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OUTLINE

■ 1. Imaging as an inverse problem
■ Basic imaging operators
■ Discretization of the inverse problem

■ 2. Classical image reconstruction (1st gen.)
■ Backprojection
■ Tikhonov regularization; Wiener / LMSE solution

■3. Sparsity-based image reconstruction (2nd gen.)

Magnetic resonance imaging  
Computed tomography
Differential phase-contrast tomography

Specific examples:

■ 4. The learning (R)evolution (3rd gen.)

GlobalBioIm
A unifying Matlab library for 
imaging inverse problems



Inverse problem is well posed ⇔ C1‖s‖ ≤ ‖Hs‖ ≤ C2‖s‖ for all s ∈ X

(assuming noise is negligible)

Inverse problems in bio-imaging
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noise

n

Linear forward model

s

Integral operator

H

y = Hs+ n

Problem: recover s from noisy measurements y

Backprojection (poor man’s solution): s ≈ HTy

⇒ s ≈ H−1y

The easy scenario
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Part 1:  

Setting up
the problem  



Forward imaging model (noise-free)
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H : L2(R
d) → R

M

s ∈ L2(R
d) (space of finite-energy functions)

defined over a continuum in space-time

from continuum to discrete (finite dimensional)

(by the Riesz representation theorem)

impulse response of mth detector

Unknown molecular/anatomical map: s(r), r = (x, y, z, t) ∈ R
d

Imaging operator H : s 	→ y = (y1, · · · , yM ) = H{s}

⇒ [y]m = ym = 〈ηm, s〉 =
∫
Rd

ηm(r)s(r)dr

Linearity assumption: for all s1, s2 ∈ L2(R
d), α1, α2 ∈ R

H{α1s1 + α2s2} = α1H{s1}+ α2H{s2}
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Images are obviously made of sine waves ...



Basic operator: Fourier transform
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f̂(ω) = F{f}(ω) =

∫
Rd

f(x)e−j〈ω,x〉dx

F : L2(R
d) → L2(R

d)

Equivalent analysis functions: ηm(x) = ej〈ωm,x〉 (complex sinusoids)

Reconstruction formula (inverse Fourier transform)

f(x) = F−1{f}(x) = 1

(2π)d

∫
Rd

f̂(ω)ej〈ω,r〉dω (a.e.)

2D Fourier reconstruction
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Original image:

f(x)

Reconstruction using N largest coefficients:

f̃(x) =
1

(2π)2
∑

subset
f̂(ω)ej〈x,ω〉



Magnetic resonance imaging
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x
z ω0 = ω0(x)

Frequency encode:

(sampling of Fourier transform)ŝ(ωm) =

∫
R3

s(r)e−j〈ωm,r〉dr

ŝw(ωm) =

∫
R3

w(r)s(r)e−j〈ωm,r〉dr

r = (x, y, z)

Magnetic resonance: ω0 = γB0

Linear forward model for MRI

Extended forward model with coil sensitivity

Basic operator: Windowing
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W : L2(R
d) → L2(R

d)

Application: Structured illumination microscopy (SIM)

W{f}(x) = w(x)f(x)

Positive window function (continuous and bounded): w ∈ Cb(R
d), w(x) ≥ 0

Special case: modulation

w(r) = ej〈ω0,r〉

ej〈ω0,r〉f(r) F←→ f̂(ω − ω0)



Basic operator: Convolution
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H : L2(R
d) → L2(R

d)

Convolution as a frequency-domain product

(h ∗ f)(x) F←→ ĥ(ω)f̂(ω)

Frequency response: ĥ(ω) = F{h}(ω)

H{f}(x) = (h ∗ f)(x) =
∫
Rd

h(x− y)f(y)dy

Equivalent analysis functions: ηm(x) = h(xm − ·)

Impulse response: h(x) = H{δ}

Modeling of optical systems

Diffraction-limited optics = LSI system

f(x, y) g(x, y) = (h ∗ f)(x, y)

Airy disc

Radial profileAberation-free point spread function (in focal plane)

h(x, y) = h(r) = C ·
[
2J1(πr)

πr

]2

where r =
√

x2 + y2 (radial distance)

Airy disk

Point source output
Effect of misfocus

(in focus) (defocus)

h(x, y): Point Spread Function (PSF)
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Basic operator: X-ray transform
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θ

t

(b) ( )

x

y

θ

r

R θ
{s}

(t
)

=

∫
R2

s(x)δ(t− 〈x,θ〉)dx

Projection geometry: x = tθ + rθ⊥ with θ = (cos θ, sin θ)

Radon transform (line integrals)

Rθ{s(x)}(t) =
∫
R

s(tθ + rθ⊥)dr

sinogram

Equivalent analysis functions: ηm(x) = δ
(
tm − 〈x,θm〉)

Central slice theorem
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θ

ωx

ωy

p̂ θ
(ω

)

Fourier transform

p θ
(t)

t

Central-slice theorem

p̂θ(ω) = f̂(ω cos θ, ω sin θ) = f̂pol(ω, θ)

Measurements of line integrals (Radon transform)

pθ(t) = Rθ {f} (t, θ)

1D and 2D Fourier transforms

p̂θ(ω) = F1D{pθ}(ω)

f̂(ω) = F2D{f}(ω) = f̂pol(ω, θ)

Proof: for θ = 0

f̂(ω, 0) =
∫ +∞

−∞

∫ +∞

−∞
f(x, y)e−jωx dxdy =

∫ +∞

−∞

(∫ +∞

−∞
f(x, y) dy

)
︸ ︷︷ ︸

p0(x)

e−jωx dx = p̂0(ω)

then use rotation property of Fourier transform. . .



