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Inverse problems in bio-imaging

m Linear forward model y=Hs+n

Integral operator

S Problem: recover s from noisy measurements y

m The easy scenario

Inverse problem is well

Basic limitations
1) Iqhgrent noise amplification
:23‘)) ADlllf::::tL;lrtg tq in\{ert H (too large or non-square)
sting inverse problems are ill-posed

= s~Hly

m Backprojection (g

T —

Part 1:

Setting up
the problem




Forward imaging model (noise-free)

Unknown molecular/anatomical map: s(r),r = (z,y, z,t) € R?

defined over a continuum in space-time
s € Lo(R?) (space of finite-energy functions)

Imaging operator H : s — y = (y1, -+ ,yn) = H{s}

from continuum to discrete (finite dimensional)

H: Ly(RY) — RM

Molecular Imaging

Linearity assumption: for all 51, s5 € La(R?), a1, a0 € R

H{oqsl + 04282} = OélH{Sl} + OéQH{SQ}

/ impulse response of mth detector

= W == () = [ (s

(by the Riesz representation theorem) 5




Basic operator: Fourier transform

F: Ly(RY) — Ly(RY)

fw)=F{f}w) = y flz)e i@ ™ dg

Reconstruction formula (inverse Fourier transform)

f(@) = F ) = —

Gy o flw)e? ) dw (a.e.)

Equivalent analysis functions: 7,,(x) = ¢/{(“=® (complex sinusoids)

2D Fourier reconstruction

Original image: Reconstruction using NV largest coefficients:
~ 1 X .
_ E : (m,w)
f(m) f(il?) - (27'[')2 f(w)e] i

subset



Magnetic resonance imaging

Frequency encode:

m Magnetic resonance: wg = By AT
/E N\
e z Wo = WO(CU) \ k
Tt ="
e X -

‘\*\{, I l l | . LS
m Linear forward model for MRI r=(z,vy,2)
§(wm) :/ s(r)e I wn ) dp (sampling of Fourier transform)
R3

m Extended forward model with coil sensitivity

§w(wm):/ w(r)s(r)e_j<“’m’r>dr
RS

Basic operator: Windowing

W : Ly(R?) — Ly(R?)
W{/}H(z) = w(z)f(x)
Positive window function (continuous and bounded): w € C},(R?), w(x) > 0

m Special case: modulation
w(rr) — ej((do,"’>

e (wom) £ () PN f(w —wp)

Application: Structured illumination microscopy (SIM)



Basic operator: Convolution

H: Ly(RY) — Ly(RY)

(s} @) = (s @) = | e =) rw)dy
Impulse response:  h(x) = H{5}
Equivalent analysis functions: 1, () = h(m, — -)
Frequency response:  h(w) = F{11}(w)

m Convolution as a frequency-domain product

(h* f)(x) =  h(w)f(w)

Modeling of optical systems

f(z,y)

1 ! ﬂj g(:v,y):(h*f)(x,y)
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h(x,y): Point Spread Function (PSF)

Diffraction-limited optics = LSI system

m Aberation-free point spread function (in focal plane)

h(z,y) = h(r) = C- [

r

where r = /x2 + y?2 (radial distance)

m Effect of misfocus

Point source output

(in focus) (defocus)

2.J3 (w)] 2 Airy disk

Radial profile

12



Basic operator: X-ray transform

Projection geometry: x = t0 + r6= with @ = (cos 6, sin )

)
’\S
N

m Radon transform (line integrals) ‘ﬁ y

Ro{s(x)}(t) = / s(t0 + @+ )dr \'§
0

—_

_ /R s(@)é(t — (z,0))de \\

sinogram

Equivalent analysis functions:  7,,,(x) = 6 (t, — (x,0,,))
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Central slice theorem

m Measurements of line integrals (Radon transform) Q
QQ
po(t) =Re {f} (¢, 0)
m 1D and 2D Fourier transforms I
Po(w) = Fin{pe}(w) Fourier iransform

F@) = Fan{ 1) = foo(w,0) .

m Central-slice theorem ©)

AN
N .

po(w) = f(w cosf, wsinf) = fpol(w,ﬁ)

Proof: for8 =0
. +oo +oo ) +oo +oo )
fo0 = [ [ st sy = [ ( | s dy) ¢4 dz = fo(w)

— o0
v~

Po ()

[\

then use rotation property of Fourier transform. ..
14



Modality Radiation Forward model Variations
2D or 3D
_ parallel,
tomography coherent x-ray yi = Ro,x cone beam, spiral sampling
3D deconvolution —H brightfield, confocal
. = Hx ’ ’
microscopy fluorescence Y light sheet
yi = HW,x full 3D reconstruction,

structured illumination
microscopy (SIM)

fluorescence

H: PSF of microscope
W, illumination pattern

non-sinusoidal patterns

Positron Emission . —H list mode
amma rays = Mg, T
Tomography (PET) 9 y Yi with time-of-flight
Magnetic resonance ; — iform or non-uniform
S radio frequency y=Fzx unifo
imaging (MRI) sampling in k space
Cardiac MR Yt = Fe Wiz gated or not,

