permanent effects on speech, behavior, or cog-
nition. On the other hand, DBS can be performed safely in both
sides of the brain and is reversible. DBS involves implantation of
an electrode deep inside the brain. This electrode delivers elec-
tric current to specific brain cells shutting down parkinsonian
symptoms. The subthalamic nucleus (STN) [9] has turned out
to be, based on wide surgical experience, the optimal target for
DBS [10], [11]. The STN is a small biconvex lens-shaped struc-
ture of diameter ranging from 4 to 10 mm. Unfortunately, the
STN is in general not clearly delineated on magnetic resonance
(MR) images.

The protocol used for STN target selection varies among
different clinical centers. Common strategies are the use of
stereotactic anatomical brain atlases [12], [13] (where usually
the target given by the atlas is corrected by the expert based
on the width of the third ventricle) and the use of visible
surrounding anatomical landmarks [14]. In our state-of-the-art
protocol, a DBS procedure begins by fixing the stereotactic head
frame to the patient’s skull, which is used as a coordinate ref-
erence system. Next, two kinds of imaging studies are acquired
preoperatively to target and plan the electrode placement: MR
T1-weighted and MR T2-weighted. After identification of the
anterior commissure (AC), posterior commissure (PC) and mid-
commissural point (MCP) on a three-dimensional T1-weighted
sequence, inversion recovery (IR) T2-weighted coronal slices
are performed orthogonally to the AC-PC line. On the slice
showing the anterior pole of the red nucleus (RN), the target
is placed in the inferolateral portion of the subthalamic zone,
limited superiorly by the thalamus, laterally by the internal
capsule, inferiorly by the substantia nigra, and medially by the
midline [14]. Then, the target coordinates are reported onto
the T1-weighted image space where trajectories are planned.
Following these preoperative trajectories, a small hole is drilled
in the patient’s skull, which is fixed to the operating table, and
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the electrode is introduced until the preoperative STN target is
reached. This location is only an estimation of the real STN
location. Therefore, during the progression of the electrode,
surgeons may need to correct the preoperative estimation using
both microelectrophysiological recordings and macro-stimu-
lation tests. Throughout the electrophysiological recordings,
neuronal activity can be recorded and interpreted to identify
STN patterns as well as to note the side effect of stimulation and
the difference between the voltage that induces the effect and
the voltage that induces side effects. Furthermore, the observed
patient’s reactions like disappearance of tremor or diminution
of rigidity (the patient is only under local anesthesia) helps
the placing of the electrode. Nevertheless, different locations
along the same track can produce similar responses. Moreover,
a guide of parallel tracks (usually five, separated by 2 mm) al-
lowing to change the initial choice, if it is not satisfying, brings
the accurate preoperative target selection of crucial importance.

The main goals of the validation study presented in this paper
are the following. First, the construction of a ground truth for
the position of the STN regarding the preoperative targeting.
Second, the study of the intraexpert and interexpert variability
in identifying the STN location visually using the procedure de-
scribed below. Third, to evaluate the possibility of automatically
locating the STN by atlas-based segmentation using existing
registration techniques and to compare their performance and
usability. We focus also on answering the following questions.
Which combination of feature-structures most influences the
STN location estimation through a registration process? Does
the use of these structures alone produce an accurate estimation
of the STN target? How well does the structure-based registra-
tion perform compared to the whole-brain nonrigid registration
algorithms and atlas-based methods? Are there any structures or
combination of structures that produces an error in estimating
the STN location comparable to the expert variability when tar-
geting clearly visible STNs?

To reach the goals and answer these questions, a ground
truth is constructed directly from clearly visible STNs on
T2-weighted images. Then one patient volume is chosen as an
atlas and each of the remaining patients mapped back to the
atlas using various atlas-based, segmentation-based, and auto-
matic registration methods. An estimation of the STN location
is obtained and compared to the ground truth. We demonstrate
that using accurate registration algorithms, automatic STN lo-
calization is not only possible but is as accurate as expert-based
methods currently in use. We also study the influence of sur-
rounding structures in the STN estimation. Some efforts for
automatically estimating the STN target have been reported
recently [15]-[18]. They construct the ground truth through
indirect methods by registering anatomical, histological, and/or
electrophysiological atlases with the reference patient, model
or template but, as far as we know, our study is the first one that
constructs the ground truth in a direct way from visible STNs
and that directly studies the influence of neighboring structures
in the estimation of the STN’s location.