2D or 3D 
tomography coherent x-ray yi = Rθi

x parallel,  
cone beam, spiral sampling

Modality Radiation Forward model Variations

Cardiac MRI
(parallel, non-uniform)

gated or not,  
retrospective registrationradio frequency

yt,i = FtWix

Wi: coil sensitivity

Magnetic resonance
 imaging (MRI) radio frequency y = Fx uniform or non-uniform  

sampling in k space

Optical diffraction 
 tomography

coherent light
with holography

or grating interferometryyi = WiFix

structured illumination 
microscopy (SIM)

fluorescence
yi = HWix

H: PSF of microscope

Wi: illumination pattern

full 3D reconstruction,  
non-sinusoidal patterns

3D deconvolution 
microscopy fluorescence brightfield, confocal, 

light sheet
y = Hx

Positron Emission 
Tomography (PET)

yi = Hθi
xgamma rays list mode  

with time-of-flight

Discretization: Finite dimensional formalism
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y = y0 + n = Hs+ n

(M ×K) system matrix : [H]m,k = 〈ηm, βk〉 =
∫
Rd

ηm(r)βk(r)dr

Signal vector: s =
(
s[k]

)
k∈Ω

of dimension K

s(r) =
∑
k∈Ω

s[k]βk(r)

Measurement model (image formation)

ym =

∫
Rd

s(r)ηm(r)dr + n[m] = 〈s, ηm〉+ n[m], (m = 1, . . . ,M)

ηm: sampling/imaging function (mth detector)

n[·]: additive noise



Example of basis functions
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Bandlimited representation

β(x) = sinc(x)
-4 -2 0 2 4

-0.2

0.2
0.4
0.6
0.8
1

tri(x) = β1(x)

�2 �1 0 1 2 3
�0.2

0.2
0.4
0.6
0.8
1Pixelated model

β(x) = rect(x)

Bilinear model

β(x) = (rect ∗ rect)(x) = tri(x)

Shift-invariant representation: βk(x) = β(x− k)

Separable generator: β(x) =
d∏

n=1

β(xn)
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Part 2:  

Classical image
reconstruction  

Discretized forward model: y=Hs+ n

Inverse problem: How to efficiently recover s from y ?



Vector calculus
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Useful identities

∂

∂v

(
aT v

)
=

∂

∂v

(
vT a

)
= a

∂

∂v

(
vT Av

)
=
(
A + AT

) · v
∂

∂v

(
vT Av

)
= 2A · v if A is symmetric

Scalar cost function J(v) : RN → R

Vector differentiation:
∂J(v)
∂v

=

⎡
⎢⎢⎣

∂J/∂v1
...

∂J/∂vN

⎤
⎥⎥⎦ = ∇J(v) (gradient)

Necessary condition for an unconstrained optimum (minimum or maximum)

∂J(v)
∂v

= 0 (also sufficient if J(v) is convex in v)

Formal least-squares solution

JLS(s,y) = ‖y −Hs‖2 = ‖y‖2 + sT HTH︸ ︷︷ ︸
A

s− 2yTH︸ ︷︷ ︸
aT

s

∂JLS(s,y)
∂s = 2HTHs−2HTy = 0 ⇒ sLS = argmin

s
JLS(s,y) = (HTH)−1HTy

Backprojection (poor man’s solution): s ≈ HTy

Basic reconstruction: least-squares solution
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+Imaging
system

noise         

LS algorithm

OK if H is unitary ⇔ H−1 = HT

y = Hs+ n

ỹ = Hs̃

s s̃

Least-squares fitting criterion: JLS(s̃,y) = ‖y −Hs̃‖2

min
s̃

‖y − ỹ‖2 = min
s

JLS(s,y) (maximum consistency with the data)



Formal linear solution: s = (HTH+ λLTL)−1HTy = Rλ · y

Linear inverse problems (20th century theory)
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Equivalent variational problem

s� = argmin ‖y −Hs‖22︸ ︷︷ ︸
data consistency

+ λ‖Ls‖22︸ ︷︷ ︸
regularization

Interpretation: “filtered” backprojection

R(s) = ‖Ls‖22: regularization (or smoothness) functional

L: regularization operator (i.e., Gradient)

Formal linear solution: s = (HTH+ λLTL)−1HTy = Rλ · y

Andrey N. Tikhonov (1906-1993)

min
s

R(s) subject to ‖y −Hs‖22 ≤ σ2

Dealing with ill-posed problems: Tikhonov regularization

Statistical formulation (20th century)
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sMAP = argmins
1

σ2
‖y −Hs‖22︸ ︷︷ ︸

Data Log likelihood

+ ‖C−1/2
s s‖22︸ ︷︷ ︸

Gaussian prior likelihood

Wiener (LMMSE) solution = Gauss MMSE = Gauss MAP

� L = C
−1/2
s : Whitening filter

Quadratic regularization (Tikhonov)

Linear measurement model: y = Hs+ n

Norbert Wiener (1894-1964)

sTik = argmin
s

(‖y −Hs‖22 + λR(s)
)

with R(s) = ‖Ls‖22
Linear solution : s = (HTH+ λLTL)−1HTy = Rλ · y

n : additive white Gaussian noise (i. i. d.)