(parallel, non-uniform)

radio frequency

W, coil sensitivity

retrospective registration

Optical diffraction
tomography

coherent light

yi = W, Fix

with holography
or grating interferometry

Discretization: Finite dimensional formalism
s(r) = > sklBk(r)

keQ

of dimension K

Signal vector: s = (s[k]),

m Measurement model (image formation)
Ym = / s(r)nm(r)dr +nlm| = (s,nm) + njm|], (m=1,...,M)
R4
N Sampling/imaging function (mth detector)

n[-]: additive noise

y=yYo+n=Hs+n

(M x K) system matrix : H]mk = Nm, Br) = / N (T) Br (7)dr

Rd

16



Example of basis functions

Shift-invariant representation: Sy (x) = f(x — k)
d
Separable generator: 5(x) = H B(zy,)
n=1

m Pixelated model . .
08 tri(z) = §°(z)
B(x) = rect(x) 06
0.4
0.2

m Bilinear model -2 -1 0 1 2 3

B(z) = (rect x rect)(x) = tri(z)

m Bandlimited representation

B(z) = sinc(x)

17

Part 2:

Classical image
reconstruction

Discretized forward model: y=Hs+ n

Inverse problem: How to efficiently recover s fromy ?

18



Vector calculus

m Scalar cost function J(v) : RY — R

8J/8’U1
. - aJ(v) . :
m Vector differentiation: Sy : =VJ(v) (gradient)

v .
8J/8vN

m Necessary condition for an unconstrained optimum (minimum or maximum)

0J(v)
ov

=0 (also sufficient if J(v) is convex in v)

m Useful identities

0 0

v (a’v) = v (via)=a

(% (vIAv) = (A+A") v

% (vTAv) =2A v if A is symmetric

Basic reconstruction: least-squares solution

noise

S i =Hs+n g
Imaging /L y .
> system 1) B . »| LS algorithm _,
""" > . y = H S

m Least-squares fitting criterion:  Jis(S,y) = ||y — HS||?

min ||y — ¥||* = min Jrs(s,y) (maximum consistency with the data)
S S

m Formal least-squares solution

Jus(s,y) = |ly — Hs||* = |vI* + s"H'"Hs — 2y "H3s

—aJL%(SS’Y) = 2HTHs—2HT;

Basic limitations

1) Inherent noise ampiificati
m Backprojection (poor nt 2) Difficulty to invert plification

OK if H is unitary < 3) All interesting inv

T —

19

H (too large or non-square)
erse problems are ill-posed




Linear inverse problems (20th century theory)

m Dealing with ill-posed problems: Tikhonov regularization
R(s) = ||Ls||3: regularization (or smoothness) functional

L: regularization operator (i.e., Gradient)

minR(s) subjectto ||y — Hs|j3 < o?

S

m Equivalent variational problem Andrey N. Tikhonov (1906-1993)

s* = argmin ||y — Hs||5 + A||Ls|3
—_————r  N——

data consistency  regularization
. . L T Ty \N—1g97T,, _
Formal linear solution: s=(H H+ AL'L)" " H'y=R) -y

Interpretation: “filtered” backprojection

21

Statistical formulation (20th century)

m Linear measurement model: y=Hs+n !';:g‘av
n : additive white Gaussian noise (i. i. d.) >
s : realization of Gaussian process with zero-mean (41[

and covariance matrix E{s - s7} = C,
Norbert Wiener (1894-1964)

m Wiener (LMMSE) solution = Gauss MMSE = Gauss MAP

swap = argming —|[ly — Hs3+  |C7"/s|3
—————

A 7
~"

Data Log likelihood Gaussian prior likelihood

¢ L= C;"?: Whitening filter

m Quadratic regularization (Tikhonov)
STik = arg msin (lly — Hs|3 + AR(s)) with R(s) = ||Ls||3

Linear solution: s = (HTH + )\LTL)_1HTy =Ryy

22



Iterative reconstruction algorithm
m Generic minimization problem: s,,; = argmin J(s,y)

m Steepest-descent solution

st = ) 4 77 (s®) )

m lterative constrained least-squares reconstruction

Jrik(s,y) = 5lly — Hs|* + 3| Ls||?

0Jtik(s,y)

Gradient:
radien s

= —so+ (HTH+ \L7L)s with so=H"y

Steepest-descent algorithm

st = s®) 4 y(sg — (HTH + ALTL)5()

0, [s*+D]; <0

[S(Hl)]_ otherwise (projection on convex set)
(2] "

Positivity constraint (IC): [§(*+1)]; = {

23

Iterative deconvolution: unregularized case

150 ~ 16.287 dB _

Degraded image: van Cittert animation
Gaussian blur + additive noise

Ground truth

24



Effect of regularization parameter

Degraded image: not enough: A=0.02 not enough: A=0.2
Gaussian blur + additive noise

Optimal regularization: A=2 too much: A=20 too much: A=200

Selecting the regularization operator

m Translation, rotation and scale-invariant operators
= Laplacian: As = (VIV)s +— —[w|?s(w)
= Modulus of gradient: |V s

X
2

= Fractional Laplacian: (—A) —  Jw]|7$(w)

m TRS-invariant regularization functional

1
IVl ey = (=2)25[|7, gy = L: discrete version of gradient

m Fractional Brownian motion field

= Statistical decoupling/whitening: (—A)zs = w — # spectral decay



Relevance of self-similarity for bio-imaging
= Fractals and physiology

27

Designing fast reconstruction algorithms
Normal matrix: A = H'H  (symmetric)