This paper is organized as follows. First, we give a descrip-
tion of the data set considered in this study. Then, the protocol
used to construct the ground truth and the validation scheme pro-
cedure are described. Next, the atlas-based, automatic nonrigid
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Fig. 1. T2-weighted image of a patient with clearly visible STN (zoomed in
region of interest on the right panel).

and segmentation-based methods under investigation are pre-
sented. In Section III, we first analyze the expert’s variability
and then we study the effectiveness of the methods in three
steps. First, the atlas-based and automatic nonrigid registration
algorithms are tested against the expert’s variability. Second, a
study of the neighboring structures which influence the STN lo-
cation is performed. Third, a comparison and validation of all
the methods together is presented. Finally, we discuss the re-
sults and report the conclusions.

II. MATERIAL AND METHODS

A. Data

In this study, a set of 39 bilaterally implanted parkinsonian
patients (78 STNs) were considered as a starting database. Two
kinds of images were acquired preoperatively for each patient: a
three-dimensional (3-D) T1-weighted magnetization-prepared
rapid acquisition gradient echo (MPRAGE) MRI sequence
(Siemens Vision, 1.5T, Erlangen, Germany) TR 9.7 ms, TE 4
ms, number of slices/slice thickness: 164/1.40 mm, FOV 280
x 280, matrix 256 x 256, pixel size 1.09 x 1.09 mm, and
few coronal slices (due to the acquisition time required for
this kind of imaging sequence) of an inversion recovery (IR)
T2-weighted, TR 2560 ms, TE 4 ms, number of slices/slice
thickness: 7/3 mm, FOV 300 x 300, matrix 512 x 512, pixel
size 0.59 x 0.59 mm. At least one series of IR T2-weighted
slices was performed orthogonal to the AC-PC line in order to
localize the anterior pole of the red nucleus. On the red nucleus
slice, we identified the subthalamic zone. Taking profit from
the fact that in some specific patients the STN is visible in MR
T2-weighted images, a reference was constructed and used
as a ground truth. To do this, neurosurgeons and radiologists
were asked to select patients with a clearly visible STN in
MR T2-weighted images from our patient database. After
exhaustive inspection, eight subjects were selected (16 STNs).
Only these images were used in the remainder of this work.
In Fig. 1, one can see a T2-weighted image of a patient with a
clearly visible STN.

B. Ground Truth Construction

Two experts were selected to generate the ground truth: a neu-
rosurgeon and a radiologist, both with a large experience in PD
surgery and targeting. They were asked separately to select the
STN target points for each patient of the selected T2 series. This
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procedure was repeated five times on different days to avoid the
experts being influenced by previous targeting choices. Then,
a paired t¢-test of the hypothesis that the target coordinates that
the experts selected came from distributions with equal means
was performed over each coordinate (z, y, z) at a 1% signifi-
cance level. Based on the results, this hypothesis could not be
rejected. Therefore, for our reference, we used the geometrical
mean of the two cloud of points given by each expert as real
targets. The real targets were collected for the eight patients in-
volved in this study and with these data we were able to compute
intraexpert repeatability and interexpert variability, as shown in
Section III-A. Finally, among the eight selected patients, the ex-
perts selected the ones with the most clearly visible STN as ref-
erence or atlas subjects, one for the right STN and one for the left
STN. These two patients have important anatomical differences
(e.g., width of the ventricles), as can be seen in Fig. 4, which
will be useful to compare the performance of the methods for
large anatomical differences.

C. Validation Scheme

The first step of our validation procedure consists of pro-
jecting the T2 real target coordinates into the T1 space where we
dispose of whole-brain images. To do this, intrapatient T1-T2
rigid (translation and rotation) registration is performed for each
patient [19]. Then, by nonrigidly registering each patient with
the atlas a projection of the patient’s STN is obtained, which is
an estimation of the STN location given by the registration tech-
nique considered. This estimation is obtained by registering the
MR T1-weighted images of the patients (leaving out the refer-
ence) with the atlas. Finally, Euclidean distances from estimated
to real targets are computed and then statistics are derived in
order to compare and validate the performance of the different
tested methods as well as the influence of different surrounding
structures in the STN location. A flowchart of this validation
scheme is shown in Fig. 2.