s : realization of Gaussian process with zero-mean

and covariance matrix E{s · sT } = Cs



Iterative reconstruction algorithm
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Iterative constrained least-squares reconstruction

JTik(s,y) =
1
2‖y −Hs‖2 + λ

2 ‖Ls‖2

Gradient:
∂JTik(s,y)

∂s
= −s0 + (HTH+ λLTL)s with s0 = HTy

Steepest-descent algorithm

s(k+1) = s(k) + γ
(
s0 − (HTH+ λLTL)̃s(k)

)

Positivity constraint (IC): [̃s(k+1)]i =

{
0, [s(k+1)]i < 0

[s(k+1)]i, otherwise.
(projection on convex set)

Generic minimization problem: sopt = argmin
s

J(s,y)

Steepest-descent solution

s(k+1) = s(k) − γ∇J
(
s(k),y

)

Iterative deconvolution: unregularized case
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Degraded image:  
Gaussian blur + additive noise

van Cittert animation

Ground truth



Effect of regularization parameter
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Degraded image: 
Gaussian blur + additive noise

not enough: λ=0.02 not enough: λ=0.2

too much: λ=20Optimal regularization: λ=2 too much: λ=200

Selecting the regularization operator
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TRS-invariant regularization functional

‖∇s‖2L2(Rd) = ‖(−Δ)
1
2 s‖2L2(Rd)

Fractional Brownian motion field

Statistical decoupling/whitening: (−Δ)
γ
2 s = w ←→ 1

|ω|γ spectral decay

Translation, rotation and scale-invariant operators

Laplacian: Δs = (∇T∇)s ←→ −‖ω‖2ŝ(ω)

Modulus of gradient: |∇s|

Fractional Laplacian: (−Δ)
γ
2 ←→ ‖ω‖γ ŝ(ω)

⇒ L: discrete version of gradient



Relevance of self-similarity for bio-imaging
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■ Fractals and physiology

Designing fast reconstruction algorithms
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Formal linear solution: s = (A+ λLTL)−1HTy = Rλ · y

Generic form of the iterator: s(k+1) = s(k) + γ
(
s0 − (A+ λLTL)s(k)

)
Normal matrix: A = HTH (symmetric)

Recognizing structured matrices

L: convolution matrix ⇒ LTL: symmetric convolution matrix

L, A: convolution matrices ⇒ (A+ λLTL) : symmetric convolution matrix

Fast implementation

Diagonalization of convolution matrices ⇒ FFT-based implementation

Applicable to: - deconvolution microscopy (Wiener filter)
- parallel rays computer tomography (FBP)
- MRI, including non-uniform sampling of k-space



29

Part 3:  

Sparsity-based 
image reconstruction
(2nd generation)  
 

Linear inverse problems: Sparsity
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(Figuereido et al., Daubechies et al. 2004)

(Rudin-Osher, 1992)

(Candes-Romberg-Tao; Donoho, 2006)Compressed sensing/sampling

srec = argmin
s

(‖y −Hs‖22 + λR(s)
)

Wavelet-domain regularization
v = W−1s: wavelet expansion of s (typically, sparse)

R(s) = ‖v‖�1

Total variation
R(s) = ‖Ls‖�1 with L: gradient

(20th Century) p = 2 −→ 1 (21st Century)

Non-quadratic regularization regularization

R(s) = ‖Ls‖2�2 −→ ‖Ls‖p�p −→ ‖Ls‖�1



Sparsifying transforms
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Biomedical images are well described by few basis coefficients

Prior =
sparse 

representation

Advantages:
• convex
• favors sparse 

solutions
• Fast: WFISTA

(Guerquin-Kern IEEE TMI 2011)

R(s) = λ
∥∥WT s

∥∥
1

Theory of compressive sensing
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[Donoho et al., 2005
     Candès-Tao, 2006, ...]

Formulation of ill-posed recovery problem when 2K < Ny � Nx

(P0) min
x

‖y −Ax‖22 subject to ‖x‖0 ≤ K

Generalized sampling setting (after discretization)

Linear inverse problem: y = Hs+ n

Sparse representation of signal: s = Wx with ‖x‖0 = K � Nx

Ny ×Nx system matrix : A = HW

Theoretical result

Under suitable conditions on A (e.g., restricted isometry), the solution is unique

and the recovery problem (P0) is equivalent to:

(P1) min
x

‖y −Ax‖22 subject to ‖x‖1 ≤ C1



Compressive sensing (CS) and l1 minimization 
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y A x

Sparse representation of signal: s = Wx with ‖x‖0 = K � Nx

Equivalent Ny ×Nx sensing matrix : A = HW

+    “noise”

[Donoho et al., 2005
     Candès-Tao, 2006, ...]