Formal linear solution: s = (A + A\L'L) " '"H”y =R, -y

Generic form of the iterator: ~ s(*T1) = s(8) + (55 — (A + ALTL)s™)

m Recognizing structured matrices

= L: convolution matrix = L”L: symmetric convolution matrix

= L, A: convolution matrices = (A + ALTL) : symmetric convolution matrix

m Fast implementation

= Diagonalization of convolution matrices = FFT-based implementation

= Applicable to: - deconvolution microscopy (Wiener filter)
- parallel rays computer tomography (FBP)
- MR, including non-uniform sampling of k-space

28



Part 3:

Sparsity-based
iImage reconstruction

(2nd generation)

Linear inverse problems: Sparsity
(20th Century) p=2 — 1 (21st Century)

Srec = argmin ([ly — Hs||3 + AR(s))
m Non-quadratic regularization regularization

R(s) = |[Ls[l7, — [[Ls|[§, — [ILs]l,

= Total variation (Rudin-Osher, 1992)
R(s) = ||Ls||¢, with L: gradient

= Wavelet-domain regularization (Figuereido et al., Daubechies et al. 2004)

v = W™ 1s: wavelet expansion of s (typically, sparse)
R(s) = [[vle

m Compressed sensing/sampling (Candes-Romberg-Tao; Donoho, 2006)

30



Sparsifying transforms

Biomedical images are well described by few basis coefficients

N T ey Prior =
ORI DCT !
107 : T +§§3781%°§£CT§ sSparse .
S ; S owrem | representation

R(s) = A|[|[WTs||,

Normalised MSE
w

ol ~Errormaps G
: Advantages:
. * convex
bl g - favors sparse
. b —70} min=3, max=26 . b solutions
%1% 05% 1% 5% 10% 50%  100% e Fast: WFISTA
Percentage of coefficients kept

(Guerquin-Kern IEEE TMI 2011)
31

Theory of compressive sensing

m Generalized sampling setting (after discretization)

= Linearinverse problem: y =Hs+n

= Sparse representation of signal: s = Wx with ||x]jo = K < N,

= N, x N, system matrix : A = HW

m Formulation of ill-posed recovery problem when 2K < N, < N,

(PO) min|ly — Ax||2 subjectto ||x|o < K

m Theoretical result

Under suitable conditions on A (e.g., restricted isometry), the solution is unique
and the recovery problem (P0) is equivalent to:

(P1) min|ly — Ax||2 subjectto ||x|; < C}
X

[Donoho et al., 2005
Candés-Tao, 20086, ...]

32



Compressive sensing (CS) and /; minimization

[Donoho et al., 2005
A X Candés-Tao, 20086, ...]

l...'-i :m-i
Ez .-'A‘ :||!. + “noise”

na's

Sparse representation of signal: s = Wx with ||x[jo = K < N,

Equivalent N, x N, sensing matrix: A = HW

m Constrained (synthesis) formulation of recovery problem
min ||x||; subjectto |ly — Ax|3 < o?

33

Classical regularized least-squares estimator

= Linear measurement model:
Ym = (b, x) +nlm], m=1,.... M

= Systemmatrix: H = [hy---hy|T € RNVXN

xus = arg min [y — Hx|3 + Alx|3

= x5 =(HH+ \y) 'H'y

M
=H"'a= ) anh, where a=(HH” +I) 'y
m=1

Interpretation: xps € span{h,, }*_,

Lemma
(H'H + \y)'H” = H'(HH” + \I;) !

34



Generalization: constrained /> minimization

= Discrete signal to reconstruct: © = (z[n]),ecz

= Sensing operator H : /5(Z) — RM
x—z=H{z} = ((z,h1),...,{(x, har)) with h,,, € l2(7Z)

= Closed convex set in measurement space: C C RM

Example: Cy = {z € RM : ||y —z|% < %}

Representer theorem for constrained /5 minimization
P2 min ||z||?2 st H{z} eC
(P2) 7 2|7, {z}

The problem (P2) has a unique solution of the form
M
TLs = Z amhy,, = H*{a}
m=1

with expansion coefficients a = (ay,--- ,an) € RM.

(U.-Fageot-Gupta IEEE Trans. Info. Theory, Sept. 2016) ,.

Constrained /; minimization= sparsifying effect

= Discrete signal to reconstruct: x = (z[n])nez

= Sensing operator H : /1(Z) — RM
xw—z=H{z} = ((z,h1),...,{(x, har)) with h,,, € Lo (Z)

= Closed convex set in measurement space: C C RM

Representer theorem for constrained /; minimization
(P1) V =arg min ||, st H{z}e€C
xely(Z)

is convex, weak*-compact with extreme points of the form

K
xsparse['] — Z aké[ - nk] with K = Hl'sparse”O < M.
k=1

If CS condition is satisfied,
then solution is unique

(U.-Fageot-Gupta IEEE Trans. Info. Theory, Sept. 2016)
36



Controlling sparsity

Measurement model: vy, = (b, x) + nfm], m=1,..., M

M
. 2
Tsparse = argxérl}lu(az) (ﬂ; |ym - <hmax>} + )\||37||81>

50 T T T T T L L | T T T T T T T T T
Conv.
T RN --+-DCT ]
40 R -»-CS

Sparsity Index (K)
N
o

37

Geometry of I> vs. [y minimization

m Prototypical inverse problem

min {ly ~ Hx[?, + A[x[2,} < min||x], subjectto [ly — Hx|, <o

min {|ly — Hx|]7, + Alx[l¢, } « min x|, subjectto [y — Hx|]7, <o

_ 1.7
) C Y1 = hl X
7|
N
,l \\
4 A Y
’ N
h ’ 2 “"‘7 L1
~ R
N ,', A ‘LO
\\ ,,
N ’,
Zz-ba”: |.’E1|2 + |JJ2|2 = 02