D. Automatic Registration and Atlas-Based Methods

In this comparison-validation study, an atlas-based technique
widely used in a medical environment, as well as three different
nonrigid registration algorithms selected for their wide use
in medical image processing were tested using whole brain
images. The nonrigid registration methods were implemented
using the ITS-EPFL medical image processing library [20].
These methods are the following as follows.

e Atlas-based (AC-PC) targeting. The use of anatomical
brain atlases [12], [13] together with the AC-PC refer-
ential is a common procedure used for DBS targeting
purposes mainly when the STN is not clearly visible in
MR T2-weighted images, which is the usual case. Experts
have to locate the anterior and posterior commissures
(AC-PC points) in the MR T1-weighted images. In this
work, we follow the Schaltenbrand—Wahren protocol [12]:
using this stereotaxic atlas of the brain and taking as the
origin of coordinates the midcommissural point (MCP,
middle point of the AC—PC line), this technique estimates
that the STNs are located at coordinates: anteroposterior
(AP) —3 mm, lateral (LAT) £12 mm and vertical (VERT)
—4 mm.
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Fig. 2. Validation scheme for target estimation using different methods.

* Affine registration. This is an independent implementation

based on the work of Maes et al. [19]. The mutual informa-
tion between the images to be registered is maximized [21],
[22] by optimizing the 12 degrees-of-freedom (translation,
rotation, scaling and shearing). This affine transformation
can be written as

011 b2 bi3 €z 014
T(z,y,z) = | O21 02 023 y |+ | O
031 O3z 033 z 034

where the degrees-of-freedom are parameterized by the co-
efficients 6. This is performed using a coarse-to-fine multi-
scale approach and a two-step optimization. First, a global
search using genetic algorithms [23] and next a local opti-
mization using the steepest descent method [24] were used
to find the best parameters. Affine registration is also used
as a prealignment step for nonrigid transformations de-
scribed below.

Demons algorithm. This is an intensity-based algorithm
proposed by Thirion [25], [26], based on the concept of op-
tical flow. The problem of image matching is approached
as a diffusion process, in which object boundaries in the
reference image F' are viewed as semi-permeable mem-
branes. The other (so-called floating) image G is consid-
ered as a deformable grid, and diffuses through these in-
terfaces driven by the action of effectors situated within
the membranes. These effectors are also called demons by
analogy with Maxwell’s demons. In the case of voxel-by-
voxel intensity similarity, the instantaneous displacement
vector for each voxel is

—

- _  (g-HVf
IV 12+ (g - f)?

where f and ¢ are the intensity image of F' and G, re-
spectively, which are previously intensity-equalized. Thus,
there is a displacement in the direction of the gradient
provided by both a difference in image intensities and a
reference image gradient different from zero. The defor-
mation algorithm is applied by iterating in a hierarchical
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coarse-to-fine multiscale way to make the algorithm more
robust with regard to large differences (these differences
could render optical flow methods completely ineffective
because the assumption of a small displacement is vio-
lated). The smoothness of the displacement field is im-
posed by filtering with a Gaussian filter of standard de-
viation o (elasticity parameter) chosen empirically [27].
In our case, the parameter ¢ was chosen by exhaustive
search, between 0.6 and 2.0 mm by steps of 0.2 mm, min-
imizing the distance between the estimated STN and the
real targets. Finally, 0 of 1 mm was chosen. Also, since
the above equation is asymmetrical, it gives different re-
sults depending on which image is chosen as the reference
and which is chosen to be floating. As proposed in [26],
consistency between the forward and the reverse deforma-
tion fields can be maintained through a bijective implemen-
tation. Both the deformation fields D5 (the deformation
field warping image 1 onto image 2) and Ds; (the defor-
mation field warping image 2 onto image 1) are computed
and the residual R = Dy o D»; is distributed between
these two fields.

B-splines algorithm. This is a mutual information-based
free-form deformation algorithm whose displacement field
is modelled as a linear combination of B-splines lying on
a regular grid (uniformly spaced control points) similar to
the method proposed by Rueckert et al. in [28]. This defor-
mation produces a C'? continuous and smooth transforma-
tion. The deformation that maximizes the mutual informa-
tion between the two images involved is computed at each
grid point placed on the floating image. The transformation
is propagated to the rest of the image using the standard
B-spline expansion with cubic splines

d(z) =Y c(k)B*(x — k)
kez
where 33(z) = 3% 3% % 3% % 8°(x), c(k) are the B-spline
coefficients and 3° a rectangular pulse. To speed up the
optimization process, the algorithm was implemented
through a hierarchical multiscale scheme (both for images
and grid of control points) and using the communication
utilities for distributed memory architectures using the
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Fig. 3. Segmented structures used for feature-based registration: lateral ventri-
cles (L), third ventricle (T), and interpeduncular cistern (C).