Constrained (synthesis) formulation of recovery problem

min
x

‖x‖1 subject to ‖y −Ax‖22 ≤ σ2

Classical regularized least-squares estimator
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= HTa =

M∑
m=1

amhm where a = (HHT + λIM )−1y

Lemma

(HTH+ λIN )−1HT = HT (HHT + λIM )−1

xLS = arg min
x∈RN

‖y −Hx‖22 + λ‖x‖22

⇒ xLS = (HTH+ λIN )−1HTy

Interpretation: xLS ∈ span{hm}Mm=1

Linear measurement model:

ym = 〈hm,x〉+ n[m], m = 1, . . . ,M

System matrix : H = [h1 · · ·hM ]T ∈ R
N×N



Generalization: constrained l2  minimization
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Example: Cy = {z ∈ R
M : ‖y − z‖22 ≤ σ2}

Discrete signal to reconstruct: x = (x[n])n∈Z

Sensing operator H : �2(Z) → R
M

x �→ z = H{x} = (〈x, h1〉, . . . , 〈x, hM 〉) with hm ∈ �2(Z)

Closed convex set in measurement space: C ⊂ R
M

Representer theorem for constrained �2 minimization

(P2) min
x∈�2(Z)

‖x‖2�2 s.t. H{x} ∈ C

The problem (P2) has a unique solution of the form

xLS =
M∑

m=1

amhm = H∗{a}

with expansion coefficients a = (a1, · · · , aM ) ∈ R
M .

(U.-Fageot-Gupta IEEE Trans. Info. Theory, Sept. 2016) 

Constrained l1 minimization
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(U.-Fageot-Gupta IEEE Trans. Info. Theory, Sept. 2016) 

Representer theorem for constrained �1 minimization

(P1) V = arg min
x∈�1(Z)

‖x‖�1 s.t. H{x} ∈ C

is convex, weak*-compact with extreme points of the form

xsparse[·] =
K∑

k=1

akδ[· − nk] with K = ‖xsparse‖0 ≤ M .

V
If CS condition is satisfied,

then solution is unique

⇒  sparsifying effect
Discrete signal to reconstruct: x = (x[n])n∈Z

Sensing operator H : �1(Z) → R
M

x �→ z = H{x} = (〈x, h1〉, . . . , 〈x, hM 〉) with hm ∈ �∞(Z)

Closed convex set in measurement space: C ⊂ R
M



Controlling sparsity
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Measurement model: ym = 〈hm, x〉+ n[m], m = 1, . . . ,M
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a): Sparse model

Conv.
DCT
CS

xsparse = arg min
x∈�1(Z)

(
M∑

m=1

∣∣ym − 〈hm, x〉∣∣2 + λ‖x‖�1
)

Geometry of l2 vs. l1 minimization
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Prototypical inverse problem

min
x

{‖y −Hx‖2�2 + λ ‖x‖2�2
} ⇔ min

x
‖x‖�2 subject to ‖y −Hx‖2�2 ≤ σ2

min
x

{‖y −Hx‖2�2 + λ ‖x‖�1
} ⇔ min

x
‖x‖�1 subject to ‖y −Hx‖2�2 ≤ σ2

x2

x1

�2-ball: |x1|2 + |x2|2 = C2

�1-ball: |x1|+ |x2| = C1

C y1 = hT
1 x

y

2σ



Geometry of l2 vs. l1 minimization
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Prototypical inverse problem

min
x

{‖y −Hx‖2�2 + λ ‖x‖2�2
} ⇔ min

x
‖x‖�2 subject to ‖y −Hx‖2�2 ≤ σ2

min
x

{‖y −Hx‖2�2 + λ ‖x‖�1
} ⇔ min

x
‖x‖�1 subject to ‖y −Hx‖2�2 ≤ σ2

x2

x1

�2-ball: |x1|2 + |x2|2 = C2

�1-ball: |x1|+ |x2| = C1

C y1 = hT
1 x

sparse extreme points

Configuration for non-unique �1 solution

Variational-MAP formulation of inverse problem
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Linear forward model
y = Hs+ n

Reconstruction as an optimization problem

srec = argmin ‖y −Hs‖22︸ ︷︷ ︸
data consistency

+ λ‖Ls‖pp︸ ︷︷ ︸
regularization

, p = 1, 2

− log Prob(s) :  prior likelihood

noise

H n
s



Discretization of reconstruction problem
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u = Ls (matrix notation)
Ls = w

s = L−1w
Discretization

pU is part of infinitely divisible family

Spline-like reconstruction model: s(r) =
∑
k∈Ω

s[k]βk(r) ←→ s = (s[k])k∈Ω

y = y0 + n = Hs+ n n: i.i.d. noise with pdf pN

Unser and Tafti
An Introduction to 
Sparse Stochastic Processes

Statistical innovation model

Physical model: image formation and acquisition

ym =

∫
Rd

s(x)ηm(x)dx+ n[m] = 〈s, ηm〉+ n[m], (m = 1, . . . ,M)

Posterior probability distribution

42

pS|Y (s|y) =
pY |S(y|s)pS(s)

pY (y)
=

pN
(
y −Hs

)
pS(s)

pY (y)

=
1

Z
pN (y −Hs)pS(s)

(Bayes’ rule)

u = Ls ⇒ pS(s) ∝ pU (Ls) ≈ ∏
k∈Ω pU

(
[Ls]k

)

... and then take the log and maximize ...