El-ball: |$1‘ + |.Z‘2| = C1

38



Geometry of I> vs. [y minimization
m Prototypical inverse problem

min {[ly — Hx|7, + A [x|7,} < min|x]l, subjectto [y —Hx], <o

min {|ly — Hx|[7, + AMJx|le, } < min|fx[l,, subjectto [y —Hx]7, <o

Y1 = hipx

To C

P
’

sparse extreme points

P/
’
’
¢
<
Y
.
.

P
. T
, 1
’
) ’
~ ’
. v
¢

f5-ball: |$1|2 + |LI,‘2|2 = (Y

El-ball: |.’E1‘ + |.’E2| = Cl

Configuration for non-unique ¢; solution
39

Variational-MAP formulation of inverse problem

m Linear forward model

noise

y=Hs+n

Lo, R —
H n

m Reconstruction as an optimization problem

Srec = argmin Uy — HSH%J—F A|Ls|b, p=1,2

TV vV
data consistency  regularization

— log Prob(s) : prior likelihood

40



Discretization of reconstruction problem

Spline-like reconstruction model: s(r) = Z slk|B(r) <«— s = (s[k])kea
ke
m Statistical innovation model

Ls = w Discretization u = Ls (matrix notation)
s = L7'w

py is part of infinitely divisible family

e s T An Introduction to

Sparse Stochastic Processes

m Physical model: image formation and acquisition

Ym = /Rd s(@)nm (x)dx + nim] = (s,nm) +n[m], (m=1,...,M)

y=yo+tn=Hs+n n: i.i.d. noise with pdf py

41

Posterior probability distribution

sy (sly) = py|s(y[s)ps(s) _ by (y - HS)pS(S) (Bayes’ rule)
oY py (y) py(y)
= oy — H)ps(s)

Statistical decoupling

u=Ls = ps(s) x pr(Ls) ~ [pca pU<[LS]k)

m Additive white Gaussian noise scenario (AWGN)

popy (51y) o exp (—w) T] vo(Lsle)

... and then take the log and maximize ...

42



General form of MAP estimator

SMAP = argmin (% ly — Hs||g +02y CIDU([LS]n)>

-JGSJBdS

= Gaussian: py (z) = —=L—e~"/(295)

V2mog

= Laplace: py(z) = Se= el

2 +1

1 1\t 1
= Student: py(z) = y < ) = Py(z)=(r+ 5) log(1 + %) + C3

B(r 3

= CI)U(JL’) = ﬁlz + Cl

= CIDU(x) = )\|x] + CQ

Potential: ¢ (x) = — log py ()

Proximal operator: pointwise denoiser

1

L 2) N R TORT B
proxg, (y;0%) = argmin o |y — ul” + 0" @y (u)

U = proxg,, (y; 1)

linear attenuation
m soft-threshold

B shrinkage function

o?®dy (u)

/5 minimization

/1 minimization

~ {, relaxation forp — 0

43
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Maximum a posteriori (MAP) estimation

m Constrained optimization formulation

Aucxiliary innovation variable: u = Ls

. 1 ,
SMAPp = arg min (§|Y — Hs||2 + o2 zn: @U([u]n)> subject to u = Ls

m Augmented Lagrangian method

Quadratic penalty term: 4 ||Ls — ul|3

Lagrange multipler vector: «

1 p
Lals,w o) =y - Hs||; + 0% ) ®y([ul,) + o’ (Ls —u) + 5 ILs - ul)?
n

(Bostan et al. IEEE TIP 2013)
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Alternating direction method of multipliers (ADMM)
Lafs,m ) =3 lly ~ Hs|2+ 02 S ®u(fuly) + a7 (Ls — w) + £ 1Ls — w3

Sequential minimization
skl « arg min £4(s,u”, a)
seRN

k aftl = ok + ,u(LskJrl — uk)
uftl « arg min L£4(s", u, o)

ucRN

Linear inverse problem:  s**1 = (HTH + uL7L) "' (HTy + z¢?)

with  z"! = LT (pu* — o)

Nonlinear denoising: ~ u**! = proxg,, (Ls* ™ + iak“; "7)

m Proximal operator taylored to stochastic model

1
ProxXg,, (y; A) = argmin o |y — uf* + Ay (u)

R : ; 6
Cauchy prior with increasing sg



Deconvolution in widefield microscopy

m Physical model of a diffraction-limited microscope
9(x,y,2) = (hsp * s)(z,y, 2)

3-D point spread function (PSF)

hap(x,y,2) = Io |px (35 3% ﬁ)\z

2

-2 -1 0 1 2

2 2
. w1 + 9% . TWy + Yyws
= 2 —j2r———= ) dwid
oa(z,y, 2) . P(wi,ws)exp (J TZ 2 )exp( j2m o > widws
Optical parameters
= \: wavelength (emission)
= M: magnification factor
= fo: focal length
= P(wi,ws) = 1)y <R,: Pupil function
= NA = nsinf = Ry/ fo: numerical aperture
2-D (in focus) convolution model
. . S(l’,y) — ! fﬂ“ g(l',y) = (hQD *S)(x7y)
Thin specimen SE— el ———
hQD (CE’, y)