MPICH implementation of the message passing interface
(MPI) [29]. The good interpolation properties and the
suitability for multiscale processing of the B-splines are
well known [30] and its deformability can be controlled
by changing the spacing between the control points of the
grid which we have set at 12 mm to be able to cope with
highly local nonrigid deformations.

E. Segmentation-Based Registration

As the STN is located in an intensity homogeneous region
in the MR T1-weighted images, the transformation given by
the registration algorithms is driven by the deformations com-
puted for the surrounding visible structures (e.g., the thalamus,
lateral ventricles, third ventricle, putamen, red nucleus, globus
pallidus, interpeduncular cistern, mesencephalon, internal cap-
sule, etc.). These structures can be segmented. The question
is whether by registering only these segmented structures or a
particular subset of them and by applying the resulting defor-
mation field to the original image, an accurate estimation of
the STN location can be obtained. Yet, we wish to be able to
target the STN automatically. Therefore, we have to focus on
automatically-segmentable structures rather than complex ones
that need manual delineations. Four easy-segmentable struc-
tures were chosen for this study: lateral (left and right) ventri-
cles, third ventricle and interpeduncular cistern, which we de-
note as L, T, and C, respectively (see Fig. 3). As these struc-
tures are filled with cerebrospinal fluid (CSF), their contours
on typical MR images can easily be delimited. The segmenta-
tion was done using a semiautomatic thresholding method but
can be performed in a fully automatic way by using, for in-
stance, a priori knowledge of shape [31]. The procedure is as
follows. Each segmented structure or a combination of them (bi-
nary mask) of the atlas is registered with the corresponding seg-
mented structure (binary mask) of all the patients using a tandem
of affine-demons nonrigid registration (see Section II-D). Note
that only the lateral ventricle corresponding to the STN of the
same brain side is used for estimating its location. First, an
affine registration using whole-brain images is performed to
cope with global misalignment (as for the above B-splines or
demons methods). Then, a demons registration is applied be-
tween the binary masks of the structures considered both for
the atlas and the patient under study. The elasticity parameter
o is the same as for the whole brain images. Some advantages
are obtained from the fact of using the demons algorithm with
a binary mask. The computation time is decreased since only
a small region of interest is registered. The intensity equaliza-
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TABLE 1
EXPERT VARIABILITY STATISTICS. PREOPERATIVE TARGETING OVER CLEARLY
VISIBLE STNS
mean + std Expert 1 Expert 2
intra 1.06 £ 0.61 mm 0.80 = 0.52 mm
inter 1.61 & 0.29 mm 1.40 + 0.38 mm

TABLE II
INTRAEXPERT VARIABILITY TARGETING FOR THE REFERENCE STNS
mean + std Left Ref. Right Ref.
Expert 1 1.10+0.32 mm || 0.75+ 0.38 mm
Expert 2 0.79 £ 0.30 mm 0.38 £+ 0.25 mm

tion of the images is no longer needed. Furthermore, the demons
points to be considered are only those placed on the surface of
the segmented volumes, where the gradient is nonzero, reducing
the number of calculations required.

III. RESULTS

A. Expert Targeting Variability

In order to evaluate the repeatability or intraexpert variability
of the expert targeting, we computed the centroid of each cloud
of STN points targeted by each expert and we calculated the Eu-
clidean distances from the centroid to each of these expert points
yielding a centroid variability measure. In Table I, for both ex-
perts these statistics are shown. These quantities allow us to get
an idea of the surgeon variability and its accuracy when clicking
over a clearly visible preoperative target. The interexpert vari-
ability calculated as the Euclidean distances from each expert
click to the ground truth gives a mean and unbiased standard
deviation shown in Table I. If we only consider the two STNs
used as a reference we obtain a centroid (intraexpert) variability
that is shown in Table II for the left and right sides, respectively,
and for the different experts.

In Fig. 4, the points targeted by the experts for the left
[Fig. 4(a)—(c)] and right [Fig. 4(d)—(f)] STNs chosen as a
reference can be seen. In blue, we show the targeting of expert
1, in red the targeting of expert 2, and in black the mean point
used as a reference. For visualization purposes, each point was
projected onto the three orthogonal planes passing through the
centroid and shown using a circle (radius of 1 mm).