Additive white Gaussian noise scenario (AWGN)

pS|Y (s|y) ∝ exp

(
−‖y −Hs‖2

2σ2

) ∏
k∈Ω

pU
(
[Ls]k

)

Statistical decoupling



General form of MAP estimator
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Sparser

sMAP = argmin
(

1
2 ‖y −Hs‖22 + σ2

∑
n ΦU ([Ls]n)

)

Gaussian: pU (x) = 1√
2πσ0

e−x2/(2σ2
0) ⇒ ΦU (x) =

1
2σ2

0
x2 + C1

Laplace: pU (x) = λ
2 e

−λ|x| ⇒ ΦU (x) = λ|x|+ C2

Student: pU (x) =
1

B
(
r, 1

2

) ( 1

x2 + 1

)r+ 1
2

⇒ ΦU (x) =
(
r +

1

2

)
log(1 + x2) + C3

�4 �2 0 2 4
0

1

2

3

4

5

Potential: ΦU (x) = − log pU (x)

Proximal operator: pointwise denoiser
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�4 �2 0 2 4
0

1

2

3

4

5

�4 �2 0 2 4

�3

�2

�1

0

1

2

3

σ2ΦU (u)

� linear attenuation
■ soft-threshold
■ shrinkage function 

≈ �p relaxation for p → 0

�2 minimization

�1 minimization



Maximum a posteriori (MAP) estimation
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Auxiliary innovation variable: u = Ls

Constrained optimization formulation

sMAP = arg min
s∈RK

(
1

2
‖y −Hs‖22 + σ2

∑
n

ΦU

(
[u]n

))
subject to u = Ls

LA(s,u,α) =
1

2
‖y −Hs‖22 + σ2

∑
n

ΦU ([u]n) +αT (Ls− u) +
μ

2
‖Ls− u‖22

(Bostan et al. IEEE TIP 2013)

Alternating direction method of multipliers (ADMM)
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Linear inverse problem:

Nonlinear denoising:

sk+1 ← arg min
s∈RN

LA(s,uk,αk)

�4 �2 0 2 4

�3

�2

�1

0

1

2

3

Sequential minimization

Proximal operator taylored to stochastic model

proxΦU
(y;λ) = argmin

u

1

2
|y − u|2 + λΦU (u)

αk+1 = αk + μ
(
Lsk+1 − uk

)

sk+1 =
(
HTH+ μLTL

)−1 (
HTy + zk+1

)
with zk+1 = LT

(
μuk −αk

)
uk+1 = proxΦU

(
Lsk+1 + 1

μα
k+1; σ2

μ

)

LA(s,u,α) =
1

2
‖y −Hs‖22 + σ2

∑
n

ΦU ([u]n) +αT (Ls− u) +
μ

2
‖Ls− u‖22
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Deconvolution in widefield microscopy
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Physical model of a diffraction-limited microscope

g(x, y, z) = (h3D ∗ s)(x, y, z)

3-D point spread function (PSF)

h3D(x, y, z) = I0
∣∣pλ ( x

M , y
M , z

M2

)∣∣2

pλ(x, y, z) =

∫
R2

P (ω1, ω2) exp

(
j2πz

ω2
1 + ω2

2

2λf2
0

)
exp

(
−j2π

xω1 + yω2

λf0

)
dω1dω2

Optical parameters
λ: wavelength (emission)

M : magnification factor

f0: focal length

P (ω1, ω2) = ‖ω‖<R0
: pupil function

NA = n sin θ = R0/f0: numerical aperture

2-D (in focus) convolution model
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g(x, y) = (h2D ∗ s)(x, y)s(x, y)
Thin specimen

Radial profile

Cut-off frequency (Rayleigh): ω0 = 2R0

λf0
= π

r0
≈ 2NA

λ

Modulation transfer function

∣∣∣ĥ2D(ω)
∣∣∣ =

⎧⎪⎨
⎪⎩

2
π

(
arccos

(
‖ω‖
ω0

)
− ‖ω‖

ω0

√
1−

(
‖ω‖
ω0

)2
)
, for 0 ≤ ‖ω‖ < ω0

0, otherwise

Airy disk: h2D(x, y) = I0

∣∣∣2J1(r/r0)
r/r0

∣∣∣2, with r =
√

x2 + y2

J1(r): first-order Bessel function, and r0 = λf0
2πR0

Optical parameters
λ: wavelength (emission)

f0: focal length

R0: radius of aperture

h2D(x, y)

h2D(x, y)
∣∣∣ĥ2D(ω)

∣∣∣



2-D deconvolution: numerical set-up

49

H and L: convolution matrices diagonalized by discrete Fourier transform

Linear step of ADMM algorithm implemented using the FFT

sk+1 =
(
HTH+ μLTL

)−1 (
HTy + zk+1

)
with zk+1 = LT

(
μuk −αk

)

Analysis functions (impulse response): ηm(x, y) = h2D(x−m1, y −m2)

[H]m,k = 〈ηm, βk〉 = 〈ηm, sinc(· − k)〉
= 〈h2D(· −m), sinc(· − k)〉
=
(
sinc ∗ h2D

)
(m− k) = h2D(m− k).

Discretization

ω0 ≤ π and representation in (separable) sinc basis

βk(x) = sinc(x− k) with k ∈ Z
2

 

Astrocytes cells Bovine pulmonary artery cells Human embryonic stem cells

Gaussian Estimator Laplace Estimator Student’s Estimator
Astrocytes cells 12.18 10.48 10.52
Pulmonary cells 16.9 19.04 18.34
Stem cells 15.81 20.19 20.5

Deconvolution results (SNR in dB)

2D deconvolution experiment

50

Disk-shaped PSF (7× 7), L: gradient (TV-like), optimized parameters



3D deconvolution of a widefield stack
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C. Elegans embryo. 3 stacks obtained by a Olympus CellR. Pixel size: 64.5 nm, Z-step: 200 nm (3.1 ratio)

XY

XZ

ZY

PSF from an analytical model (see PSF Generator). Deconvolution with GlobalBioIm.