2
, With r = /22 4 42

m Airy disk:  hop(z,y) = Io ’2—‘]55}”,{;0)

Ji(r): first-order Bessel function, and ry = % Radial profile

hab (av,);l/)

Optical parameters
= \: wavelength (emission)
= fo: focal length
= Ry: radius of aperture

m Modulation transfer function

2
- 2 [ arccos (”:—”) - ”:J"—” 1-— ([‘;’—”) , for 0 < |w]| < wo
hQD(W)} — 0 0 0

0, otherwise

Cut-off frequency (Rayleigh): wy = 50 = T ~ 2KA

47
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2-D deconvolution: numerical set-up

m Discretization

wo < m|and representation in (separable) sinc basis

Br(x) = sinc(x — k) with k € Z?

Analysis functions (impulse response): 7y, (z,y) = hop(z — m1,y — mo)

[H]m,k <77m7 6k> - <77m7 SinC(- - k)>
(hap (- — m), sinc(- — k))

(sinc * hop ) (M — k) = hop(m — k).

H and L: convolution matrices diagonalized by discrete Fourier transform

m Linear step of ADMM algorithm implemented using the FFT

Sk—l—l — (HTH + ,LLLTL)_l (HTy + Zk+1)
with  z* = LT (pu® — oF)

49

2D deconvolution experiment

Astrocytes cells Bovine pulmonary artery cells

Human embryonic stem cells

Disk-shaped PSF (7 x 7), L: gradient (TV-like), optimized parameters

Deconvolution results (SNR in dB)

Gaussian Estimator

Laplace Estimator

Student’s Estimator

Astrocytes cells

12.18

10.48

10.52

Pulmonary cells

16.9

19.04

18.34

Stem cells

15.81

20.19

20.5




3D deconvolution of a widefield stack

kL

C. Elegans embryo. 3 stacks obtained by a Olympus CellR. Pixel size: 64.5 nm, Z-step: 200 nm (3.1 ratio)

PSF from an analytical model (see PSE Generator). Deconvolution with GlobalBiolm.

3D deconvolution of a widefield stack

) 1
s = arg min (5“3’ — SHs||3 + )\HLSHZ1 + 5Rf(s)>

m Practical considerations

H (convolution) and L (gradient) as explained

S: patch extraction / masking (remove padding of the FFT implementation)

|| - ||2.1: group-sparse norm for isotropic TV

5Rf : R — {0, oo} flurophore concentrations are not negative

m and more... :
ierc GlobalBiolm
= implementing proximal optimization is hard 5 A unifying Matlab
= memory management, convergence criteria, GPU? . library for imaging

inverse problems

efficient implementations of linear operators

beyond ADMM...? Trying different splittings?

latest version

52



GlobalBiolm

m Three main abstract classes:

= Linear operators (LinOp)

= LinOpConyv, LinOpGrad, LinOpHess, LinOpXRay, ...

=
= Cost functions (Cost) mheritance . GostL2, CostL1, CostMixNorm12, CostNonNeg, ...

= Optimization algorithms (Opti)

m Packaged with everything needed

s Operators: efficient implementations of Hx, H*y, H*Hx, norm, ...

= Cost functions: gradient, prox, Lipschitz constant, ...

= Optimization algorithms: automagically use all of the above for pain-free prototyping.

3D deconvolution of a widefield stack

= OptiADMM, OptiChambPock, OptiGradDsct, ...

53

(1 2
s = arg min (5“3’ — SHs||5 + )\HLSH2’1 + Opx (s))

m ADMM with 3-way splitting

99

100
111

112
113 -

-

104
105
106
107
108 -
109 -
=
78

Inh1£L4(s,{uﬁ}izl,{aﬁ}i:1> in Fourier.

= u; = Hs,us =Lsandug =s SERN

1
La (s, {un}izl g {an}i:1> 5 ly — Su1||§ +A ||U2H2,1 + 5Rf<u3)

4o T oy 1 Plpere L2
% Configure convergence criteria

% AN iterations nr relative cost under 1e-4 nr relative sten under 1e-4
%% Run ADMM

% With initialization at zero
ADMM. run( zeros_( var_size ) );

% Configure algorithm output while running

% Report costs (1 and 2 in cost_functions, corresponding to least squares
% and TV regularizer), but don't store them, 30 times in the number of

% maximum iterations.

ADMM.OutOp = OutputOpti( true, [], round( ADMM.maxiter / 30 ), [1, 2] );
ADMM. ItUpOut = ADMM.maxiter / 30;

least_squares_cost = 12_cost * S;
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# GlobalBiolm Library
11.2

Download or Clone (v 1.1.2)
Important Information
SEES

Graphical User Interface (GUI)
Related Papers

Conditions of Use

Abstract Classes

Linear Operators (LinOp)
Non-Linear Operators

Cost Functions (Cost)
Optimization Algorithms (Opti)
List of Methods

List of Properties

Speedup with GPU

Biomedical Imaging Group

Contact

https://biomedical-imaging-group.github.io/GlobalBiolm/

Docs » Welcome to the GlobalBiolm Library Webpage View page source

Welcome to the GlobalBiolm Library Webpage

This is a free Matlab library. It contains generic modules that facilitate the implementation of
forward models and optimization algorithms. It also capitalizes on the strong commonalities
between the various image-formation models that can be exploited to build a fast, streamlined
code.

latest version

This page contains the detailed documentation of each function/class of the library. The
documentation is generated automatically from comments within M-files.