We can also decompose these distances in anteroposterior
(AP), lateral (LAT), and vertical (VERT) coordinates which al-
lows a direct comparison of the mean STN location for our data-
base with the usual STN coordinates from the atlases (e.g., [12]).
In Table III, we show the mean and unbiased standard deviation
of the coordinates referred to the MCP for the 16 STNs used in
this study.

Considering that the experts are targeting a point within a vol-
umetric structure, we can see from the results that the cloud of
each targeted STN is spread in around 1.5 mm, corresponding
approximately to the size of one voxel of the MR T1-weighted
acquisition. Moreover, the mean coordinates of these targeted
points show slight differences to typical anatomical atlas coor-
dinates. This can be explained by the intentional placement of
the target by experts at the inferolateral portion of the subtha-
lamic nucleus [14] while typical atlas coordinates are taken at
the volumetric center of the structure.
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(a) Left-STN Coronal

(d) Right-STN Coronal

(b) Left-STN Sagital

(e) Right-STN Sagital
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(c) Left-STN Axial

(f) Right-STN Axial

Fig. 4. Reference STN expert targeting. Expert 1 in red, expert 2 in blue, ground truth in black (each point represented by a circle of radius 1mm).

TABLE III
MEAN STN COORDINATES REFERRED TO MCP FOR OUR DATASET AND FOR
THE SHALTENBRAND—WAHREN ATLAS

Coordinates Dataset S-W atlas
AP —3.86 £+ 0.94 mm —3 mm
LAT +12.90 + 0.93 mm +12 mm
VERT —3.23 £ 0.78 mm —4 mm

TABLE IV
ESTIMATION ERRORS FOR THE DIFFERENT METHODS

Methods mean =+ std
Affine 2.42 + 0.84 mm
Demons 1.77 £ 0.65 mm

B-splines 1.72 + 0.48 mm
AC-PC 1.96 £+ 0.90 mm

B. Atlas-Based Targeting and Registration Algorithms
Versus Experts

The statistics, mean, and unbiased standard deviation, of the
errors committed when applying the four methods to locate the
STN, as described in Section II-D, are shown in Table IV. For
the case of AC-PC atlas-based method, we have decomposed
and computed the error in its three coordinates referred to the
MCP point as well as the error considering only the laterality
and the anteroposterior variability (see Table V) given that
during the surgery a vertical correction of the electrode’s
location can partially be performed following the introduction
trajectory path.

In order to compare the results, a one-way analysis of
variance (ANOVA) test of the hypothesis that the errors came

TABLE V
AC-PC ATLAS-BASED ERROR DECOMPOSITION

Components mean £ std
AP 0.95 £ 0.85 mm
LAT 1.02 + 0.78 mm
VERT 0.86 £ 0.66 mm
AP-LAT 1.55 £+ 0.96 mm

from distributions with equal means was performed over the
errors produced by each method and by the experts at a 5%
significance level. ANOVA determines the amount of vari-
ability in groups of data and shows whether the variability
between groups is greater than within groups. This means that
ANOVA provides a compact measure of the intergroup variance
divided by the intragroup variance. In Fig. 5(a), a statistical
box plot produced by this test is shown, as well as the result of
a multicomparison test of the means [see Fig. 5(b)]. Two key
conclusions can be drawn from these results. First, the mean
errors committed with B-splines, demons and AC-PC based
methods and the mean errors committed by the experts (expert
variability) are not significantly different. Second, the mean
error committed with affine registration is significantly different
from the B-splines method and from the experts. Given the
visual results of Fig. 5(a) and the statistical tests of the equality
of means showed in Fig. 5(b), an F'-test at a 5% significance
level of the hypothesis that the set of errors generated by each
method and by the experts come from distributions with equal
variance was performed. The results, hypothesis, p-values and
confidence intervals are shown in Table VI. The main conclu-
sion is that the B-splines method produces an estimation error
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Fig. 5. Statistical tests of the errors committed using different methods and by the experts (using the anoval and multcompare functions of MATLAB).

(a) ANOVA statistical box plot. (b) Multicomparison test.