XY

XZ

ZY

 
3D deconvolution of a widefield stack
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s = arg min
s∈RK

(
1

2
‖y − SHs‖22 + λ

∥∥Ls∥∥
2,1

+ δRK
+
(s)

)

Practical considerations

H (convolution) and L (gradient) as explained

S: patch extraction / masking (remove padding of the FFT implementation)

‖ · ‖2,1: group-sparse norm for isotropic TV

δRK
+
: R → {0,∞}: flurophore concentrations are not negative

and more...

implementing proximal optimization is hard

memory management, convergence criteria, GPU?

efficient implementations of linear operators

beyond ADMM...? Trying different splittings?

GlobalBioIm
A unifying Matlab 
library for imaging 
inverse problems



 
GlobalBioIm 
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Three main abstract classes:

Linear operators (LinOp)

Cost functions (Cost)

Optimization algorithms (Opti)

=⇒
inheritance

LinOpConv, LinOpGrad, LinOpHess, LinOpXRay, ...

CostL2, CostL1, CostMixNorm12, CostNonNeg, ...

OptiADMM, OptiChambPock, OptiGradDsct, ...

Packaged with everything needed

Operators: efficient implementations of Hx, H∗y, H∗Hx, norm, ...

Cost functions: gradient, prox, Lipschitz constant, ...

Optimization algorithms: automagically use all of the above for pain-free prototyping.

 
3D deconvolution of a widefield stack
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s = arg min
s∈RK

(
1

2
‖y − SHs‖22 + λ

∥∥Ls∥∥
2,1

+ δRK
+
(s)

)
ADMM with 3-way splitting

u1 = Hs, u2 = Ls and u3 = s

LA
(
s, {un}3n=1 , {αn}3n=1

)
=

1

2
‖y − Su1‖22 + λ ‖u2‖2,1 + δRK

+
(u3)

+α1
T (Hs− u1) +

μ1

2
‖Hs− u1‖22

+α2
T (Ls− u2) +

μ2

2
‖Ls− u2‖22

+α3
T (s− u3) +

μ3

2
‖s− u3‖22

min
s∈RN

LA
(
s,
{
uk
n

}3
n=1

,
{
αk

n

}3
n=1

)
in Fourier.



https://biomedical-imaging-group.github.io/GlobalBioIm/



Differential phase-contrast tomography
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Mathematical model

x 1
x2

θ
θ
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phase grating absorption grating
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erf
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�xg(y, θ)

xg

CCD

(Pfeiffer, Nature 2006)

Paul Scherrer Institute (PSI), Villigen

[H](i,j),k =
∂

∂t
Pθjβk(tj)

y(t, θ) =
∂

∂t
Rθ{s}(t)

y = H s

Reducing the numbers of views
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Rat brain reconstruction with 181 projections

ADMM-PCG g-FBP

SSIM = .96 

SSIM = .95 

SSIM = .89 

SSIM = .49 

SSIM = .51 

SSIM = .60 

SSIM = .43 

SSIM = .15 

Collaboration: Prof. Marco Stampanoni, TOMCAT PSI / ETHZ

(Nichian et al. Optics Express  2013)



Performance evaluation

59

361 181 91 46 230
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(a) (b)

⇒  Reduction of acquisition time by a factor 10 (or more) ?

Goldstandard: high-quality iterative reconstruction with 721 views

Compressed sensing: Applications in imaging
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- Magnetic resonance imaging (MRI) 

- Radio Interferometry

(Lustig, Mag. Res. Im. 2007)

- Teraherz Imaging

(Wiaux, Notic. R. Astro. 2007)

(Chan, Appl. Phys. 2008)

- Digital holography (Brady, Opt. Express 2009; Marim 2010)

- Spectral-domain OCT (Liu, Opt. Express 2010) 

- Coded-aperture spectral imaging (Arce, IEEE Sig. Proc. 2014) 

- Localization microscopy (Zhu, Nat. Meth. 2012) 

- Ultrafast photography (Gao, Nature 2014) 



consistency prior constraints algorithmic 
coupling

Physical model Statistical model of signal

Repeat

x(n) = argmin
x

J(x,u(n−1)):

u(n) = argmin
u

J(x(n),u):

until stop criterion

Linear step (problem specific)

Statistical or “denoising” step
Niter

Schematic structure of reconstruction algorithm:

J(x,u) =
1

2
‖y −Hx‖22︸ ︷︷ ︸ + λR(u)︸ ︷︷ ︸ + μ‖Lx− u‖22

Conceptual summary of 2nd generation methods

61

Inverse problems in imaging: Current status 

62

Higher reconstruction quality: Sparsity-promoting schemes almost sys-

tematically outperform the classical linear reconstruction methods in MRI,

x-ray tomography, deconvolution microscopy, etc...

Outstanding research issues

Increased complexity: Resolution of linear inverse problems using �1

regularization requires more sophisticated algorithms (iterative and non-

linear); efficient solutions (FISTA, ADMM) have emerged during the past

decade.

(Candes-Romberg-Tao; Donoho, 2006)

(Chambolle 2004; Figueiredo 2004; Beck-Teboule 2009; Boyd 2011)

(Lustig et al. 2007)

Faster imaging, reduced radiation exposure: Reconstruction from a

lesser number of measurements supported by compressed sensing.