Releases

v 1.1.2 (April 2019).

v 1.1.1 (September 2018).

v 1.1 (July 2018). Speed up your codes using the library with GPU (read more).
v 1.0.1 (May 2018).

v 1.0 milestone (March 2018).

v 0.2 (November 2017). New tools, more flexibility, improved composition.

v 0.1 (June 2017). First public release of the library.

Reference

Pocket Guide to Solve Inverse Problems with GlobalBiolm,
Inverse Problems, 35-10, 2019.
E. Soubies, F. Soulez, M. T. McCann, T-A. Pham, L. Donati, T. Debarre, D. Sage, and M. Unser.




Differential phase-contrast tomography E

[ Paul Scherrer Institute (PSI), Villigen

Intensity

X-ray Source

phase grating absorption grating

(Pfeiffer, Nature 2006)

J

Mathematical model [ )
P y=Hs
y(t.0) = SRofs}(t) =
0
t H]; )k = apejﬁk(tj)
- ssrnazamad? 57
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Reducing the numbers of views em'am

Rat brain reconstruction with 181 projections

ADMM-PCG ‘

SSIM = .96

F

SSIM = .95

SSIM = .49 -

SSIM = .89

SSIM = .60

SSIM = .15

SSIM = 43

Collaboration: Prof. Marco Stampanoni, TOMCAT PSI/ETHZ

(Nichian et al. Optics Express 2013) 5



Performance evaluation

Goldstandard: high-quality iterative reconstruction with 721 views

301

101

SNR (dB)

—e— ADMM-PCG

—=—FBP

361 181 91 46 23
Number of directions

(a)

0.8
0.7

0.61

0.5
=

| | ——ADMM-PCG

0.1 | —=—FBP

361 181 91 46 23
Number of directions

(b)

= Reduction of acquisition time by a factor 10 (or more) ?
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Compressed sensing: Applications in imaging

- Magnetic resonance imaging (MRI)

PHILIPS

GE Healthcare

- Radio Interferometry

- Teraherz Imaging

- Digital holography

- Spectral-domain OCT

- Coded-aperture spectral imaging

- Localization microscopy

- Ultrafast photography

(Lustig, Mag. Res. Im. 2007)

SIEMENS
(Wiaux, Notic. R. Astro. 2007)

(Chan, Appl. Phys. 2008)

(Brady, Opt. Express 2009; Marim 2010)

(Liu, Opt. Express 2010)

(Arce, IEEE Sig. Proc. 2014)

(Zhu, Nat. Meth. 2012)

(Gao, Nature 2014)
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Conceptual summary of 2nd generation methods

Statistical model of signal

¥ ¥

J(X,u)=§lly—HXH§ +  AR(u)  +  pllLx—ulf3

consistency prior constraints

algorithmic
coupling

Schematic structure of reconstruction algorithm:
— Repeat

x(™ = arg m}in J(x, u<"‘1)): Linear step (problem specific)

Niter .
ul® = argmin J(x™, u): Statistical or “denoising” step

| until stop criterion
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Inverse problems in imaging: Current status

m Higher reconstruction quality: Sparsity-promoting schemes almost sys-
tematically outperform the classical linear reconstruction methods in MRI,
x-ray tomography, deconvolution microscopy, etc... (Lustig et al. 2007)

m Faster imaging, reduced radiation exposure: Reconstruction from a

lesser number of measurements supported by compressed sensing.
(Candes-Romberg-Tao; Donoho, 2006)

m Increased complexity: Resolution of linear inverse problems using ¢4
regularization requires more sophisticated algorithms (iterative and non-
linear); efficient solutions (FISTA, ADMM) have emerged during the past

decade. (Chambolle 2004; Figueiredo 2004; Beck-Teboule 2009; Boyd 2011)

m Outstanding research issues
m Beyond ¢; and TV: Connection with statistical modeling & learning

= Beyond matrix algebra: Continuous-domain formulation (Unser, SIAM Rev 2017)
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Part 4:

The (deep) learning (r)evolution

= Emergence of 3rd generation methods
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Learning within the current paradigm

m Data-driven tuning of parameters: A, calibration of forward model

Semi-blind methods, sequential optimization

m Improved decoupling/representation of the signal

Data-driven dictionary learning

= “optimal” L
(based of sparsity or statistics/ICA)

(Elad 2006, Ravishankar 2011, Mairal 2012)

m Learning of non-linearities / Proximal operators

o _ = “optimal” potential ¢
CNN-type parametrization, backpropagation

(Chen-Pock 2015-2016, Kamilov 2016)
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Structure of iterative reconstruction algorithm

1
Ssparse — arg min (—Hy - HSH% + )\HU.H1> subjectto u = Ls
seRK \ 2

ADMM

1 2 %
La(sin) = &y — Hsl} + AY [ulu] + a7 (Ls — ) + £[[Ls 3

Linear step

Fork=0,...,K st — (HTH + pLTL) ' (20 + 27+

with  z*™! = L7 (pu® — oF)