TABLE VI
F-TEST OF THE HYPOTHESIS OF EQUAL VARIANCE. ATLAS-BASED
AND AUTOMATIC REGISTRATION METHODS VERSUS EXPERTS.
R MEANS THAT THE HYPOTHESIS WAS REJECTED

F-test (5%) H p-value CI
Affine vs Demons - 0.367 [0.53 5.19]
Affine vs B-splines - 0.059 [0.95 9.27]
Affine vs AC-PC - 0.788 [0.27 2.67]
Affine vs Expertl R 0.00051 [2.67 25.94]
Affine vs Expert2 R 0.0073 [1.57 15.25]

Demons vs B-splines - 0.309 [0.57 5.55]
Demons vs AC-PC - 0.244 [0.16 16.0]
Demons vs Expertl R 0.0067 [1.60 15.54]
Demons vs Expert2 - 0.0627 [0.94 9.14]
AC-PC vs B-splines R 0.0032 [1.11  10.79]
AC-PC vs Expertl R 0.00022 [3.11  30.19]
AC-PC vs Expert2 R 0.0036 [1.83 17.76]
B-splines vs Expertl - 0.074 [0.89 8.71]
B-splines vs Expert2 - 0.381 [0.52 5.12]
Expertl vs Expert2 - 0.350 [0.18 1.83]

of the STN location that is statistically not different in mean
and in variance to the experts variability.

In Fig. 6, we show the projection of each STN estimation (in
red) onto the reference subject (in black) using the B-splines
registration algorithm. Each point is represented by a circle of
1 mm of radius whose coordinates are projected onto the three
orthogonal planes passing through the reference subject point
coordinates (in black) in order to visualize the points in each
view. The estimated targets are located very close to the real
target and forming tight clouds of points showing that this kind
of automatic estimation is reliable and well suited for this appli-
cation.

C. Segmentation-Based Registration Versus Experts

The same statistics as above were computed for the segmen-
tation-based method. In this case, we did not use a unique STN
reference per side. A leave-one-out procedure was used where
each patient is used once as reference or atlas. These statistics
can be seen in Table VII, where we show the mean and unbi-
ased standard deviation of the estimation error committed when

registering the images with an affine registration and the same
statistics for the case of using only a structure or a combination
of them with a tandem of affine-demons nonrigid registration.
The corresponding box plot generated with the ANOVA test at a
5% significance level and the resulting multiple comparison of
means are shown in Fig. 7(a) and (b), respectively. We can see
that three different combinations give a mean error statistically
different from the affine registration alone: L-T; L-C; L-T-C.
From the results, we can conclude that the lateral ventricle has
at least the same influence in the STN location as the third ven-
tricle. This is a key conclusion given that usual atlas-based tar-
geting procedures adjust the preoperative target using mainly
the width of the third ventricle.

D. Validation and Comparison of All the Methods

Finally, an all-together validation was performed in order
to compare the experts ability versus atlas-based, segmenta-
tion-based and automatic registration algorithms. In this case,
the same reference subjects as in Section II-D were used. The
numerical results ordered by decreasing mean error are shown
in Table VIII. By simple inspection of the numerical results,
it is not trivial to obtain strong conclusions. Is there any sig-
nificant difference between the L-T case and the L-T-C? Can
we ignore the interpeduncular cistern? Are these combinations
better than the B-splines method?, etc. An ANOVA test at a
5% significance level and a multiple comparison test of means
was performed over the whole set of estimation errors [see
Fig. 8(a) and (b)]. We can see from these statistical tests of
all the methods at the same time that if we use the segmented
lateral and third ventricles, we obtain a mean error that is
statistically different from the affine registration method while
it is not statistically different from the experts. The use of the
interpeduncular cistern does not contribute significantly to
the reduction of the mean estimation error. Moreover, the use
of a small region of interest (ROI) dramatically reduced the
computation time compared to whole-image registration algo-
rithms. On the other hand, the performance of the whole-image
automatic registration using B-splines is no longer significantly
different from affine registration regarding the mean estimation
error of the STN location. Nevertheless, an F'-test at a 5% sig-
nificance level of the hypothesis that the set of errors generated
by each method and by the experts come from distributions
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(a) Left-STN Coronal

(b) Left-STN Sagital
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(c) Left-STN Axial

(d) Right-STN Coronal

(e) Right-STN Sagital

(f) Right-STN Axial

Fig. 6. STN estimation using B-splines free-form deformation algorithm (in red). Ground truth in black. (Each point represented by a circle of radius 1 mm). (a)
Left-STN coronal. (b) Left-STN sagital. (c) Left-STN axial. (d) Right-STN coronal. (e) Right-STN sagital. (f) Right-STN axial.