Beyond �1 and TV: Connection with statistical modeling & learning

Beyond matrix algebra: Continuous-domain formulation (Unser, SIAM Rev 2017)
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Part 4:  

The (deep) learning (r)evolution

⇒ Emergence of 3rd generation methods  
 
 

Learning within the current paradigm
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Data-driven tuning of parameters: λ, calibration of forward model

Semi-blind methods, sequential optimization

Learning of non-linearities / Proximal operators

CNN-type parametrization, backpropagation

(Elad 2006, Ravishankar 2011, Mairal 2012)  

(Chen-Pock 2015-2016, Kamilov 2016)  

⇒ “optimal” L

⇒ “optimal” potential Φ

Improved decoupling/representation of the signal

Data-driven dictionary learning
(based of sparsity or statistics/ICA)



Linear step

   Nonlinear step

ADMM

sk+1 =
(
HTH+ μLTL

)−1 (
z0 + zk+1

)
with zk+1 = LT

(
μuk −αk

)
αk+1 = αk + μ

(
Lsk+1 − uk

)
≈   “denoising” of u

For k = 0, . . . ,K

LA(s,u,α) =
1

2
‖y −Hs‖22 + λ

∑
n

|[u]n|+αT (Ls− u) +
μ

2
‖Ls− u‖22

Structure of iterative reconstruction algorithm
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ssparse = arg min
s∈RK

(
1

2
‖y −Hs‖22 + λ‖u‖1

)
subject to u = Ls

uk+1 = prox|·|
(
Lsk+1 + 1

μα
k+1; λ

μ

)

Connection with deep neural networks
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LISTA : learning-based ISTA

FBPConvNet structures

ISTA with sparsifying transformation

 X

Unrolled Iterative Shrinkage Thresholding Algorithm (ISTA)

(Gregor-LeCun 2010) 



Recent appearance of Deep ConvNets
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CT reconstruction based on Deep ConvNets

Input: Sparse view FBP reconstruction

Training: Set of 500 high-quality full-view CT reconstructions

Architecture: U-Net with skip connection (Jin et al., IEEE TIP 2017)

(Jin et al. 2016; Adler-Öktem 2017; Chen et al. 2017; ... )

Dose reduction by 7: 143 views

 Reconstructed from
from 1000 views

CT data  



Dose reduction by 7: 143 views

 Reconstructed from
from 1000 views

CT data  

2019 Best Paper Award
IEEE Signal Processing Society

(Jin et al., IEEE Trans. Im Proc., 2017)

Dose reduction by 20: 50 views

 Reconstructed from
from 1000 views

CT data  

(Jin-McCann-Froustey-Unser, IEEE Trans. Im Proc., 2017)



Dose reduction by 14: 51 viewsμCT data  

 Reconstructed from
from 721 views

CNN algorithms: Conditions of utilization
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Application niches

Denoising

Super-resolution (data extrapolation)

Standard “regression” setting

Mapping of an image into an image

Use of CNN to emulate/speedup some well-performing, but “slow”,

reference reconstruction methods

fθ : RN → R
N : y �→ s = fθ(y)

Fundamental change of paradigm

Requires extensive sets of representative training data
together with gold-standards = desired high-quality reconstruction

Reconstruction from fewer measurements
(trained on high-quality full-view data sets)



Design of CNN algorithms: General principles
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Data preparation

Connection with second-generation methods

⇒ Use of feedforward CNN to correct artifacts of first-generation methods

Backprojection or classical linear reconstruction

Conceptual: unrolling to justify deep architecture

Training

Choice of suitable cost: SNR or perceptual loss

Availability of extensive data set: (sk,yk), k = 1, . . . ,K

Use of data augmentation: translations, rotations, deformations

Hybrid methods (“plug & play”):

Enforce consistency, while using CNN as “regularizer” or projector
(Tezcan…Konukoglu, IEEE TMI 2018)

(Gupta…Unser, IEEE TMI 2018)

Deep CNNs for bioimage reconstruction images 
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- Magnetic resonance imaging (MRI) 

(Jin…Unser, IEEE TIP 2017)

- Dynamic MRI (cardial imaging)

(Hammernik…Pock, Mag Res Med 2018 )

(Schlemper…Rueckert, IEEE TMI 2018)

- 2D microscopy (Rivenson…Ozcan, Optica 2017)

- Diffraction tomography

- Super-resolution microscopy (Nehme…Shechtman, Optica 2018) 

- 3D fluorescence microscocopy

(Sun…Kamilov, Optics Express 2018) 

- Ultrasound (Yoon…Ye, IEEE TMI 2019) 

- X-ray tomography 

(Tezcan…Konukoglu, IEEE TMI 2018 )

(Chen…Wang, Biomed Opt. Exp 2017)

(Hauptmann…Arridge, Mag Res Med 2019)

(Weigert…Jug, Myers, Nature Meth. 2018)



Example: MRI reconstruction

Hammernik, Kerstin, et al. “Learning a variational network for reconstruction of accelerated MRI data”,
 Magnetic Resonance in Medicine 79.6 (2018): 3055-3071.

Group of Thomas Pock, Univ. Graz

(Hauptmann et al., Mag Res Med 2019)

Group of Simon Arridge, UCL
Example: Dynamic MRI reconstruction



Example: Axial super-resolution in  
                3D fluorescence microscopy

Weigert et al. "Isotropic reconstruction of 3D fluorescence microscopy images using convolutional 
neural networks”, MICCAI, 2017.