( j ak-l—l — ak + ,LL(LSIH_l _ uk)

Nonlinear step = “denoising” of u

llk+1 = pI‘OX|_| (Lsk+1 + iakﬂ; %)

Connection with deep neural networks
(Gregor-LeCun 2010)

Unrolled lterative Shrinkage Thresholding Algorithm (ISTA)

LISTA : learning-based ISTA

" T e
il g ik
: v : v o 1 v
o> [ Ot Do [ .
ISTA with sparsifying transformation (a)
e
Ty - Twhy
a L a L
! Y b :
Xo>| W | | 1=TWHHW| (> A4 > v D [ 1-TwHHw| (> A4 > | w [>X,
-
FBPConvNet structures (b)
(" \ ]
W\ b J b, b
— Y O Y v W
X, W, ! - >iw, > aee > | Wy, —@»«IL > W, X,
; | I
a e a®
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Recent appearance of Deep ConvNets
(Jin et al. 2016; Adler-Oktem 2017; Chen et al. 2017; ...)
m CT reconstruction based on Deep ConvNets

= Input: Sparse view FBP reconstruction

= Training: Set of 500 high-quality full-view CT reconstructions

= Architecture: U-Net with skip connection (Jinetal., IEEE TIP 2017)
Skip connection
1 64 64 64 « # of channels 1286464 1 | 1)
U-net
spatial dimension:512x512
64" 128128 256128 128
| | 256 x 256 l |

128 256 256 512 2 » 3x3conv.+BN
I : I B. +RelU
128x128_ 1 W W ! ; + 2x2max pooling

skip connection

256" 512 512 1024 512 512 ) :
and concatenation
saxes H-HH-I - N * 3x3up-conv2.
(512 1024 1024 + BN + RelU
32x32\ - — » 1x1conv.

CT data . .
Dose reduction by 7: 143 views
FBP TV
Ground truth SNR 24.06 SNR 29.64

Reconstructed from
from 1000 views

(Q—W MAYO CLINIC



CT data Dose reduction by 7: 143 views

FBP TV FBPConvNet
Ground truth SNR 24.06 SNR 29.64 SNR 35.38

Reconstructed from

from 1000 views (in et al., IEEE Trans. Im Proc., 2017) @ 2019 Best Paper Award
v l]_) MAYO CLINIC A IEEE Signal Processing Society
z‘ .

CT data Dose reduction by 20: 50 views

FBP TV FBPConvNet
Ground truth SNR 13.43 SNR 24.89 SNR 28.53

Reconstructed from _
from 1000 views (Jin-McCann-Froustey-Unser, IEEE Trans. Im Proc., 2017)

(Q—W MAYO CLINIC




UCT data Dose reduction by 14: 51 views

FBP TV FBPConvNet
Ground truth SNR 3.265 SNR 7.481 SNR 9.003

COMPARISON OF SNR BETWEEN DIFFERENT RECONSTRUCTION ALGORITHMS FOR EXPERIMENTAL DATASET.

Reconstructed from
from 721 views

Methods
FBP TV [13 ed
Metrics [5] Feopos
PAUL SCHERRER INSTITUT 5
avg. SNR (dB) 145 Ylews (x5) || 5.38 8.25 11.34
51 views (x14) | 3.29 7.25 8.85

CNN algorithms: Conditions of utilization

m Standard “regression” setting
= Mapping of an image into an image fo RV = RN iy s= foly)

m Fundamental change of paradigm

Requires extensive sets of representative training data
together with gold-standards = desired high-quality reconstruction

m Application niches
= Denoising
= Super-resolution (data extrapolation)

= Reconstruction from fewer measurements
(trained on high-quality full-view data sets)

= Use of CNN to emulate/speedup some well-performing, but “slow”,
reference reconstruction methods



Design of CNN algorithms: General principles

m Data preparation
= Backprojection or classical linear reconstruction

= Use of feedforward CNN to correct artifacts of first-generation methods

m Connection with second-generation methods
= Conceptual: unrolling to justify deep architecture
= Hybrid methods (“plug & play”):

Enforce consistency, while using CNN as “regularizer” or projector
(Tezcan--Konukoglu, IEEE TMI2018)

(Gupta--Unser, IEEE TMI2018)
m Training

= Choice of suitable cost: SNR or perceptual loss

= Availability of extensive data set: (si,yx),k=1,..., K

= Use of data augmentation: translations, rotations, deformations
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Deep CNNs for bioimage reconstruction images

(Jin--Unser, IEEE TIP 2017)

- X-ray tomography
Y J (Chen--Wang, Biomed Opt. Exp 2017)

(Hammernik--Pock, Mag Res Med 2018 )

- Magnetic resonance imaging (MRI)
(Tezcan--Konukoglu, IEEE TMI2018 )

(Schlemper--Rueckert, IEEE TMI 2018)
(Hauptmann---Arridge, Mag Res Med 2019)

- Dynamic MRI (cardial imaging)

- 2D microscopy (Rivenson--Ozcan, Optica 2017)

- 3D fluorescence microscocopy (Weigert--Jug, Myers, Nature Meth. 2018)
- Super-resolution microscopy (Nehme--Shechtman, Optica 2018)

- Diffraction tomography (Sun--Kamilov, Optics Express 2018)

- Ultrasound (Yoon--Ye, IEEE TMI 2019)
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Example: MRI reconstruction

Group of Thomas Pock, Univ. Graz

1 Reference
k-Space Sensitivity
data maps f

MA*(Au' —f)

Reconstruction error

B e 7/,\ Rk.ne
-A..M fﬁ'.' .A..u

- TR (T
% kS Ni,m v\,/u Ni El‘ Ngm Zero filling Parameters 6

Variational Similarity
Network measuré

Reconstruction

Hammernik, Kerstin, et al. “Learning a variational network for reconstruction of accelerated MRI data”,
Magnetic Resonance in Medicine 79.6 (2018): 3055-3071.