TABLE VII
ESTIMATION ERRORS USING DIFFERENT SEGMENTED FEATURE-STRUCTURES

Structures mean * std

Affine 2.31 £+ 1.02 mm
L 1.97 £+ 0.90 mm

T 2.01 4+ 0.88 mm

C 2.12 + 0.94 mm
T-C 1.97 4+ 0.86 mm
L-T 1.82 £ 0.83 mm
L-C 1.88 £+ 0.85 mm
L-T-C 1.76 &+ 0.82 mm

with equal variance have shown that all the segmentation-based
combinations displayed statistical difference in variance from,
at least, one of the expert’s variability, as shown in Table IX
(only tests rejecting the hypothesis are displayed). In Fig. 9, we
show the coronal projection of each estimated STN (in red) onto
the reference subject (in black) using a L-T segmentation-based
method. From this, we can see that this method provides an
accurate estimation of the STN target.

IV. DiSCUSSION AND CONCLUSION

The validation study presented here considered a critical clin-
ical topic. Validation issues are crucial especially in DBS pro-
cedures where targets are small and their localization difficult.
An accurate preoperative targeting can greatly reduce the op-
erating time by decreasing the necessary corrections and ad-
justments required to attain a successful surgery. We discussed

TABLE VIII
STATISTICS OF THE ESTIMATION ERRORS COMMITTED WITH WHOLE-BRAIN
REGISTRATION, ATLAS-BASED METHOD, SEGMENTATION-BASED
REGISTRATION, AND INTER-EXPERT VARIABILITY

Methods, Features and Experts mean + std
Affine 2.42 +0.84 mm
C 2.00 + 0.72 mm
AC-PC 1.96 £ 0.90 mm
T 1.80 £+ 0.69 mm
Demons 1.77 £ 0.65 mm
T-C 1.74 £ 0.71 mm
B-splines 1.72 + 0.48 mm
L 1.70 £ 0.80 mm
L-C 1.67 £ 0.72 mm
Expertl 1.61 £+ 0.29 mm
L-T 1.58 £ 0.71 mm
L-T-C 1.55 + 0.73 mm
Expert2 1.40 £ 0.38 mm

the intrarater and interrater variability in targeting clearly vis-
ible STNs. Then, an automated targeting technique was pro-
posed that allows both the comparison and validation of dif-
ferent registration methods and to estimate their suitability for
DBS targeting purposes. We have also studied the influence of
neighboring structures in the STN location through a registra-
tion process. Some of the methods tested compared favorably
to the expert’s ability while others revealed that they were not
suited for this application. One of the main conclusions we can
drawn from this work is that automatic STN localization is pos-
sible and as accurate as the methods currently used.
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Fig. 8. Statistical tests of the errors committed using different atlas-based, segmentation-based, and automatic registration algorithms versus expert’s variability
(using the anoval and multcompare functions of MATLAB). (a) ANOVA statistical box plot. (b) Multicomparison test.

Among the AC-PC atlas-based and automatic nonrigid regis-
tration methods applied to the whole brain images, the B-splines
algorithm demonstrated an extremely good performance with
the smallest mean error and unbiased standard deviation, closely
followed by demons and AC-PC atlas-based methods. Visu-
ally, numerically and statistically, the B-splines method pro-
duces estimations of the target which are comparable to the

experts’ variability. The estimated targets project to tight clus-
ters showing the robustness of this kind of estimation method.
However, statistical tests showed that global affine registration
is not accurate enough for our application. Although the AC-PC
atlas-based method shows an acceptable performance, it does
not take into account the interpatient variability, which may be
critical at a single patient level for an accurate targeting. We
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(a) Left-STN Coronal

(d) Right-STN Coronal

(b) Left-STN Sagital

(e) Right-STN Sagital
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(c) Left-STN Axial

(f) Right-STN Axial

Fig. 9. STN estimation using a tandem of affine-demons registration using the segmented lateral and third ventricles. (Each point represented by a circle of radius
1 mm). (a) Left-STN coronal. (b) Left-STN sagital. (c) Left-STN axial. (d) Right-STN coronal. (e) Right-STN sagital. (f) Right-STN axial.

TABLE IX
F'-TEST OF THE HYPOTHESIS OF EQUAL VARIANCE. SEGMENTATION-BASED
METHOD VERSUS EXPERTS

F-test (5%) H || p-value CI
L vs Expertl R 0.0018 [2.10  20.35]
L vs Expert2 R 0.0214 [1.23  11.97]
T vs Expertl R 0.0081 [1.53 14.90]
C vs Expertl R 0.0057 [1.66  16.12]
T-C vs Expertl R 0.0065 [1.61 15.66]
L-T vs Expertl R 0.0058 [1.65 16.02]
L-C vs Expertl R 0.0053 [1.68 16.34]
L-T-C vs Expertl R 0.0047 [1.73  16.76]
L-T-C vs Expert2 R 0.0471 [1.01  9.86]

have seen that the variance of the estimation error generated by
this method is significantly different from the variance of the
B-splines method and from the variance of the experts.