Group of Florian Jug, Max Planck, Desden

LETTER
doi:10.1038/nature25988

Image reconstruction by domain-transform 
manifold learning
Bo Zhu1,2,3, Jeremiah Z. Liu4, Stephen F. Cauley1,2, Bruce R. Rosen1,2 & Matthew S. Rosen1,2,3

Image reconstruction is essential for imaging applications across 
the physical and life sciences, including optical and radar systems, 
magnetic resonance imaging, X-ray computed tomography, 
positron emission tomography, ultrasound imaging and radio 
astronomy1–3. During image acquisition, the sensor encodes an 
intermediate representation of an object in the sensor domain, 
which is subsequently reconstructed into an image by an inversion 
of the encoding function. Image reconstruction is challenging 
because analytic knowledge of the exact inverse transform may not 
exist a priori, especially in the presence of sensor non-idealities 
and noise. Thus, the standard reconstruction approach involves 
approximating the inverse function with multiple ad hoc stages in 
a signal processing chain4,5, the composition of which depends on 
the details of each acquisition strategy, and often requires expert 
parameter tuning to optimize reconstruction performance. Here 
we present a unified framework for image reconstruction—
automated transform by manifold approximation (AUTOMAP)—
which recasts image reconstruction as a data-driven supervised 
learning task that allows a mapping between the sensor and the 
image domain to emerge from an appropriate corpus of training 
data. We implement AUTOMAP with a deep neural network and 
exhibit its flexibility in learning reconstruction transforms for 
various magnetic resonance imaging acquisition strategies, using 
the same network architecture and hyperparameters. We further 
demonstrate that manifold learning during training results in 
sparse representations of domain transforms along low-dimensional 
data manifolds, and observe superior immunity to noise and a 
reduction in reconstruction artefacts compared with conventional 
handcrafted reconstruction methods. In addition to improving the 
reconstruction performance of existing acquisition methodologies, 
we anticipate that AUTOMAP and other learned reconstruction 
approaches will accelerate the development of new acquisition 
strategies across imaging modalities.

Inspired by the perceptual learning archetype, we describe here 
a data-driven unified image reconstruction approach, which we 
call AUTOMAP, that learns a reconstruction mapping between the 
 sensor-domain data and image-domain output (Fig. 1a). As this map-
ping is trained, a low-dimensional joint manifold of the data in both 
domains is implicitly learned (Fig. 1b), capturing a highly expressive 
representation that is robust to noise and other input perturbations.

We implemented the AUTOMAP unified reconstruction framework 
with a deep neural network feed-forward architecture composed of 
fully connected layers followed by a sparse convolutional autoencoder 
(Fig. 1c). The fully connected layers approximate the between-manifold 
projection from the sensor domain to the image domain. The convo-
lutional layers extract high-level features from the data and force the 
image to be represented sparsely in the convolutional-feature space. 
Our network operates similarly to the denoising autoencoder described 
previously10, but rather than finding an efficient representation of the 
identity to map φ φ= =−�f x x x( ) ( )x x

1  over the manifold of inputs X  
(where φx maps the intrinsic coordinate system of X  to Euclidean space 
near x), AUTOMAP determines both a between-manifold projection 
g from X  (the manifold of sensor inputs) to Y  (the manifold of output 
images), and a manifold mapping φy to project the image from manifold 
Y  back to the representation in Euclidean space. A composite inverse 
transformation φ φ= −� �f x g x( ) ( )y x

1  over the joint manifold MX,Y = 
×X Y  (Fig. 1b) is achieved. A full mathematical description of this 

manifold learning process is detailed in Methods.
In contrast to previous efforts that use neural networks to solve 

inverse functions11–13, our approach searches for an inverse that best 
represents the data in a low-dimensional feature space determined by 
manifold learning as well as the trained sparse convolutional filters. 
Furthermore, AUTOMAP solves a generalized reconstruction  problem 
and thus differs from work using neural networks to implement a 
 specific image reconstruction task14–17. These previous approaches 
use known properties of the canonical domain transform to formulate 

Nature, March 2018

Complex
sensor data

n

n

FC1
2n2

FC2
n2

FC3
n2 → n × n

C1
m1 × n × n C2

m2 × n × n

Image
n × n

Conv. Conv. Deconv.
c

Learning the complete sensor-to-image map, including the physics !

128 × 128

Fundamental limitation: O(n2d) memory requirement ⇒ Does not scale well !

AUTOMAP



Compressed 
Sensing

Deep Network

Ground-Truth

Deep networks can behave erratically (instability)

V. Antun, F. Renna, C. Poon, B. Adcock, A.C. Hansen, “On instabilities of deep learning in image 
reconstruction - Does AI come at a cost?”, preprint arXiv:1902.05300. 

Tiny adversarial perturbations of increasing strength

State-of-the-art

Conclusion: Frontiers in bioimage reconstruction
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How does one assess reconstruction quality ?

Should be “task oriented”!!!

Development of more realistic simulators
both “ground truth” images + physical forward model

Can we trust the results ?

True 3D CNN toolbox (still missing)

Faster, higher-resolution, lower-dose imaging

Opportunities for learning-based techniques

Infrastructure requirements

How the newer methods profit from the older ones

Important open issues

Extensive database of high-quality data (including goldstandard)

Improving the stability of CNNs

Theory to guide the design: What is the optimal architecture ?

Theory to explain the regularization effect of CNNs, and their ability to generalize
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