Example: Dynamic MRI reconstruction
Group of Simon Arridge, UCL

(P I T IIITIIiXIZ'IIfiIZZTIIfiIII'IZI\’

g 64
g 13
3 -
HE B g
g Ld Ed B4 B
< g
128 x 128 x 20 2
32 ¥ 64 64 64 ' = ReLU(convyyss)
¥ maxpool,,
——
W ReLU(convt;, ;)
64 x 64 x 10 D CONVyy3xy
128 118' = concat
I . . =D addition
32x32x5 £ RelU
Truth Regnon_rot Regrot tGAnon rot tGAot

Pt1

A% A% gw Qe
: N

./ . /‘,i.‘\ I/
2 B £ LAY Al

»

(Hauptmann et al., Mag Res Med 2019)



Example: Axial super-resolution in
3D fluorescence microscopy

Group of Florian Jug, Max Planck, Desden
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Weigert et al. "Isotropic reconstruction of 3D fluorescence microscopy images using convolutional
neural networks”, MICCAI, 2017.

Learning the complete sensor-to-image map, including the physics !

Nature, March 2018

60i:10.1038/nature25988

LETTER

Image reconstruction by domain-transform
manifold learning

Bo Zhu'#, Jeremiah Z. Liu‘, Stephen F. Cauley'”, Bruce R. Rosen'? & Matthew S. Rosen'?

Image reconstruction is essential for imaging applications across
the physical and life sciences, including optical and radar systems,
magnetic resonance lmuln‘ X- -rey compuled tomography,
positron d imaging and radio
astronomy' . During image uqnhmon the sensor encodes an
intermediate representation of an object in the sensor domain,
which is subsequently reconstructed into an image by an inversion
ol' the cn:odin; fundtun Image reconstruction is challenging
of the exact inverse may not
exista pﬂen especially in the presence of sensor non-idealities
and noise. Thus, the standard reconstruction approach involves
approximating the lnwne function with multiple ad hoc stages in
a signal *5, the P of which depends on
the details of cach nquhﬂkm strategy, and often requires apcrt
parameter tuning to op! Here
we puunl a unified frunﬂmrk for imlge reconstruction—
(AUTOMAP)—
which recasts image reconstruction as a data-driven supervised
learning task that allows a mapping between the sensor and the
image domain to emerge from an appropriate corpus of training
data. We implement AUTOMAP with a deep neural network and
exhibit its flexibility in lwnln; reconstruction lramform- l'or
various imaging
the same network architecture and by arameters. We furthcr
demnnnl: that mlnifold Iuming durlng lrllnlng results In

dnn monllold&. and obum wpedor lmmunlly lo noise and a

hlnd-:nﬁcd t«onﬂmd}on mﬂhods. In addition to lmptvvlng the

we ulkip-le Ihl AUTOM.AP md odxr learned reconstruction
will the P of new

des across hmdnl

Inspired by the perceptual learning archetype, we describe here
a data-driven unified image reconstruction approach, which we
call AUTOMAP, that learns a reconstruction mapping between the
domain data and i domain output (Fig. 1a). As this map-
ping is trained, a low- dlmmsioml joint manifold of the data in both
domains is implicitly learned (Fig. 1b), capturing a highly expressive
representation that is robust to noise and other input perturbations.

[

Complex
sensor data

FC2
n2

FC3
n—-nxn

FC1
2n?

Fundamental limitation: O(n?¢

) memory requirement

AUTOMAP

~Conv. ~Conv. ~Deconv.~,

128 x 128

Image
Cc2 nxn

mzxnxn

myxnxn

= Does not scale well |



DANGER) Deep networks can behave erratically (instability)

Tiny adversarial perturbations of increasing strength
Original z

L

Ground-Truth o

|z + 14| |z + 72 |z + 73]

SoA from A(z) SoA from A(z +71) SoA from A(z +r2) SoA from A(z +r3) SoA from A(z +ry4)

State-of-the-art

Compressed
Sensing

V. Antun, F. Renna, C. Poon, B. Adcock, A.C. Hansen, “On instabilities of deep learning in image
reconstruction - Does Al come at a cost?”, preprint arXiv:1902.05300.

Conclusion: Frontiers in bioimage reconstruction

m Opportunities for learning-based techniques

s Faster, higher-resolution, lower-dose imaging

m How the newer methods profit from the older ones

m Important open issues Can we trust the results ?

= How does one assess reconstruction quality ?
Should be “task oriented”!!!

= Improving the stability of CNNs
= Theory to guide the design: What is the optimal architecture ?

= Theory to explain the regularization effect of CNNs, and their ability to generalize

m Infrastructure requirements
= Extensive database of high-quality data (including goldstandard)

= Development of more realistic simulators
both “ground truth” images + physical forward model

= True 3D CNN toolbox (still missing) 80
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