A study of surrounding visible easy-segmentable structures
has revealed that the corresponding lateral ventricle is at least
as influential as the third ventricle referred to the STN location
while the use of the interpeduncular cistern does not contribute
significatively to the improvement of the STN estimation com-
pared to the former two. This is a crucial conclusion given that
atlas-based targeting is usually modulated by the width of the
third ventricle.

The use of an affine registration of the brain images followed
by a segmentation-based demons registration of the binary
mask of specific structures demonstrated an improvement of
the results given by the whole brain image nonrigid registration
methods. The use of a binary mask of the lateral and third

ventricles provides a mean estimation error that is significantly
different from the error given by affine registration but compa-
rable to the expert’s ability. Moreover, this method significantly
reduces the computation time given that the non-rigid registra-
tion is computed on a small region of interest containing the
binary mask and that the demons points to be considered are
only those placed on the surface of the mask. It can also be
fully automatic by using a priori knowledge of shape in the
segmentation step.

The fact that the subthalamic area lacks contrast in MR
T1-weighted images provides, through the validation scheme, a
useful tool to study the propagation properties of the algorithms
and methods under study.

Although the choice of the STN of reference can influence the
results, the atlas-based and the whole-brain nonrigid registration
methods were tested using six different combinations of STN-
pairs (left and right references) and the results, numerically and
statistically, were similar. The two subjects used as a reference
for the right and left sides present large anatomical differences
but the results obtained with the nonrigid registration algorithms
did not show any significant differences regarding the side of the
brain considered, demonstrating the strength of these methods
to recover inter-patient anatomical variability.

However, some weak points of this study must to be noted.
The study was performed using clearly visible STNs on the
T2-weighted images. The rarity of this kind of images implies
that a small sample group was considered (16 STNs). Although
only MR T2-weighted slices clearly crossing the STN were
considered, the spatial resolution of the T2 images introduces
some errors in the definition of the real center of the STN. The
spatial distortions present in MR images may introduce some
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errors spreading the clusters of the estimated STNs. Reporting
the real targets from the T2 images to the T1 space through
rigid registration can also introduce some errors even if the
images are acquired with the stereotactic frame fixed to the
patient’s skull which helps in driving the transformation. On
the other hand, the AC-PC atlas-based method needs manual
AC-PC point identification which introduces some variability
error. All these possible sources of errors will be further inves-
tigated. Nevertheless, these limitations are also applicable to
the work performed by other research groups [15]-[18], where
most of these weaknesses are also present. They construct the
ground-truth indirectly by registering different kinds of atlases:
anatomical, electrophysiological, and/or histological and using
final electrode’s coordinates, which may introduce also addi-
tional errors. The registration of an anatomical segmented atlas
to a patient’s MR image has to consider the inherent errors
of any registration process and the limitations of anatomical
atlases (poor generalization, lack of morphometric information,
spatial inhomogeneity, etc). The use of a postmortem brain
needs volumetric reconstruction of the sliced brain and to
solve a complex postmortem-MR registration problem, due to
deformations produced by the process of extracting the brain
from the cadaver, and by the slicing process itself. Electrophys-
iological recordings are useful and necessary for identifying the
subthalamic region but different locations along the same track
can produce similar responses of difficult interpretation. The
final coordinates of the electrodes indicate that this location
produces a good response to stimulation but we have to make
the assumptions that the surgical team is able to place the
electrode within the STN and that the intraoperative guidance
system provides an accurate position of the electrodes. The
main limitations of our work is the lack of a significantly large
patient population with clearly visible STNs on T2-weighted
series and a scarcity of neurosurgeons and radiologists with a
high level of expertise and a wide experience in DBS targeting.

Future work will focus on including more patients, experts
and registration methods, mainly local ones. The proposed au-
tomatic estimation of the STN can be used as a first and fast
preoperative targeting procedure that can be refined by the neu-
rosurgeon criterion and intraoperatively by electrophysiological
recordings and macrostimulation. It can also be a useful and
powerful tool for institutions without the expertise of leading
research sites.
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